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2 M. Lohrey and G. Sénizergues

1. Introduction

We prove some tranfer theorems for the algorithmic solvability of equations in

monoids. Our main result states that the satisfiability problem for a monoid G,

which is an HNN-extension of a cancellative monoid H , with finite associated sub-

groups, is Turing-reducible to the same problem over the base monoid H.

We then derive several corollaries, variations and extensions of this result:

- systems of equations (without rational constraints)

- amalgamated product instead of HNN-extension

- equations and inequations i.e. first-order existential logic
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2. Preliminaries

We recall in this section all the needed definitions and classical results concerning

partial semi-groups, semi-groups, monoids and groups.

2.1. Partial semi-groups

Let (P, ·) be a set endowed with a function · : P × P → P . By D(·) ⊆ P × P we

denote the domain of the law ·. The structure

〈P, ·〉

is a partial semi-group iff, for every p, q, r ∈ P ,

(p, q) ∈ D(·) ∧ ((p · q), r) ∈ D(·) ⇔ (q, r) ∈ D(·) ∧ (p, (q · r)) ∈ D(·)

and, in the case where ((p · q), r) ∈ D(·)

(p · q) · r = p · (q · r).

Let us notice that, when P is a partial semi-group, the following structure is a

semi-group:

〈P(P ), ·〉

where the product is defined by , for every R,S ∈ P(P )

R · S = {r · s | (r, s) ∈ R× S ∩D(·)}.

Let A,B be two groups. For every K,K ′ ∈ {A,B}, we denote by PIs(K,K ′) the

set of all group isomorphisms ϕ with dom(ϕ) ⊆ K, im(ϕ) ⊆ K ′.We then define

PGI(A,B) := PIs(A,A) ∪ PIs(A,B) ∪ PIs(B,A) ∪ PIs(B,B).

The pair 〈PGI(A,B), ◦〉 is a partial semi-group.

2.2. Monoids and groups

2.2.1. Subgroups of monoids

Cancellative monoids

Subgroups of monoids

Induced partial isomorphisms, under the hypothesis that the monoid is cancella-

tive.

2.2.2. HNN-extensions

Let us fix throughout this section, a monoid H (the base monoid), two finite sub-

groups A ≤ H, B ≤ H and an isomorphism ϕ : A → B. We then consider the

HNN-extension

G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉 (1)
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We denote by

πG : H ∗ {t, t̄}∗ → G

the homomorphism sending every h ∈ H on itself in G and mapping t to t (resp. t̄

to t−1).

The kernel of πG coincides with the congruence ≈ over H ∗ {t, t̄}∗ generated by

the set of rules

tt̄ ≈ t̄t ≈ 1, (2)

at ≈ tϕ(a), for all a ∈ A and (3)

bt̄ ≈ t̄ϕ−1(b), for all b ∈ B. (4)

An element of s ∈ H∗{t, t̄}∗ can be viewed as a word over the alphabet H∪{t, t̄}

which has the form:

s = h0t
α1h1 · · · t

αihi · · · t
αnhn, (5)

where n ∈ N, αi ∈ {+1,−1}, t−1 means the letter t̄ and hi ∈ H.

We name t-sequence every such s ∈ H ∗ {t, t̄}∗. The t-sequence s is said to be a

reduced sequence iff it does not contain any factor of the form t̄at (with a ∈ A) nor

tbt̄ (with b ∈ B). We denote by Red(H, t) the subset of H ∗ {t, t̄}∗ consisting of all

reduced sequences. Let us denote by ∼ the congruence over H ∗{t, t̄}∗ generated by

all the rules of type (3),(4) above. The set Red(H, t) is saturated by the congruence

∼. The following lemma is fundamental.

Lemma 1. Let s, s′ be some reduced sequences. Then s ≈ s′ if and only if s ∼ s′.

This lemma could be named “Britton’s lemma for monoids”. (See [LS05], for

example, for a proof). We define the norm of a given sequence s ∈ H ∗ {t, t̄}∗ by:

‖s‖ = |s|{t,t̄}. (6)

One can easily check that, for every s, s′ ∈ H ∗ {t, t̄}∗

‖s · s′‖ = ‖s‖ + ‖s′‖; ‖s‖ = 0 ⇔ s ∈ H. (7)

The boolean norm of a t-sequence s is the boolean defined by

‖|s‖| = 1 ⇔ ‖s‖ ≥ 1. (8)

2.2.3. Amalgamated products

Standard definition.

Let us consider two monoids H1,H2, two finite subgroups A1 ≤ H1, A2 ≤ H2, and

an isomorphism ϕ : A1 → A2. The corresponding amalgamated product

G = 〈H1,H2; a = ϕ(a)(a ∈ A1)〉
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is defined by ... We name a-sequence every element s of H1 ∗ H2. It has a unique

decomposition under the form:

s = h0k1h1 · · · kihi · · · knhn, (9)

where n ≥ 0, h1, · · · , hi, · · · , hn−1 ∈ H2 − {1}, k1, · · · , ki, . . . , kn ∈ H1 − {1} and

h0, hn ∈ H2. We name reduced a-sequence every s ∈ H1 ∗ H2 of the form:

s = h0k1h1 · · · kihi · · · knhn, (10)

where n ≥ 0, h1, · · · , hi, · · · , hn−1 ∈ H2 − A2, k1, · · · , ki, . . . , kn ∈ H1 − A1 and

h0, hn ∈ H2. We denote by Red(H1 ∗ H2) the set of all reduced a-sequences.

It is well-known that G is embedded into the HNN-extension

Ĝ = 〈H1 ∗ H2, t; t
−1at = ϕ(a)(a ∈ A1)〉

by the map

h1 ∈ H1 7→ t−1h1t; h2 ∈ H2 7→ h2 (11)

(see [LS77, Th. 2.6. p. 187]).

2.3. Rational subsets of a monoid

Let M = (M, ·, 1M ) be some monoid. The set

Rat(M) ∈ P(P(M))

is the smallest element of P(P(M)) which posseses the finite subsets of M and

which is closed under the operations ∪ (the union operation), · (the product opera-

tion) and ∗ (the star operation, associating with a subset P the smallest submonoid

of M containing P ).

We introduced in [LS05], in the particular case where M is an HNN-extension,

a kind of finite automata, that we call t-automata.

Normalized t-automaton:

- 3 commutative diagrams of [LS05] (stronger than just ∼-compatible.

- for every vertex-type θ,

µA ∩ τ−1(θ) × τ−1(θ) = IdQ ∩τ−1(θ) × τ−1(θ).

We define a function µA,1 : T × H ∗ {t, t̄}∗ → B(QA) by: for every s ∈ H ∗

{t, t̄}∗, t ∈ T

µA,1(t, s) = µA(s) ∩ (τ−1
A (τ i(t)) × τ−1

A (τe(t))).

We establish in §3.4.1 that this map µA,1 has a multiplicative property. For every

g ∈ G we set:

µA,G(g) = µA,1((1, H, ‖|s‖|, 1, 1), s), (12)

where s is any reduced t-sequence representing g. Since A is ∼-saturated, the value

of µA,1(s) does not depend of the chosen representative s.
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2.4. Equations and inequations over a monoid

2.4.1. Equations

Let M = (M, ·, 1M) be some monoid and let

C ∈ P(P(M)).

A system of equations S , over M, with variables in a set U , is a family ((ui, u
′
i))i∈I

of elements of U∗ × U∗. This system is said to be quadratic if, for every i ∈ I,

|ui| = 1, |u′i| = 2.

A C-constraint over U is a map C : U → C. A M-solution of the system S with

C-constraint C is any monoid homomorphism

σM : U∗ → M

fulfilling both conditions:

∀i ∈ I, σM(ui) = σM(u′i) (13)

∀U ∈ U , σM(U) ∈ C(U). (14)

2.4.2. Inequations

A system of equations and inequations over M is a family ((ui, ci, u
′
i))i∈I of elements

of U∗ × {=, 6=} × U∗, where U is a set of variables.

A M-solution of the system ((ui, ci, u
′
i))i∈I with constraint C is any monoid homo-

morphism

σM : U∗ → M

fulfilling both conditions:

∀i ∈ I, σM(ui)ciσM(u′i) (15)

and (14) above.

Special constraints In the case where, C = {{m} | m ∈ M} ∪ {M}, any system

of equations with constraints in C is called a system of equations with constants

(since the variables U ∈ U such that C(U) is a singleton are seen as constants in M

while the variables U ∈ U such that C(U) = M are seen as variables without any

constraint).

In the case where, C = B(Rat(M)), (i.e. the boolean closure of the set of rational

subsets of M), any system of equations with constraints in C is called a system of

equations with rational constraints. Partial Involution.

2.5. Reductions among algorithmic problems

Turing reduction from L1 to L2.

Turing reduction from L1 to (L2, L3).

Informally: ...
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3. AB-algebras

We define here the notion of AB-algebra, which turns out to be useful for handling

equations with rational constraints in an HNN-extension.

3.1. Types

Let us consider the finite set of types T6 defined in [LS05]. We define a finite partial

semi-group 〈T , ·〉 as follows:

T = T6 × B × T6

where B = 〈{0, 1}, ·〉 is the monoid of booleans; the partial product is defined by:

for every (p, b, q), (p′, b′, q′) ∈ T6 × B × T6, if q = p′ then

(p, b, q) · (p′, b′, q′) = (p, b+ b′, q′),

otherwise the product is undefined. As we noticed in §2.1, 〈P(T ), ·〉 is thus a semi-

group.

We define an involutory map IR : T6 → T6 by:

(A, T ) 7→ (A,H), (A,H) 7→ (A, T ), (B, T ) 7→ (B,H), (B,H) 7→ (B, T ), (1, H) 7→ (1, 1), (1, 1) 7→ (1, H).

We then define an involution IT : T → T by:

IT (p, b, q) = (IR(p), b, IR(q)).

One can check that IT is an involutory anti-automorphism of T . This involution in-

duces an involutory semi-group anti-automorphism of 〈P(T ), ·〉 that will be denoted

by IT too. We associate to every element t of T an “initial type” τ i(t) ∈ T6, an

“end type” τe(t) ∈ T6, an “initial group” Gi(t) ∈ {{1}, A,B} and an “end group”

Ge(t) ∈ {{1}, A,B}:

τ i(p, b, q) = p, Gi(p, b, q) = p1(p), τe(p, b, q) = q, Ge(p, b, q) = p1(q).

Each element of T is called a path-type while the elements of T6 are called vertex-

types. This terminology refers to the graph R exhibited on figure 1. (It is a variant

of the t-automaton R6 defined in [LS05], which recognizes the set Red(H, t)). Let

us call atomic types the path-types corresponding to the edges of R i.e. :

(A, T, 1, B,H), (B, T, 1, A,H) (16)

(A,H, 0, B, T ), (B,H, 0, A, T ), (A,H, 0, A, T ), (B,H, 0, B, T ), (17)

(1, H, 0, A, T ), (1, H, 0, B, T ), (B,H, 0, 1, 1), (A,H, 0, 1, 1), (1, H, 0, 1, 1) (18)

(1, H, 0, 1, H), (A, T, 0, A, T ), (B, T, 0, B, T ), (B,H, 0, B,H), (A,H, 0, A,H), (1, 1, 0, 1, 1).

(19)

This set is closed under IT . It is denoted by TA. The partial submonoid generated by

this set of atomic path-types will be denoted by TR. It is closed under the involution

IT . The only path-types used in this work are those from TR. We call T -types all
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Fig. 1. graph R

the atomic types listed in (16), H-types all the atomic types listed in (17)(18),

A ∪ B-types all the atomic types listed in (19). Note that some types are non-

atomic: for example (A, T, 1, A,H) = (A, T, 1, B,H) · (B,H, 0, B, T ) · (B, T, 1, A,H)

is an element of TR − TA.

3.2. AB-algebra axioms

Let A,B be two groups (what we have in mind are the two subgroups A,B of

H leading to the HNN-extension G defined by (1)) and Q be some finite set (we

have in mind the set of states of some t-automaton A over H ∗ {t, t̄}∗). Let us

denote by B(Q) the monoid (P(Q × Q)) of binary relations over Q and by B2(Q)

the direct product of the monoid B(Q) by itself. Given m ∈ B(Q),m−1 is the binary

relation m−1 = {(p, q) ∈ Q × Q | (q, p) ∈ m}. We consider the involutory monoid

anti-isomorphism IQ : B2(Q) → B2(Q) defined by

∀m,m′ ∈ B(Q), IQ(m,m′) = (m′−1,m−1).
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We call AB-algebra a structure of the form

〈M, ·, 1M, I, ιA, ιB , γ, µ, δ〉 (20)

where ιA : A → M, ιB : B → M are total maps, I : M → M is a partial map,

γ : M → P(T ) is a total map, µ : T × M → B2(Q) is a total map, δ : T × M →

PGI(A,B) is a total map ;

fulfilling the eleven axioms (21-31) below.

monoid:

(M, ·, 1M) is a monoid , (21)

embeddings:

ιA, ιB are injective monoid homomorphisms , (22)

involution I:

ιA(A) ∪ ιB(B) ⊆ dom(I) ⊆ M − γ−1({∅}) (23)

for every m,m′ ∈ M,

[γ(m) · γ(m′) 6= ∅] ⇒ [m ·m′ ∈ dom(I) ⇔ (m ∈ dom(I) ∧m′ ∈ dom(I))] (24)

I : (dom(I), ·, 1M) → (dom(I), ·, 1M) is a monoid anti-isomorphism, I ◦ I = I, (25)

almost homomorphisms:

for every m,m′ ∈ M,

γ(m ·m′) ⊇ γ(m) · γ(m′), (26)

for every m,m′ ∈ M, t ∈ γ(m), t′ ∈ γ(m′), such that (t, t′) ∈ D(·),

µ(t · t′,m ·m′) = µ(t,m) · µ(t′,m′), (27)

dom(δ(t,m)) ⊆ Gi(t), im(δ(t,m)) ⊆ Ge(t) (28)

δ(t · t′,m ·m′) = δ(t,m) ◦ δ(t′,m′). (29)

commutation with I:

for every a ∈ A, b ∈ B,m ∈ dom(I), t ∈ γ(m),

I(ιA(a)) = ιA(a−1); I(ιB(b)) = ιB(b−1) (30)

γ(I(m)) = IT (γ(m)); µ(IT (t), I(m)) = IQ(µ(t,m)); δ(IT (t), I(m)) = δ(t,m)−1.(31)

Axiom (25) includes the assumption that dom(I) is a submonoid. From now on, we

denote by M̂ this submonoid.
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3.3. AB-homomorphisms

Let

M1 = 〈M1, ·, 1M1
, ιA,1, ιB,1, I1, γ1, µ1, δ1〉,M2 = 〈M2, ·, 1M2

, ιA,2, ιB,2, I2, γ2, µ2, δ2〉

be two AB-algebras with the same underlying groups A,B and set Q. We call

AB-homomorphism from M1 to M2 any map ψ : M1 → M2 fulfilling the seven

properties (32-38) below:

m-homomorphism:

ψ : (M1, ·, 1M1
) → (M2, ·, 1M2

) is a monoid homomorphism (32)

ι-preservation:

∀a ∈ A,∀b ∈ B,ψ(ιA,1(a)) = ιA,2(a), ψ(ιB,1(b)) = ιB,2(b) (33)

I-preservation:

∀m ∈ M1 − γ−1
1 ({∅}), m ∈ dom(I1) ⇔ ψ(m) ∈ dom(I2) (34)

∀m ∈ M̂1, I2(ψ(m)) = ψ(I1(m)) (35)

γ-compatibility:

∀m ∈ M1, γ2(ψ(m)) ⊇ γ1(m) (36)

µ-preservation:

∀m ∈ M1,∀t ∈ γ1(m), µ2(t, ψ(m)) = µ1(t,m), (37)

δ-preservation:

∀m ∈ M1,∀t ∈ γ1(m), δ2(t, ψ(m)) = δ1(t,m). (38)

M1 is said to be a sub-AB-algebra of M2 if M1 ⊆ M2 and the inclusion map

ι : M1 → M2 is an AB-homomorphism.

3.4. The AB-algebra Ht

3.4.1. H ∗ {t, t̄}∗

subscript t everywhere Given an HNN-extension (1) and a partitionned, ∼-

saturated finite t-automaton A, we define an AB-algebra with underlying monoid

H ∗ {t, t̄}∗ and set of states QA.

〈H ∗ {t, t̄}∗, ·, 1H, ιA, ιB , I, µ, γ, δ〉 (39)

as follows:

ιA, ιB

are the natural injections from A (resp. B) into H ∗ {t, t̄}∗,

dom(I) = (I(H) ∪ {t, t̄})∗
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where I(H) is the set of invertible elements of H; I is the unique monoid anti-

homomorphism dom(I) → dom(I) such that

∀h ∈ I(H), I(h) = h−1; I(t) = t̄; I(t̄) = t.

The map γ is defined by: for every s ∈ H ∗ {t, t̄}∗,

γ(s) = {(p, b, q) ∈ T6 × B × T6 | (p, q) ∈ µR6
(s) ∧ b = (‖s‖ 6= 0)} (40)

where (‖s‖ 6= 0) is the boolean 1 if and only if it is true that (‖s‖ 6= 0). The map

µ : T × H ∗ {t, t̄}∗ → B2(Q) is defined by:

µ(t, s) = (µ1(t, s), (µ1(IT (t), It(s))
−1))) if s ∈ dom(It);

µ(t, s) = (µ1(t, s), ∅) if s /∈ dom(It). (41)

The map δ : T × H ∗ {t, t̄}∗ → PGI(A,B) is defined by:

δ(t, s) = {(g, g′) ∈ Gi(t) × Ge(t) | g · s ∼ s · g′}.

It is noteworthy that, for every s ∈ H ∗ {t, t̄}∗

γ(s) 6= ∅ ⇔ s ∈ Red(H, t). (42)

Proposition 2. The above structure 〈H ∗ {t, t̄}∗, ·, 1H, ιA, ιB , I, µ, γ, δ〉 is an AB-

algebra.

In order to prove this proposition we show several lemmas.

Lemma 3. For every s, s′ ∈ H ∗ {t, t̄}∗, γ(s · s′) ⊇ γ(s) · γ(s′).

Sketch of proof: Let Γ be the homomorphism from the partial semi-group of

paths in R into the partial semi-group T which associates to every edge of R

the same edge, viewed as an atomic path-type. Let t ∈ T , s ∈ Red(H, t). By

Path(t, s) we denote the unique path in the graph R such that Γ(Path(t, s)) = t and

Λ(Path(t, s)) = s (where Λ is the labelling map). By definition, a path-type t be-

longs to γ(s) iff Path(t, s) exists. Suppose that s, s′ ∈ Red(H, t), t ∈ γ(s), t′ ∈ γ(s′),

and (t, t′) ∈ D(·). Then the product Path(t, s) · Path(t′, s′) is defined too, and

Γ(Path(t, s) · Path(t′, s′)) = t · t′, Λ(Path(t, s) · Path(t′, s′)) = s · s′,

showing that

γ(s · s′) ⊇ γ(s) · γ(s′).

2

In order to check multiplicativity of the mapping µ, we claim the following facts

Claim 4.

1- µ0(t) = µ1((A, T, 1, B,H), t)

2- µ0(t̄) = µ1((B, T, 1, A,H), t̄)

3- µ0(h) = ∪θ∈γ(h)µ1(θ, h)

4- µ1((A, T, 1, B,H), (
∏n−1
i=1 t

αihi)t
αn) =

∏n−1
i=1 µ0(t

αi)µ0(hi)µ0(t
αn).
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Sketch of proof: Points (1)(2)(3) follow directly from the definition of µ. Point

(4) follows from the property of A:

µ1((θ, 0, θ), 1) = IdQ ∩τ−1(θ) × τ−1(θ).

2

Lemma 5. Let h, k ∈ H, θ, θ′, θ′′ ∈ T6, such that (θ, 0, θ′) ∈ γ(h), (θ′, 0, θ′′) ∈

γ(k) and (θ, 0, θ′′) ∈ T . Then µ1((θ, 0, θ
′) · (θ′, 0, θ′′), h · k) = µ1((θ, 0, θ

′), h) ·

µ1((θ
′, 0, θ′′), k).

Sketch of proof: If θ′ /∈ {θ, θ′′}, then the product (θ, 0, θ′′) /∈ T .

Let us suppose that θ′ = θ. Hence h belongs to the subgroup p1(θ), and thus,

loops precise ref of [LS05] show that µ1((θ, 0, θ
′′), h · k) = µ1((θ, 0, θ), h) ·

µ1((θ, 0, θ
′′), k).

The case where θ′ = θ′′ can be treated symmetrically. 2

Lemma 6.

Let n ≥ 1 , θ, θ′ be vertex-types and α1, . . . , αn ∈ {−1,+1}, h0, h1, . . . , hn ∈ H. Let

s = (
∏n−1
i=1 t

αihi)t
αn . Then

µ1((θ, 1, θ
′), h0shn) = µ1((θ, 0, A(α1), T ), h0)·µ1((A(α1), T, 1, B(αn), H), s)·µ1((B(αn), H, 0, θ

′), hn).

Sketch of proof: Follows immediately from the definitions of µA and µ1. 2

Lemma 7. For every path-types t, t′ and every t-sequences s, s′ ∈ H ∗ {t, t̄}∗, if

t ∈ γ(s), t′ ∈ γ(s′) and t · t′ is defined, then µ1(t · t
′, s · s′) = µ1(t, s) · µ1(t

′, s′).

Sketch of proof: Suppose that t = (θ, 1, θ′), t′ = (θ′, 1, θ′′), s = hšk, s′ = h′š′k′

where š = (
∏n−1
i=1 t

αihi)t
αn , š′ = (

∏m−1
j=1 tβjh′j)t

βm .

Case 1: θ′ = (B(αn), H).

Let us determine

µ1((θ, 1, θ
′′), s · s′). (43)

By lemma 6 it is equal to

µ1((θ, 0, A(α1), T ), h0)·µ1((A(α1), T, 1, B(βm), H), h), š·kh·š′)·µ1((B(βm), H, 0, θ′′), k′).(44)

By claim 4, point (4), this can be rewritten:

µ1((θ, 0, A(α1), T ), h0)·
n−1∏

i=1

µ0(t
αi)µ0(hi)µ0(t

αn)·µ0(kh)·
m−1∏

j=1

µ0(t
βj )µ0(h

′
j)µ0(t

βm)µ1((B(βm), H, 0, θ′′), k′).(45)
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but since the image of µ0(t
αn) is included in τ−1(B(αn), H) and the domain of

µ0(t
β1) is included in τ−1(A(β1), T ), the factor µ0(kh) in formula (45) can be re-

placed by

µ1((B(αn), H, 0, A(β1), T ), kh),

which, by lemma 5 can be replaced by

µ1((B(αn), H, 0, B(αn), H), k) · µ1((B(αn), H, 0, A(β1), T ), h).

After this replacement in formula (45) we obtain:

µ1((θ, 0, A(α1), T ), h0)·
∏n−1
i=1 µ0(t

αi)µ0(hi)µ0(t
αn)· µ1(B(αn), H, 0, B(αn), H), k)

·µ1((B(αn), H, 0, A(β1), T ), h)·
∏m−1
j=1 µ0(t

βj )µ0(h
′
j)µ0(t

βm)· µ1((B(βm), H, 0, θ′′), k′).

Using lemma 6 backwards and twice, we obtain

µ1((θ, 0, B(αn), H), s) · µ1((B(αn), H, 0, θ
′′), s′) (46)

which is exactly

µ1((θ, 1, θ
′), s) · µ1((θ

′, 1, θ′′), s′) (47)

We have established that (43) and (47) have the same value, as required.

Case 2: θ′ = (A(β1), T ).

Symetric arguments can be applied.

Since every other value of θ′ makes impossible that both (θ, 1, θ′) ∈ γ(s) and

(θ′, 1, θ′′) ∈ γ(s′), we have treated all the possible cases.

It remains to treat the case where s ∈ H or s′ ∈ H:

Case 3: s ∈ H, s′ /∈ H.

By lemma 5,

µ1((θ, 0, A(β1), T )), s · h′) = µ1((θ, 0, θ
′), s) · µ1((θ

′, 0, A(β1), T ), h′).

Applying lemma 6 we get

µ1((θ, 0, θ
′′), s · s′) = µ1((θ, 0, A(β1), T ), sh′) · µ1((A(β1), T, 0, θ

′′), š′k′)

= µ1((θ, 0, θ
′), s) · µ1((θ

′, 0, θ′′), h′š′k′)

as required.

Case 4: s /∈ H, s′ ∈ H.

can be handled as case 3.

Case 5: s ∈ H, s′ ∈ H.

This case is treated by lemma 5. 2

From the multiplicativity of µ1 we can immediately deduce the multiplicativity of

µ. All the other checks are easy.
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Positive AB-structure Another AB-structure over H ∗ {t, t̄}∗ can be defined by

choosing, in place of the map γ defined in (??), the map map γ+ defined by: for

every s ∈ H ∗ {t, t̄}∗,

γ(s) = {(p, b, q) ∈ T6 × B × T6 | (p, q) ∈ µG6
(s) ∧ b = (‖s‖ 6= 0)} (48)

Assertion 42 is now replaced by

∀s ∈ H ∗ {t, t̄}∗, γ+(s) 6= ∅. (49)

We call the resulting structure

〈H ∗ {t, t̄}∗, ·, 1H, ιA, ιB , I, µ, γ+, δ〉 (50)

the positive AB-algebra structure over H ∗ {t, t̄}∗. This variant will be used in §9

where we deal with positive rational constraints.

3.4.2. Ht

One can check that the monoid-congruence ∼ is compatible with I, ιA, ιB , γ, µ, δ in

the sense that: for every s, s′ ∈ H ∗ {t, t̄}∗, a ∈ A, b ∈ B, t ∈ γ(s), if s ∼ s′ then,

I(s) ∼ I(s′), s = ιA(a) ⇔ s′ = ιA(a), s = ιB(b) ⇔ s′ = ιB(b),

γ(s) = γ(s′), µ(t, s) = µ(t, s′), δ(t, s) = δ(t, s′).

Let us denote by Ht the quotient set H ∗ {t, t̄}∗/ ∼. We can naturally endow Ht

with a structure of AB-algebra:

Ht := 〈Ht, ·, 1H, ιA,∼, ιB,∼, I∼, µ∼, γ∼, δ∼〉 (51)

where all the required maps are just obtained from the corresponding map in the

AB-structure of H ∗ {t, t̄}∗, by composition by π∼ : H ∗ {t, t̄}∗ → H ∗ {t, t̄}∗/ ∼. In

addition

s ∼ s′ ⇒ ‖s‖ = ‖s′‖

so that the notion of norm remains well-defined in the quotient Ht.

Positive AB-structure Similarly, we can define the structure of AB-algebra:

Ht+ := 〈Ht, ·, 1H, ιA,∼, ιB,∼, I∼, µ∼, γ+∼, δ∼〉 (52)

where γ+ is defined via the automaton G6 instead of R6, see (48).
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Fig. 2. Lemma 8

3.4.3. Algebraic properties

Lemma 8. Let P, P ′, S, S′ ∈ Ht. Suppose that PS = P ′S′,P, P ′ have an atomic

H-type and γ(P ) · γ(S) = γ(P ′) · γ(S′) 6= ∅. Then, there exists c ∈ γ3(P ) such that

P = P ′c, cS = S′.

Lemma 9. Let P, P ′, S, S′ ∈ Ht. Suppose that

PS = P ′S′, P, P ′ have a T-type and γ(P ) · γ(S) = γ(P ′) · γ(S′) 6= ∅.

One of the following cases must occur:

1- ‖P‖ = ‖P ′‖ and there exists c ∈ γ3(P ) such that

P = P ′c, cS = S′

2- ‖P‖ < ‖P ′‖ and there exist c ∈ γ3(P ),P ′
1,P

′
2,P

′
3 ∈ Ht,P

′
1, P

′
3 have a T-type,P ′

2

has a H-type ,γ(P ′
3) · γ(S

′) 6= ∅ and

P = P ′
1c, P ′ = P ′

1P
′
2P

′
3, cS = P ′

2P
′
3S

′.

3- ‖P‖ > ‖P ′‖ and there exists c ∈ γ3(P ),P1,P2,P3 ∈ Ht,P1, P3 have a T-type ,P2

has a H-type, γ(P3) · γ(S) 6= ∅ and

P = P1P2P3, P1 = P ′c, cP2P3S = S′.

3.5. The AB-algebra W

3.5.1. W∗ ∗A ∗B

Let S be a system of equations over Ht with involution and rational constraints.

The rational constraints are expressed via the map µt defined by (41) in §3.4.1. We

define an alphabet of “generic” symbols W with the underlying idea of representing

inside each symbol the values of the functions γt, µt, δt for the “concrete” value (i.e.
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Fig. 3. Lemma 9

in H ∗ {t, t̄}∗) of that variable that leads to a solution of the system of equations.

Let V0 be some starting set. We then define

Ω := V0 × {−1, 0, 1} × TA × B2(Q) × PGI(A,B). (53)

W := {(V, ε, t,m, ϕ) ∈ Ω | ϕ ∈ PIs(Gi(t),Ge(t)),∀(c, d) ∈ ϕ, µA(c)·m = m·µA(d)}.(54)

Let

W̌ = {W ∈ W | p2(W ) = 0}, Ŵ = {W ∈ W | p2(W ) 6= 0}

Let us consider the free product W∗ ∗ A ∗ B. We denote by ιA : A → W∗ ∗ A ∗ B

the natural embedding of A into W∗ ∗ A ∗ B ( and use similarly the notation ιB).

Note that ιA(A) ∩ ιB(B) = {1}. We define an AB-algebra with underlying monoid

W∗ ∗A ∗B and set of states Q

〈W∗ ∗A ∗B, ·, 1, ιA, ιB , I, µ, γ, δ〉 (55)

as follows:

dom(I) = Ŵ∗ ∗A ∗B

(the submonoid generated by Ŵ ∪ ιA(A) ∪ ιB(B)) I is the unique monoid anti-

homomorphism Ŵ∗ ∗A ∗B → Ŵ∗ ∗A ∗B such that:

∀a ∈ A, I(ιA(a)) = ιA(a−1); ∀b ∈ B, I(ιB(b)) = ιB(b−1)

I(V, ε, t,m, ϕ) = (V,−ε, IT (t), IQ(m), ϕ−1).

γ : W∗ ∗A ∗B → P(T )

is defined by:

γ(V, ε, t,m, ϕ) = {t},

for every a ∈ A− {1}, b ∈ B − {1}

γ(ιA(a)) = {(A, T, 0, A, T ), (A,H, 0, A,H)}, γ(ιB(b)) = {(B, T, 0, B, T ), (B,H, 0, B,H)},

γ(1) = {(1, H, 0, 1, H), (1, 1, 0, 1, 1), (A, T, 0, A, T ), (A,H, 0, A,H), (B, T, 0, B, T ), (B,H, 0, B,H)}
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and finally, for every g1, . . . , gi, . . . , gn ∈ W ∪ ιA(A) ∪ ιB(B),

γ(
n∏

i=1

gi) =
n∏

i=1

γ(gi) (56)

µ is defined by

µ(t, ιA(a)) = µt(t, a), µ(t, ιB(b)) = µt(t, b),

for every t′ ∈ T , t′ 6= t,

µ(t, (V, ε, t,m, ϕ)) = m, µ(t′, (V, ε, t,m, ϕ)) = ∅.

The map δ : T × H ∗ {t, t̄}∗ → PGI(A,B) is defined by: for every a ∈ ιA(A), b ∈

ιB(B), t ∈ T ,

δ(t, ιA(a)) = {(ιA(c), ιA(d)) | (c, d) ∈ Gi(t) × Ge(t), ca = ad}, if t ∈ γ(ιA(a))

δ(t, ιA(a)) = {(1, 1)}, if t /∈ γ(ιA(a))

δ(t, ιB(b)) = {(ιB(c), ιB(d)) | (c, d) ∈ Gi(t) × Ge(t), ca = ad}, if t ∈ γ(ιB(b))

δ(t, ιB(b)) = {(1, 1)}, if t /∈ γ(ιB(b)).

For every t′ ∈ T , t′ 6= t,

δ(t, (V, ε, t,m, ϕ)) = ϕ, δ(t′, (V, ε, t,m, ϕ)) = {(1, 1)}

Since for every W ∈ W, γ(W ) is simply a singleton of the form {t}, we also use the

(abusive) notation

τ i(W ), τe(W ),Gi(W ),Ge(W ), µ(W ), δ(W )

for what should be denoted, in full rigor, by

τ i(t), τe(t),Gi(t),Ge(t), µ(t,W ), δ(t,W ).

lengths For every w ∈ (ιA(A) ∪ ιB(B) ∪W)∗, we set

‖w‖ = |w|W .

One can check that

‖w · w′‖ = ‖w‖ + ‖w′‖; ‖w‖ = 0 ⇔ w ∈ A ∗B.

χAB(w) := 1 if w ∈ ιA(A) ∪ ιB(B);χAB(w) := 0 otherwise .

χH(w) := 1 if Card(γ(w)) = 1 ∧ p2(γ(w)) ∈ {H};χH(w) := 0 otherwise .

Given P, S, P ′, S′ ∈ W and ψt ∈ HomAB(W,Ht) we define

∆(P, S, P ′, S′, ψt) = 1−
1

2
(χAB(P )+χAB(P ′))+χH(S)+χH(S′)+2‖ψt(S)‖+2‖ψt(S

′)‖(57)
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3.5.2. W

Let us consider the monoid congruence ≡ over W∗ ∗ A ∗B generated by the set of

pairs

cW ≡Wd, (58)

for all W ∈ W, (c, d) ∈ δ(W ). We define the monoid 〈W, ·, 1W〉 as the quotient-

monoid W∗ ∗A∗B/ ≡. One can check that the monoid-congruence ≡ is compatible

with I, ιA, ιB , γ, µ, δ in the sense that: for every u, u′ ∈ W∗ ∗A ∗B, a ∈ A, b ∈ B, t ∈

γ(u), if u ≡ u′ then,

I(u) ≡ I(u′), u = ιA(a) ⇔ u′ = ιA(a), u = ιB(b) ⇔ u′ = ιB(b), (59)

γ(u) ≡ γ(u′), µ(t, u) = µ(t, u′), δ(t, u) = δ(t, u′). (60)

We can naturally endow W with a structure of AB-algebra:

〈W, ·, 1W, ιA,≡, ιB,≡, I≡, µ≡, γ≡, δ≡〉 (61)

where all the required maps are just obtained from the corresponding map in the

AB-structure of W∗ ∗A ∗B, by composition by π≡ : W∗ ∗A ∗B → W∗ ∗A ∗B/ ≡.

In addition

u ≡ u′ ⇒ ‖u‖ = ‖u′‖

so that the notion of norm remains well-defined in the quotient W.

3.5.3. Wt,WH

Let us consider the set Wt consisting of all the letters W ∈ W fulfilling

∃s ∈ H ∗ {t, t̄}∗,W ∈ dom(IW) ⇔ s ∈ dom(It), γ(W ) ⊆ γ(s), and

∀t ∈ γ(W ), µ(t,W ) = µ(t, s), δ(t,W ) = δ(t, s).

We define the subset

WH := {W ∈ Wt | γ(W ) is a H-type }.

We then define the quotients

Wt := W∗
t ∗A ∗B/ ≡, WH := W∗

H ∗A ∗B/ ≡ .

One can easily check that the successive inclusions WH → Wt → W are AB-

homomorphisms.
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3.5.4. Involutions

Apart from the natural involution I : Ŵ → Ŵ there might exist other involutory

monoid anti-isomorphisms I
′ : (Ŵ, ·, 1W) → (Ŵ, ·, 1W) . Let us consider those I

′ de-

fined by a partition Ŵ = Ŵ0∪W1∪W1,W1 = {W1, · · · ,Wp},W1 = {W̄1, · · · , W̄p},

a tuple (a1, b1, · · · , ak, bk, · · · , ap, bp), with (ak, bk) ∈ (Gi(Wk),Ge(Wk)) and formu-

las of the form

I
′(W ) = I(W ), for all W ∈ Ŵ0

I
′(Wk) = akWkbk; I

′(W̄k) = a−1
k W̄kb

−1
k for all k ∈ [1, p]. (63)

The two following conditions on the tuple (a1, b1, · · · , ak, bk, · · · , ap, bp) are neces-

sary and sufficient for this involutory monoid anti-isomorphism to exist:

(b−1
k ak, akb

−1
k ) ∈ δ(Wk) for all k ∈ [1, p], (64)

δ(W̄k) = δ(ak) ◦ δ(Wk) ◦ δ(bk) for all k ∈ [1, p]. (65)

here a proof of NS

The structure

〈W, ιA, ιB , I
′, γ, µ, δ〉

is still an AB-algebra iff the following additional condition is satisfied: for every

k ∈ [1, p]

γ(Wk) = IT (γ(Wk)), µ(akWkbk) = IQ(µ(Wk)). (66)

We denote by I the set of all partial involution I
′ of the form (63) satisfying con-

ditions (64-66)

3.5.5. Homomorphisms

Let us show here some properties of AB-homomorphisms from W∗ ∗A ∗B or W to

other AB-algebras. Let us denote by GW the set of generators:

GW = W ∪ ιA(A) ∪ ιB(B).

Lemma 10. Let M2 = 〈M2, ·, 1M2
, ιA,2, ιB,2, I2, γ2, µ2, δ2〉 be some AB-algebra.

Let ψ : W → M2 be some monoid-homomorphism. This map ψ is an AB-

homomorphism if and only if,

1- ιA ◦ ψ = ιA,2, ιB ◦ ψ = ιB,2
and for every g ∈ GW, t ∈ γ(g):

2- g ∈ dom(I) ⇔ ψ(g) ∈ dom(I2)

2’- I2(ψ(g)) = ψ(I(g))

3- γ2(ψ(g)) ⊇ γ(g)

4- µ2(t, ψ(g)) = µ(t, g)

5- δ2(t, ψ(g)) = δ(t, g).
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Proof: Suppose that ψ is an AB-homomorphism. By definition it must fulfilll

conditions (33-38). But for all g ∈ GW, γ(g) 6= ∅. Hence condition (34) implies

condition (2) of the lemma. The other five conditions translate immediately into

(1)(2’)(3)(4)(5).

Conversely, let suppose that ψ fulfills conditions (1-5) of the lemma.

By (1), condition (33) is fulfilled.

Extending (2) to W

Let w ∈ W with γ(w) 6= ∅. It must have a decomposition

w = g1g2 · · · gn

with 1 ≤ n,∀i ∈ [1, n], gi ∈ GW.

Let us suppose that

w ∈ dom(I). (67)

By definition of γW, γW(w) =
∏n
i=1 γ(gi), hence, (67) and axiom (23) imply

n∏

i=1

γ(gi) 6= ∅ (68)

and, in particular

∀i ∈ [1, n], γ(gi) 6= ∅ (69)

Applying axiom (24) of AB-algebras, (67) and (68) give:

∀i ∈ [1, n], gi ∈ dom(I). (70)

By condition (2) of the lemma, (69) and (70) entail that

∀i ∈ [1, n], ψ(gi) ∈ dom(I2). (71)

By condition (3) of the lemma and (68), we know that

n∏

i=1

γ(ψ(gi)) 6= ∅. (72)

Using again axiom (24) and (71) we obtain that

n∏

i=1

ψ(gi) ∈ dom(I2). (73)

But ψ is a monoid homomorphism, hence this implies that

ψ(w) ∈ dom(I2). (74)

We have proved that, under the hypothesis that γ(w) 6= ∅, (67) implies (74).

Let us establish the converse. Let us assume that

γ(w) 6= ∅ (75)

and (74). As ψ is a monoid-homomorphism, we obtain (73). From (75) we get (68)

and, as above (72). From (73) and (72), by axiom (24) of AB-algebras we can
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deduce (71). By condition (2) of the lemma, (71) implies (70). From (70) and (68),

by axiom (24) we obtain (67), as required.

Extending (2’) to W

By the point above, we know that im(I ◦ ψ) ⊆ dom(I2). Let us consider the map

θ = I ◦ ψ ◦ I2 : Ŵ → M̂2.

Condition (2’) shows that,

∀g ∈ GW, θ(g) = ψ(g).

As θ, ψ are monoid-homomorphism and GW is a set of monoid generators of W, it

follows that θ = ψ, thus θ ◦ I2 = ψ ◦ I2 i.e.

I ◦ ψ = ψ ◦ I2,

as required.

Extending (3) to W

Let us consider the pairs (W,=),(M2,=),(P(T ),⊆). Each of them is an ordered

monoid i.e., the second element of each pair is an ordering relation which is com-

patible with right(resp. left) product. Let us consider the sequence of two maps:

W
ψ

−→ M2
γ2
−→ P(T )

These two maps are overmorphic in the sense that:

ψ(w · w′) = ψ(w) · ψ(w′), γ2(m ·m′) ⊇ γ2(m) · γ2(m
′).

(see axiom (26) for the second inequality). It follows that their composition ψ ◦ γ2

is overmorphic too, i.e. for every w,w′ ∈ W

γ2(ψ(w · w′)) ⊇ γ2(ψ(w)) · γ2(ψ(w′)) (76)

From this property (76), one can show, by induction over the integer n that, for

every g1, · · · , gi, · · · , gn

γ2(ψ(

n∏

i=1

gi)) ⊇
n∏

i=1

γ2(ψ(gi)),

which, by condition (3) of the lemma , and the definition of γW implies that

γ2(ψ(

n∏

i=1

gi)) ⊇ γW(

n∏

i=1

gi),

as required.

Extending (4) to W

Let w ∈ W such that

γW(w) 6= ∅. (77)

This w must have a decomposition

w =

n∏

i=1

gi (78)
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where gi ∈ GW. As we saw in the extension of (3) to W , hypothesis (77) entails

that
n∏

i=1

γW(gi) 6= ∅,
n∏

i=1

γ2(ψ(gi)) 6= ∅. (79)

Let t ∈ γW(w): by definition of γW it must have the form

t =

n∏

i=1

ti, ∀i ∈ [1, n], ti ∈ γW(gi). (80)

We thus have

µ2(t, ψ(w)) = µ2(
∏
i=1 ti,

∏n
i=1 ψ(gi)) (ψ is a monoid hom. )

=
∏n
i=1 µ2(ψ(ti, gi)) ( axiom (27))

=
∏n
i=1 µW(ti, gi) ( by condition (4))

= µW(t, w) ( axiom (27)), (81)

as required.

Extending (5) to W

We start again with some w ∈ W fulfilling (77), hence (79) and consider some

t ∈ γW(w), hence of the form (80). We thus have

δ2(t, ψ(w)) = δ2(
∏
i=1 ti,

∏n
i=1 ψ(gi)) (ψ is a monoid hom. )

=
∏n
i=1 δ2(ti, ψ(gi)) ( axiom (29))

=
∏n
i=1 δ(ti, gi) ( by condition (5))

= δW(t, w) ( axiom (29)). (82)

2

Lemma 11. Let ψ : W → Ht be some AB-homomorphism. Let P, S, P ′, S′ ∈ W

such that ψ(PS) = ψ(P ′S′) and γ(PS) = γ(P ′S′) 6= ∅. Then, ψ(P ) = ψ(P ′) ⇔

ψ(S) = ψ(S′).

a proof; we do not need H itself cancellative; used in

factorization lemma

Lemma 12. Let P, S, P ′, S′ ∈ W such γ(P ) = γ(P ′) and γ(PS) = γ(P ′S′) 6= ∅.

Then one of the following occurs

1- there exist t, t′ ∈ T6, γ(S), γ(S′) ∈ {{(t, 0, t′)}, {(t, 1, t′)}}.

2- P, S, P ′, S′ ∈ A

3- P, S, P ′, S′ ∈ B

Proof: Let P, S, P ′, S′ fulfill the hypothesis of the lemma.

Case 1: ‖P‖ ≥ 1, ‖P ′‖ ≥ 1, ‖S‖ ≥ 1, ‖S′‖ ≥ 1.

Since γ(PS) = γ(P ′S′) 6= ∅ we must have τ i(S) = τe(P ), τi(S
′) = τe(P ′). Similarly
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we obtain that τe(S) = τe(S′), so that conslusion 1 holds.

Case 2: ‖P‖ ≥ 1, ‖P ′‖ ≥ 1, ‖S‖ = ‖S′‖ = 0.

In this case, S, S′ ∈ A ∪B. Moreover, γ(P ) = γ(P ′) ⇒ Ge(P ) = Ge(P ′) ⇒ S, S′ ∈

Ge(P ) ⇒ γ(S) = γ(S′).

Case 3: ‖P‖ ≥ 1, ‖P ′‖ ≥ 1, ‖S‖ ≥ 1, ‖S′‖ = 0.

As ‖S‖ ≥ 1,Card(γ(S)) = 1 and τe(S) 6= τ i(S) = τe(P ) so that

τe(S) 6= τe(P ) (83)

Since ‖S′‖ = 0, for every t ∈ γ(S′), τ i(t) = τe(t), hence

τe(P ′S′) = τe(P ′) (84)

We also have γ(PS) = γ(P ′S′) 6= ∅ which implies that τe(S) = τe(PS) = τe(P ′S′)

hence, taking into account (84) we get

τe(S) = τe(P ′) (85)

But equations (83)(85) entail that τe(P ) 6= τe(P ′) contradicting the hypothesis

that γ(P ) = γ(P ′). This case is thus impossible.

Case 4: ‖P‖ = ‖P ′‖ = 0, ‖S‖ ≥ 1, ‖S′‖ ≥ 1.

In this case P, P ′ ∈ A ∪B. The fact that γ(P ) = γ(P ′) implies that

(P ∈ A− {1} ∧ P ′ ∈ A− {1}) ∨ (P ∈ B − {1} ∧ P ′ ∈ B − {1}) ∨ (P = P ′ = 1).

Here γ(S) = γ(PS) = γ(P ′S′) = γ(S′). Hence conclusion 1 holds.

Case 5: ‖P‖ = ‖P ′‖ = 0, ‖S‖ ≥ 1, ‖S′‖ = 0.

We should then have Card(γ(PS)) = 1 while Card(γ(P ′S′)) ∈ {0, 2, 6}. This is

contradicts the hypothesis that γ(PS) = γ(P ′S′). This case is thus impossible.

Case 6: ‖P‖ = ‖P ′‖ = 0, ‖S‖ = ‖S′‖ = 0.

Then P, P ′, S, S′ ∈ A ∪ B. But γ(PS) = γ(P ′S′) implies that conclusion 2 or con-

lusion 3 holds. 2

Lemma 13. Let ψ : W → M be some AB-homomorphism into some AB-algebra

M. Let P, S, P ′, S′ ∈ W such that γ(P ) = γ(P ′), ψ(P ) = ψ(P ′), ψ(PS) = ψ(P ′S′)

and γ(PS) = γ(P ′S′) 6= ∅. Then γ(S) = γ(S′).

Proof: One of conclusions 1,2,3 of lemma 12 must hold. If conclusion 1

holds,‖ψ(P )‖ = ‖ψ(P ′)‖, ‖ψ(PS)‖ = ‖ψ(P ′S′)‖ imply that ‖ψ(S)‖ = ‖ψ(S′)‖.

The boolean component of γ(S), γ(S ′) are thus equal and finally, γ(S) = γ(S ′).

If conclusion 2 (resp. 3) holds, since ψ restricted to the group A (resp. B) is a group

isomorphism onto its image, S = S ′. 2

Lemma 14. Let ψ : W → Ht be some AB-homomorphism. Let Q ∈ W, P ′, S′ ∈ Ht

such that ψ(Q) = P ′S′, γ(P ′) · γ(S′) 6= ∅. and γ(P ′) is a H-type. Then, there exist

P, S ∈ W such that:

Q = P · S, ψ(P ) = P ′, ψ(S) = S′.
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1

Q

P S

P ′ S′

1

ψ

Fig. 4. lemma 14

Lemma 15 (factorization). Let ψ̃ : W∗∗A∗B → W be some AB-homomorphism.

Then, there exists a unique AB-homomorphism ψ : W → W such that π≡ ◦ψ = ψ̃.

Proof: Since ψ̃ is an AB-homomorphism, for every W ∈ W, δ(W ) =

δ(ψ̃(W )).Hence ker(π≡) ⊆ ker(ψ̃), which ensures the existence of ψ ∈ Hom(W,W)

such that π≡ ◦ψ = ψ̃. By hypothesis, ψ̃ preserves ιA, ιB , I, γ, µ, δ, over the elements

of GW. As π≡ does also preserves all these maps, it follows that ψ fulfills conditions

(1-5) of lemma 10, hence it is an AB-homomorphism. 2

Lemma 16 (quotient). Let σ̃ : W∗ ∗ A ∗ B → W∗ ∗ A ∗ B be some AB-

homomorphism. Then, there exists a unique AB-homomorphism σ : W → W such

that π≡ ◦ σ = σ̃ ◦ π≡.

Proof: Applying lemma 15 to the AB-homomorphism ψ̃ = σ̃ ◦ π≡ we obtain this

lemma. 2

Lemma 17 (lifting). Let ψ̌ : W∗ ∗ A ∗ B → W be some AB-homomorphism.

Then, there exists an AB-homomorphism ψ̃ : W∗ ∗ A ∗ B → W∗ ∗ A ∗ B such that

ψ̌ = ψ̃ ◦ π≡.

Proof: Let us consider some map ψ̃ : GW → W∗ ∗ A ∗ B fulfilling, for every a ∈

A, b ∈ B,W ∈ W:

ψ̃(ιA(a)) = ιA(a), ψ̃(ιB(b)) = ιB(b)

ψ̃(W ) ∈ π−1
≡ (ψ̌(W )).
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Since π≡ preserves ιA, ιB , I, γ, µ, δ and ψ̌ fulfills conditions (1-5) of lemma 10, the

map ψ̃ does also fulfill conditions (1-5). By the universal property of the free prod-

uct,it can be extended into a monoid homomorphism from W∗ ∗A∗B to W∗ ∗A∗B.

By lemma 10, it is also an AB-homomorphism from W∗ ∗ A ∗ B to W∗ ∗ A ∗ B.

Moreover, for every g ∈ GW, π≡(ψ̃(g)) = ψ̌(g), hence ψ̃ ◦ π≡ = ψ̌, as required. 2

Lemma 18 (inverse image). Let σ : W → W be some AB-homomorphism.

Then, there exists an AB-homomorphism σ̃ : W∗ ∗ A ∗ B → W∗ ∗ A ∗ B such that

π≡ ◦ σ = σ̃ ◦ π≡.

Proof: Applying lemma 17 to the AB-homomorphism ψ̌ = π≡ ◦ σ, we obtain this

lemma. 2

WW

ψ

W

W∗ ∗A ∗BW∗ ∗A ∗B W∗ ∗A ∗B

ψ̃

W∗ ∗A ∗B W∗ ∗A ∗B

π≡

σ̃

σ̃

π≡

π≡

π≡π≡

σ

σ

WW

W

ψ̌

ψ̃

W∗ ∗A ∗BW∗ ∗A ∗B

W

π≡

Fig. 5. AB-homomorphisms
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4. Equations with rational constraints over G

Let us consider a system of equations S over G:

((ui, u
′
i))i∈I

where I is a finite set, U is a finite set of variables and ui ∈ U∗, u′i ∈ U∗; let us

consider also a rational constraint C : U → B(Rat(G)).

Quadratic normal form Such a system can be effectively transformed into a finite

system S ′, with set of variables U ′ and with rational constraint C′ : U ′ → B(Rat(G))

such that

(1) S ′ is quadratic

(2) U ⊆ U ′

(3) the solutions of (S,C) are exactly the restrictions to U∗ of the solutions of

(S ′,C′).

Such a transformation consists of applying iteratively the following elementary

transformations Tk, for 1 ≤ k ≤ 4:

T1 Suppose that |u′i| ≤ 1.

Then set U ′ := U ∪ {U ′}, where U ′ is a new variable, and set

vj := uj for all j ∈ I, v′j := u′j for all j ∈ I − {i}, v′i := u′iU
′,

C′(U) = C(U) for all U ∈ U , C′(U ′) = {ε}.

T2 Suppose that |ui| = 0.

Then set U ′ := U ∪ {U ′}, where U ′ is a new variable, and set

vj := uj for all j ∈ I − {i}, v′j := u′j for all j ∈ I, vi := U ′,

C′(U) = C(U) for all U ∈ U , C′(U ′) = {ε}.

T3 Suppose that |ui| ≥ 2.

Then set U ′ := U ∪ {U ′}, where U ′ is a new variable, I ′ := I ∪ {̄ı} where ı̄ /∈ I

vj := uj for all j ∈ I − {i}, v′j := u′j for all j ∈ I − {i},

vi := U ′, v′i := ui, v̄ı := U ′, v′ı̄ := u′i,

C′(U) = C(U) for all U ∈ U , C′(U ′) = G.

T4 Suppose that |u′i| ≥ 3 : u′i = u′′i U for some U ∈ U

Then set U ′ := U ∪ {U ′}, where U ′ is a new variable, I ′ := I ∪ {̄ı} where ı̄ /∈ I

vj := uj for all j ∈ I − {i}, v′j := u′j for all j ∈ I − {i},

vi := ui, v′i := U ′U, v̄ı := U ′, v′ı̄ := u′′i .

C′(U) = C(U) for all U ∈ U , C′(U ′) = G.
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Rational constraint Let C : U → B(Rat(G)). By the results of [LS05], one can

construct some normalized finite t-automaton A (see §2.3) over the labelling set

B(Rat(H)) such that: for every U ∈ U , there exists some subset B(U) ⊆ B(Q)

recognizing C(U) in the sense that

C(U) = µ−1
A,G(B(U)).

Let us denote by

M(C) := {µ : U → B(Q) | ∀U ∈ U , µ(U) ∈ B(U)}.

We can thus express the initial system of equations with constraint as follows:
∨

µU∈M(C)

(S, µA,G, µU ). (86)

A solution of the system (S, µA,G, µU ) is now any monoid-homomorphism σG : U∗ →

G fulfilling both conditions:

∀i ∈ I, σG(ui) = σG(u′i) (87)

∀U ∈ U , µA,G(σG(U)) = µU (U). (88)

The above discussion proves the following

Proposition 19. The satisfiability problem for systems of equations with rational

constraints over G is Turing-reducible to the satisfiability problem for systems of

equations with rational constraints over G of the form

S = ((ui, u
′
i)i∈I , µA,G, µU ) (89)

where every equation (ui, u
′
i) is quadratic, µA,G is the map associated with a nor-

malized finite t-automaton A and µU is a map U → B(QA).

Any system S of the form (89) described in the proposition is said to be in

normal form.

must be adapted to inequations/constants/special constraints.
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5. Equations over Ht

5.1. t-equations

A system of t-equations is a family of ordered pairs

S = (wi, w
′
i)i∈I (90)

where wi, w
′
i ∈ Wt, γ(wi) = γ(w′

i) 6= ∅. A solution of S is any AB-homomorphism

ψt : Wt → Ht such that, for every i ∈ I

ψt(wi) = ψt(w
′
i). (91)

Notice that here, the rational constraints are replaced by the even more restrictive

conditions that define the notion of AB-homomorphism: beside preservation of µ

the map ψt must also preserve I, γ and δ.

5.2. From G-equations to t-equations

Let us start with a system of equations with rational constraints , over G, which is

in normal form (see proposition 19):

((ui, u
′
i)i∈I , µA,G, µU ) (92)

We suppose I = [1, n], we denote by Ui,1( resp. Ui,2, Ui,3) the unique letter of ui
(resp. the first, second letter of u′i). therefore, the equations of S take the form

Ei : (Ui,1, Ui,2Ui,3) for all 1 ≤ i ≤ n (93)

We define here a reduction of the satisfiability problem for such systems to the

satisfiability problem for systems of t-equations. The leading idea is simply that,

since πG : Red(H, t)/ ∼→ G is a bijection, every solution in G corresponds to a

map into Ht. Nevertheless the product in G corresponds to a somewhat complicated

operation over Red(H, t)/ ∼ that we must deal with. Let us consider the alphabets

V0 := I × [1, 3] × [1, 9] and the alphabet W constructed from this V0 in §3.5. We

consider all the vectors (Wi,j,k) where 1 ≤ i ≤ n, 1 ≤ j ≤ 3, 1 ≤ k ≤ 9 of elements
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of W ∪ {1} and all triple (ei,1,2, ei,2,3, ei,3,1) ∈ (A ∪B)3 such that:

p1(Wi,j,k) = (i, j, k) ∈ V0 for Wi,j,k 6= 1 (94)

γ(

9∏

k=1

Wi,j,k) = (1, H, b, 1, 1) for some b ∈ {0, 1} (95)

µ1(
9∏

k=1

Wi,j,k) = µU (Ui,j) (96)

Wi,2,k,Wi,3,10−k ∈ Ŵ ∪ {1} for 6 ≤ k ≤ 9 (97)

γ(

4∏

k=1

Wi,1,k) = γ(
∏4
k=1Wi,2,k) (98)

γ(

9∏

k=6

Wi,2,k) = γ(
∏9
k=6W i,3,10−k) (99)

γ(
9∏

k=6

Wi,1,k) = γ(
∏9
k=6Wi,3,k) (100)

Wi,j,5 ∈ W ∧ γ(Wi,j,5) is a H-type (101)

ei,1,2 ∈ Gi(Wi,1,5) = Gi(Wi,2,5) (102)

ei,2,3 ∈ Ge(Wi,2,5) = Gi(Wi,3,5) (103)

ei,3,1 ∈ Ge(Wi,3,5) = Ge(Wi,1,5). (104)

A vector ( ~W,~e) fulfilling all the properties (94-104) is called an admissible vector.

For every admissible vector ( ~W,~e) we define the following equations:

(

9∏

k=1

Wi,j,k,
∏9
k=1Wi′,j′,k) if Ui,j = Ui′,j′(105)

(Wi,1,1Wi,1,2Wi,1,3Wi,1,4ei,1,2, Wi,2,1Wi,2,2Wi,2,3Wi,2,4) (106)

(Wi,2,6Wi,2,7Wi,2,8Wi,2,9, ei,2,3W i,3,4W i,3,3W i,3,2W i,3,1) (107)

(Wi,1,5Wi,1,6Wi,1,7Wi,1,8, ei,1,3Wi,3,6Wi,3,7Wi,3,8Wi,3,9) (108)

(Wi,1,5, ei,1,2Wi,2,5ei,2,3Wi,3,5ei,3,1) (109)

for all 1 ≤ i, i′ ≤ n, 1 ≤ j, j′ ≤ 3. Equations (106-109) correspond to a decom-

position of the planar diagram associated with the relation Ui,1 ≈ Ui,2Ui,3 into

four pieces, as indicated on figure 6. Equation (105) expresses the fact that some

variables from U are common to several equations of S.

We denote by St(S, ~W,~e) the sequence of equations (105-108) and by

SH(S, ~W,~e) the sequence of equations (109). For every (i, j) ∈ [1, n] × [1, 3] we

denote by ı,  the smallest pair such that Ui,j = Uı,. By σ ~W,~e
: U∗ → W we denote

the unique monoid-homomorphism such that,

σ ~W,~e
(Ui,j) =

9∏

k=1

Wı,,k.
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Ui,1

Ui,2 Ui,3

Wi,1,1

Wi,2,1

Wi,3,1

ei,1,2 ei,3,1

ei,2,3

Wi,2,9

Wi,3,9

Wi,1,9Wi,1,5

Wi,2,5
Wi,3,5

· · · · · ·

· · · · · ·

··
·

···

Fig. 6. Equation cut into 4 pieces

Notice that, by the conditions imposed through the notion of “admissible vector”,

the equations of St(S, ~W,~e) are really t-equations, while some of the righthand-sides

of the equations of SH(S, ~W,~e) might have an empty image by γ.

Lemma 20. Let S = ((Ei)1≤i≤n, µA,G, µU ) be a system of equations over G, with

rational constraint. Let us suppose that S is in normal form. A monoid homomor-

phism

σ : U∗ → G

is a solution of S if and only if, there exists an admissible choice ( ~W,~e) of variables

of Wt and elements of A ∪B and an AB-homomorphism

σt : Wt → Ht

solving both systems St(S, ~W,~e) and SH(S, ~W,~e), such that

σ = σ ~W,~e
◦ σt ◦ π̄G.

(We denote by π̄G : Ht → G the canonical projection; see figure 7). We prove this

lemma in the following two subsections.
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σ σt

G Ht
π̄G

U∗
Wt

σ ~W,~e

Fig. 7. lemma 20

5.2.1. From G-solutions to t-solutions

Let σ : U∗ → G be a monoid homomorphism solving the system S. Let us fix

some equation from S, i.e. some integer 1 ≤ i ≤ n. Let us construct the vectors

(Wi,∗,∗), (ei,∗,∗) corresponding to this equation. Let us choose, for every j ∈ [1, 3],

some si,j ∈ Red(H, t) such that:

σ(Ui,j) = πG(si,j).

Let us consider decompositions of the form (5) for si,2, si,3:

si,2 = h0t
α1h1 · · · t

αλhλ · · · t
α`h`, (110)

si,3 = k0t
β1k1 · · · t

βρkρ · · · t
βmkm. (111)

We know that si,1 ≈ si,2si,3. Either there exist some integers λ ∈ [1, `], ρ ∈ [1,m]

such that

αλ + βρ = 0, (112)

tαλhλ · · · t
α`h` · k0t

β1k1 · · · t
βρ ≈ ei,2,3 ∈ A(βρ), (113)

h0 · · · t
αλ−1(hλ−1ei,2,3kρ)t

βρ+1 · · · tβmkm ∈ Red(H, t), (114)

or (α` +β1 6= 0 )or (α` +β1 = 0 and h` · k0 /∈ A(β1)) or ` = 0 or m = 0. We include

in the above notation the following “degenerated” cases:

• [Left-degenerated case]: λ = 1; then h0 · · · t
αλ−1 must be understood as 1

• [Right-degenerated case]: ρ = m; then tβρ+1 · · · tβmkm must be understood as 1,

• [Middle-degenerated case]: α` + β1 6= 0 or (α` + β1 = 0 and h` · k0 /∈ A(β1));

we then consider that λ = ` + 1, ρ = 0, ei,2,3 = 1. Equality (112) disappears, (113)

becomes the trivial equation 1 = 1 while (114) remains valid.

• [LM-degenerated case]: ` = 0;

We then consider that λ = ρ = 0, ei,2,3 = 1 and equation (113) becomes the trivial

equation 1 = 1. The lefthand-side of assertion (114) consists just of si,3.

• [MR-degenerated case]: m = 0;

Same notation as for LM. The l.h.s. of (114) consists just of si,2.

Notice that these cases are not disjoint; in particular, when ` = m = 0 the three
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kinds of degeneracy occur simultaneously. Each kind of degeneracy can be visual-

lized on figure 8 as one of the three triangular pieces consisting of a trivial relation.

Let us consider the following factors of the reduced sequences si,2, si,3:

Pi,2 = h0 · · · t
αλ−1 , Mi,2 = hλ−1, Si,2 = tαλ · · · tα`h`,

Pi,3 = k0 · · · t
βρ , Mi,3 = kρ, Si,3 = tβρ+1 · · · tβmkm.

Since si,1 ≈ si,2si,3 ≈ Pi,2(Mi,2ei,2,3Mi,3)Si,3 and si,1, Pi,2(Mi,2ei,2,3Mi,3)Si,3 are

reduced sequences, by lemma 1 we get:

si,1 ∼ Pi,2(Mi,2ei,2,3Mi,3)Si,3.

Case 1[standard case] λ ∈ [2, `], ρ ∈ [1,m− 1].

There must exist Pi,1,Si,1 ∈ Red(H, t),Mi,1 ∈ H and connecting elements ei,1,2 ∈

B(αλ−1), ei,2,3 ∈ A(αλ) such that:

Pi,1ei,1,2 ∼ Pi,2, (115)

ei,1,2Mi,2ei,2,3Mi,3ei,3,1 =H Mi,1 (116)

ei,3,1Si,1 ∼ Si,3, (117)

while relation (113) can be rewritten as:

Si,2 ∼ ei,2,3It(Pi,3), (118)

see figure 8. Let πT : H ∗ {t, t̄}∗ → {t, t̄}∗ be the natural projection. By (115),

(resp.(117),(118))we know that

πT (Pi,1) = πT (Pi,2), πT (Si,1) = πT (Si,3), πT (Si,2) = πT (It(Pi,3)).

Hence the t-automaton R6 has computations of the following forms:

(1, H)
Pi,1
→ qi,1

Mi,1
→ ri,1

Si,1
→ (1, 1) (119)

(1, H)
Pi,2
→ qi,1

Mi,2
→ ri,2

Si,2
→ (1, 1) (120)

(1, H)
Pi,3
→ IR(ri,2)

Mi,3
→ ri,1

Si,3
→ (1, 1). (121)

Since qi,1 6= (1, 1), an easy inspection of the automaton R6 shows that the compu-

tation (1, H)
Pi,1
→ qi,1 can be factored into four subcomputations

(1, H) = qi,1,0
Pi,1,1
→ qi,1,1

Pi,1,2
→ qi,1,2

Pi,1,3
→ qi,1,3

Pi,1,4
→ qi,1,4 = qi,1 (122)

such that each (qi,1,k, ‖|Pi,1,k‖|, qi,1,k+1) is an edge of R. Any decomposition having

this property w.r.t. its projection on R will be called R-compatible. Similarly the

computations ri,1
Si,1
→ (1, 1) ( resp. ri,2

Si,2
→ (1, 1)) have R-compatible decomposi-

tions:

qi,1,5
Pi,1,6
→ qi,1,6

Pi,1,7
→ qi,1,7

Pi,1,8
→ qi,1,8

Pi,1,9
→ qi,1,9 = (1, 1), (123)

qi,2,5
Pi,2,6
→ qi,2,6

Pi,2,7
→ qi,2,7

Pi,2,8
→ qi,2,8

Pi,2,9
→ qi,2,9 = (1, 1). (124)
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ei,1,2 ei,3,1

ei,2,3

si,1

si,2 si,3

Mi,1

Mi,2
Mi,3

Pi,1

Pi,2

Si,1

Si,3

Si,2 Pi,3

Fig. 8. Cutting the solution into three factors

Combining decomposition (122) with equation (115), (123) with (117), (124) with

(118), we get the three R-compatible decompositions:

(1, H) = qi,1,0
Pi,2,1
→ qi,1,1

Pi,2,2
→ qi,1,2

Pi,2,3
→ qi,1,3

Pi,2,4
→ qi,1,4 = qi,1 (125)

ri,1 = qi,1,5
Pi,3,6
→ qi,1,6

Pi,3,7
→ qi,1,7

Pi,3,8
→ qi,1,8

Pi,3,9
→ qi,1,9 = (1, 1), (126)

(1, H) = I(qi,2,9) = qi,3,0
Pi,3,1
→ I(qi,2,8) = qi,3,1

Pi,3,2
→

I(qi,2,7) = qi,3,2
Pi,3,3
→ I(qi,2,6) = qi,3,3

Pi,3,4
→ I(ri,2) = qi,3,4. (127)

Finally, we define Pi,j,5 := Mi,j . We summarize on figure 9 the above decompo-

sitions and relations. Let us extract from these the vector ( ~W,~e) and the AB-

homomorphism σt:

- we choose for Wi,j,k a letter from W with γ(Wi,j,k) = (qi,j,k−1, ‖|Pi,j,k‖|, qi,j,k)

and which can be mapped by some AB-homomorphism on the t-sequence Pi,j,k.

- we define σt(Wi,j,k) := [Pi,j,k]∼; the choice of the letters Wi,j,k together with

lemma 10 imply that any extension of σt on the alphabet Wt (respecting conditions

1-5 of lemma 10), will posess a unique extension as an AB-homomorphism from Wt

to Ht.

One can check that ( ~W,~e) is an admissible vector, that σt solves the systems of
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equations St(S, ~W,~e) and SH(S, ~W,~e) and that

σ = σ ~W,~e
◦ σt ◦ π̄G.

We indicate now how these arguments must be adapted to the degenerated cases.

ei,1,2 ei,3,1

ei,2,3

si,1

si,2 si,3

Pi,2,5 Pi,3,5

qi,1

ri,2

ri,1

ri,1qi,1

IR(ri,2)

Pi,1,1

Pi,2,1

Pi,1,9

Pi,3,9

(1, 1)(1, H)

(1, H)

(1, H)

(1, 1)

(1, 1)

Pi,2,9 Pi,3,1

Pi,1,5

Fig. 9. Cutting the solution into nine factors

Case 2[L]:λ = 1.

We take: Pi,2 = Pi,1 = 1, ei,1,2 = 1 and, accordingly

Pi,2,k = Pi,1,k = 1, Wi,2,k = Wi,1,k = 1

for 1 ≤ k ≤ 4.

Case 3[R]:ρ = m.

We take: Si,3 = Si,1 = 1, ei,3,1 = 1 and, accordingly

Si,3,k = Si,1,k = 1, Wi,3,k = Wi,1,k = 1

for 6 ≤ k ≤ 9.

Case 4[M]:α` + β1 6= 0 or (α` + β1 = 0 and h` · k0 /∈ A(β1)).

We take: Si,2 = Pi,3 = 1, ei,2,3 = 1 and, accordingly

Si,2,k = Pi,3,10−k = 1, Wi,2,k = Wi,3,10−k = 1
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for 6 ≤ k ≤ 9.

Case 5[LM]:` = 0.

We choose all the special values chosen in Case 2 and Case 4 i.e. Pi,2 = Pi,1 =

Si,2 = Pi,3 = 1, ei,1,2 = ei,2,3 = 1 and the resulting choices for Wi,∗,∗.

Case 6[MR]:m = 0.

We choose all the special values chosen in Case 3 and Case 4.

5.2.2. From t-solutions to G-solutions

Let σt : Wt → Ht be an AB-homomorphism solving both systems St(S, ~W,~e) and

SH(S, ~W,~e).

1- Let us show that, for every i ∈ [1, n],

σt(σ ~W,~e
(Ui,1)) ≈ σt(σ ~W,~e

(Ui,2Ui,3)). (128)

Let us fix such an integer i. The conjunction of equivalences (106-109), implies that

σt(

9∏

k=1

Wi,1,k) ≈ σt(

9∏

k=1

Wi,2,k

9∏

k=1

Wi,3,k).

(figure 6 gives a decomposition of the Van-Kampen diagram corresponding to the

above equivalence into four diagrams corresponding to (106-109)). Using equation

(105) we get:

σt(

9∏

k=1

Wı,1,k) ≈ σt(

9∏

k=1

Wı,2,k

9∏

k=1

Wı,3,k).

Taking into account the definition of σ ~W,~e
and the fact that σt is a monoid-

homomorphism, we get a proof of (128).

2- Let us show that, for every i ∈ [1, n]

µA,G(π̄G(σt(σ ~W,~e
(Ui,j)))) = µU (Ui,j).

By definition (12) this means that the value of

µA,1((1, H, b, 1, 1), σt(σ ~W,~e
(Ui,j))), (129)

where b = ‖|σt(σ ~W,~e
(Ui,j))‖| is equal to µU (Ui,j).

We first remark that

σt(σ ~W,~e
(Ui,j)) = σt(

∏9
k=1 Uı,,k) by definition of σ ~W,~e

= σt(
∏9
k=1 Ui,j,k) by condition (105) (130)

As σt is an AB-homomorphism

µA,1((1, H, b, 1, 1), σt(
9∏

k=1

Ui,j,k)) = µA,1((1, H, b, 1, 1),
9∏

k=1

Ui,j,k). (131)
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Using now the conditions defining the notion of admissible vector we get:

µA,1((1, H, b, 1, 1),
9∏

k=1

Ui,j,k) = µA,1(
∏9
k=1 Ui,j,k) by (95)

= µU (Ui,j) by (96) (132)

Putting together (130)(131)(132), we obtain that the value of term (129) is exactly

µU (Ui,j), as required.
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6. Equations over W

We suppose here that a system of equations with involution and rational con-

straints over G is fixed. Thus the AB-algebras W and Ht are completely defined

(from the variable alphabet of the system and the t-automaton expressing the con-

straint).Given an involution I
′ fulfilling conditions (64)(65)(66), we abbreviate as

(W, I′) the AB-algebra obtained from the AB-algebra W by replacing the standard

involution I by I
′ (see (3.5.4)).

6.1. W-equations

A system of W-equations is a family of ordered pairs together with an involution:

S = ((wi, w
′
i)i∈I , I

′) (133)

where wi, w
′
i ∈ Wt, γ(wi) = γ(w′

i) 6= ∅, I′ ∈ I.

A solution of S is any AB-homomorphism σW : (Wt, I) → (Wt, I
′) such that, for

every i ∈ I

σW(wi) = σW(w′
i). (134)

6.2. From t-equations to W-equations

6.2.1. From t-solutions to W-solutions

Lemma 21 (factorisation of t-solutions). Let S = ((wi, w
′
i))1≤i≤n be a system

of t-equations of the form (90). Let us suppose that σt : Wt → Ht is an AB-

homomorphism solving the system S. Then there exists an involution I
′ ∈ I and

AB -homomorphisms

σW : (Wt, I) → (Wt, I
′), ψt : (Wt, I

′) → (Ht, It)

such that, σt = σW ◦ ψt and

σW(wi) = σW(w′
i) for all 1 ≤ i ≤ n.

In other words: every solution in Ht of a system of t-equations factorizes through

a solution in Wt of the same system of equations, with an involution in I.

This factorization lemma is obtained via the more technical lemma 22 below. For

every w ∈ W let us note

A(w) := Card{W ∈ W̌ | |w|W 6= 0} +
1

2
Card{W ∈ Ŵ | |w|W,W̄ 6= 0}.

Lemma 22. Let K0 be an integer such that K0 < Card(V0) and ((wi, w
′
i))1≤i≤n+m

be a sequence of pairs (wi, w
′
i) ∈ W×W such that γ(wi) = γ(w′

i) 6= ∅. Let us suppose

that λi : (Wt, I) → (Wt, I) ( for 1 ≤ i ≤ n + m) and θt : (Wt, I) → (Ht, It) are

AB-homomorphisms such that

θt(λi(wi)) = θt(λi(w
′
i)) for all 1 ≤ i ≤ n+m,
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ψt
(Ht, It)G

σW

(Wt, I
′)

(Wt, I)σ ~W,~e

σ σt

π̄G

U∗

Fig. 10. lemma 21

λi = λj for all 1 ≤ i ≤ n, 1 ≤ j ≤ n,

A(
n+m∏

i=1

λi(wiw
′
i)) ≤ K0.

Then there exists an involution I
′ ∈ I and AB homomorphisms

λ′i : (Wt, I) → (Wt, I
′), θ′t : (Wt, I

′) → (Ht, It)

such that,

λi ◦ θt = λ′i ◦ θ
′
t, (135)

λ′i(wi) = λ′i(w
′
i) for all 1 ≤ i ≤ n+m, (136)

λ′i = λ′j for all 1 ≤ i ≤ n, 1 ≤ j ≤ n. (137)

Proof: Let S = ((wi, w
′
i))1≤i≤n+m be a a sequence of pairs (wi, w

′
i) ∈ Wt×Wt such

that γ(wi) = γ(w′
i) and let ~λ = (λi)1≤i≤n+m be a sequence of AB-homomorphisms

from Wt to Wt.

Distinguishing pair For every i ∈ [1, n + m] we define ≡i as the least monoid

congruence over W containing {(λj(wj), λj(w
′
j)) | i + 1 ≤ j ≤ n + m}. For every

i ∈ [1, n+m] let us consider some decompositions

λi(wi) = Pi · Si, λi(w
′
i) = P ′

i · S
′
i (138)

such that Pi ≡i P
′
i , and this choice of the decomposition (138) minimizes the integer

∆(Pi, Si, P
′
i , S

′
i, θt).

(this integer was defined by equation (57)). Such a (Pi, P
′
i ) is called a distinguishing

pair for (λi(wi), λi(w
′
i)) and we denote by

∆i(S, ~λ, θt)

the corresponding value of ∆(Pi, Si, P
′
i , S

′
i, θt).
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Size We call size of the triple (S, ~λ, θt) the multiset of natural integers:

‖(S, λ, θt)‖ = {{∆1(S, λ, θt)), . . . ,∆i(S, λ, θt), . . . ,∆n+m(S, λ, θt)}}. (139)

For every w ∈ W we use the notation

Alph(w) := {W ∈ W̌ | |w|W 6= 0} ∪ {W ∈ Ŵ | |w|W,W̄ 6= 0},

w(S, ~λ) :=
n+m∏

i=1

λi(wiw
′
i),

Alph(S, ~λ) := Alph(w(S, ~λ)),

A(S, ~λ) := A(w(S, ~λ)).

Induction Let us prove lemma 22 by induction over ‖(S, ~λ, θt)‖, with respect to

the partial ordering over multisets of integers induced by the natural ordering over

N (it is known that this ordering is well-founded). Let (S, ~λ, θt) fulfill the hypothesis

of the lemma.

Case 1: In this case we suppose that, for every i ∈ [1, n + m], one of the two

following situations occurs:

λi(wi) ≡i λi(w
′
i) (140)

λi(wi) = eiWfi, λi(w
′
i) = c−1

i W̄d−1
i (141)

for some W ∈ Ŵ , (ei, fi), (di, ci) ∈ (Gi(W ),Ge(W )).

Let us consider the partition

Ŵ = Ŵ0 ∪W1 ∪ W̄1,W1 = {W1, · · · ,Wp}

where W1∪W̄1 is exactly the set of variables occuring in the equations of type (141).

We can modify the system S in such a way that in every equation of type (141), ei =

fi = 1, with preservation of the hypothesis of the lemma (with the same morphisms)

and also of the norm of (S, ~λ, θt). We can also suppose that W1 is exactly the set

of lefthand-sides of the equations (141). For every k ∈ [1, p], let (Wk, c
−1
i(k)W̄kd

−1
i(k))

be the equation of type (141) with smallest index, i(k) ∈ [1, n + m], such that

λi(k)(wi(k)) = Wk. We thus have λi(k)(w
′
i(k)) = c−1

i(k)W̄kd
−1
i(k). Let us notice that,

since θt is an AB-homomorphism and θt(Wk) = θt(λi(k)(wi(k))) = θt(λi(k)(w
′
i(k))) =

θt(c
−1
i(k)W̄kd

−1
i(k)) we know that

θt(W̄k) = θt(ci(k)Wkdi(k)). (142)

As θt preserves δ, for every e, e′ ∈ (γ1(Wk), γ3(Wk)),

eW̄k = W̄ke
′ ⇔ eci(k)Wkdi(k) = ci(k)Wkdi(k)e

′. (143)
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It follows that there exists a unique monoid homomorphism λ′ : W → W fulfilling:

λ′(e) = e for all e ∈ ιA(A) ∪ ιB(B) (144)

λ′(W ) = W for all W ∈ W −W1 (145)

λ′(Wk) = Wk for all 1 ≤ k ≤ p (146)

λ′(W̄k) = ci(k)Wkdi(k) for all 1 ≤ k ≤ p. (147)

The involutory anti-isomorphism It defined on Ht, maps θt(Wk) to θt(ci(k)Wkdi(k))

and θt(W̄k) to θt(c
−1
k Wkd

−1
k ).

Thus the tuple (ci(1), di(1), . . . , ci(k), di(k), . . . , ci(p), di(p)) fulfills conditions (64)(65).

Hence, by the result of §3.5.4, there exists a unique involutory monoid anti-

isomorphism I
′ : Ŵ → Ŵ such that

I
′(e) = e−1 for all e ∈ ιA(A) ∪ ιB(B) (148)

I
′(W ) = I(W ) for all W ∈ Ŵ0 (149)

I
′(Wk) = ci(k)Wkdi(k) for all 1 ≤ k ≤ p (150)

I
′(W̄k) = c−1

i(k)W̄kd
−1
i(k) for all 1 ≤ k ≤ p. (151)

It is clear that λ′ preserves ιA, ιB . The fact that

I ◦ λ′ = λ′ ◦ I
′ (152)

can be checked over the generators of W. The only non-trivial verification is for

W = W̄k:

λ′(I(W̄k)) = λ′(Wk) = Wk

I
′(λ′(W̄k)) = I

′(ci(k)Wkdi(k)) = d−1
i(k)ci(k)Wkdi(k)c

−1
i(k),

and by condition (64), the righthand-side of this last equality is Wk. Thus (152) is

established. The fact that λ′ preserves µ, γ, δ is ensured by:

-the hypothesis that θt does so,

-the fact that all the monoid generators W ∈ W are mapped by γ into a singleton

-the fact that, for e ∈ ιA(A) ∪ ιB(B), γt(e) = γW(e), and for all t ∈ γ(e), µt(t, e) =

µW(t, e), δt(t, e) = δW(t, e).

We have thus established that

λ′ : (W, I) → (W, I′) is an AB-homomorphism.

Let us define

λ′i = λi ◦ λ
′, θ′t = θt.

As every λ′i is a composite of two AB-homomorphisms, it is an AB-homomorphism

from (Wt, I) to (Wt, I
′). By hypothesis, θt : Wt → Ht is a monoid-homomorphism

which preserves ι, µ, γ, δ. It is clear that θt◦I is equal to I
′◦θt over ιA(A)∪ιB(B)∪Ŵ0.

Moreover

I(θt(Wk)) = θt(I(Wk)) = θt(W̄k), while
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θt(I
′(Wk)) = θt(c

−1
i(k)Wkd

−1
i(k)).

But the hypothesis that θt(λi(k)(wi(k))) = θt(λi(k)(w
′
i(k))) ensures that θt(W̄k) =

θt(c
−1
i(k)Wkd

−1
i(k)). We have established that

θt : (Wt, I
′) → (Ht, It) is an AB-homomorphism.

Let us check now that (λ′i, θ
′
t) fulfill conclusions (135),(136),(137) of the lemma.

Let us show that

θt = λ′ ◦ θt. (153)

The only non-trivial verification is for generators of the form W̄k: from (142) we

get that θt(W̄k) = θt(λ
′(W̄k)), which establishes (153). This equality (153) and the

fact that λ′i = λi ◦ λ
′ prove (135).

Let 1 ≤ i ≤ n+m. Suppose that (wi, w
′
i) is one of the pairs of the form (141) (recall

we reduced to the case where ei = fi = 1): there exists some k ∈ [1, p] such that

λi(wi) = Wk, λi(w
′
i) = c−1

i W̄kd
−1
i

Therefore

λ′(λi(wi)) = Wk, λ′(λi(w
′
i)) = c−1

i ci(k)Wkdi(k)d
−1
i (155)

Applying λi ◦ θt on (wi, w
′
i), on one hand, on (wi(k), w

′
i(k)) on the other hand, we

obtain

θt(Wk) = c−1
i θt(W̄k)d

−1
i = c−1

i(k)θt(W̄k)d
−1
i(k)

hence

θt(Wk) = c−1
i ci(k)θt(Wk)di(k)d

−1
i .

This shows that (c−1
i ci(k), did

−1
i(k)) ∈ δ(θt(Wk)) which, as θt is an AB-

homomorphism, implies that (c−1
i ci(k), did

−1
i(k)) ∈ δ(Wk), which finally proves that

both righthand-sides of the two equalities in (155) are equal. We have thus estab-

lished (136).

By hypothesis λi = λj for all 1 ≤ i, j ≤ n, which immediately implies (137).

Case 2: We suppose here that, there exists some i ∈ [1, n +m], such that none of

conditions (140)(141) does hold.

Let i ∈ [1, n+m] be the minimal integer fulfilling ¬(140) ∧ ¬(141).

Let (Pi, P
′
i ) be a distinguishing pair for (λi(wi), λi(w

′
i)). The hypothesis that

Pi ≡i P
′
i implies that γ(Pi) = γ(Pi), θt(Pi) = θt(P

′
i ). Lemma 11 applied on the

AB-morphism θt and the elements Pi, Si, P
′
i , S

′
i shows that

θt(Si) = θt(S
′
i). (157)

Lemma 13 applied on Pi, Si, P
′
i , S

′
i ∈ W asserts that γ(Si) = γ(S′

i). As θt restricted

to ιA(A) (resp. to ιB(B)) is injective, the value ‖Si‖ = 0 would lead to Si = S′
i,

which contradicts the choice of i. Finally we must have:

‖Si‖ ≥ 1, ‖S′
i‖ ≥ 1, γ(Si) = γ(S′

i).
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Decomposing Si, S
′
i over the set of generators GW we must have

Si = cW · Li; S′
i = c′W ′ · L′

i (158)

where

W,W ′ ∈ W, γ(W ) = γ(W ′) ∈ TA, c, c′ ∈ Gi(W ).

Subcase 2.1:W ′ = W ,γ(W ) is a H-type.

Equation (157), decomposition (158) and lemma 8 imply that there exists d, d′ ∈

Ge(W ) such that

θt(cWd) = θt(c
′Wd′); θt(d

−1Li) = θt(d
′−1L′

i).

As θt is δ-preserving, this implies that cWd = c′Wd′. Taking Qi = PicWd, Ti =

d−1Li, Q
′
i = P ′

i c
′Wd′, T ′

i = d′−1L′
i, we obtain a decomposition of λi(wi), λi(w

′
i)

such that 2‖ψt(Ti)‖ + 2‖ψt(T
′
i )‖ ≤ 2‖ψt(Si)‖ + 2‖ψt(S

′
i)‖ and χH(Ti) + χH(T ′

i ) <

χH(Si) + χH(S′
i) (because Ti, T

′
i cannot begin with a letter having a H-type). This

is enough to entail

∆(Qi, Ti, Q
′
i, T

′
i , θt) < ∆(Pi, Si, P

′
i , S

′
i, θt)

and Qi ≡i Q
′
i, violating the hypothesis of minimality in the choice of decomposition

(138). This subcase is thus impossible.

Subcase 2.2: W ′ = W̄ , γ(W ) is a H-type.

Reasoning as in subcase 2.1, we obtain d, d′ ∈ Ge(W ) such that

θt(cWd) = θt(c
′W̄d′); θt(d

−1Li) = θt(d
′−1L′

i).

Let us define a new equation

wn+m+1 = cWd; w′
n+m+1 = c′W̄d′,

and the AB-morphisms:

λ′i = λi for all 1 ≤ i ≤ n+m,λ′n+m+1 = IdWt
, θ′t = θt.

The new system S ′ = ((wi, w
′
i))1≤i≤n+m+1 together with ~λ′ = (λi)1≤i≤n+m+1 and

θ′t fulfills the hypothesis of lemma 22.

PicWd ≡i P
′
i c

′W̄d′

‖θt(λi(Li))‖ = ‖θt(λi(Si))‖ (159)

2χH(Li) = 0 ≤ 2χH(Si) − 2 (160)

1 − χAB(PicWd) = 1 ≤ (1 − χAB(Pi)) + 1. (161)

Adding up comparisons (159)(160)(161), we obtain:

∆(PicWd, P ′
i c

′W ′d′, d−1Li, d
′−1L′

i, θt) < ∆(Pi, P
′
i , Si, S

′
i, θt)

hence, by definition of ∆i,

∆i(S
′, ~λ′, θ′t) < ∆i(S, ~λ, θt). (163)
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The integer i was supposed to do not fullfill (141), hence

1 ≤ 1 − χAB(Pi) + 4‖θt(Li)‖,

which implies

∆n+m+1(S
′, λ′, θt) < ∆i(S, λ, θt). (165)

The above inequalities (163)(165) prove that

{{∆i(S
′, ~λ′, θ′t),∆n+m+1(S

′, ~λ′, θ′t)}} < {{∆i(S, ~λ, θt)}}.

Hence

‖(S ′, ~λ′, θ′t)‖ < ‖(S, ~λ, θt)‖.

By induction hypothesis, the conclusion of the lemma holds for (S ′, ~λ′, θ′t). This

proves that it holds for (S, ~λ, θt) too.

Subcase 2.3: W ′ /∈ {W, W̄},γ(W ) is a H-type.

As in subcase 2.1 we obtain that there exists d, d′ ∈ Ge(W ) such that

θt(cWd) = θt(c
′W ′d′); θt(d

−1Li) = θt(d
′−1L′

i). (166)

Let us consider the monoid homomorphism λ′ : W → W fulfilling:

λ′(e) = e for all e ∈ ιA(A) ∪ ιB(B) (167)

λ′(W ) = c−1c′W ′d′d−1 (168)

λ′(W̄ ) = dd′−1W̄ ′c′−1c (169)

(this definition is written for the case where W ∈ Ŵ , in the case where W /∈ Ŵ, last

line of this definition must be cancelled). Such an homomorphism exists because

(166) ensures that (W, c−1c′W ′d′d−1) (resp. (W̄ , dd′−1W̄ ′c′1c) in case W ∈ Ŵ) have

the same image by δ. Unicity of λ′ is straightforward. Such an homomorphism λ′

also preserves µ, γ, δ because θt does so. It preserves the partial involution because

dd′−1W̄ ′c′1c = I(c−1c′W ′d′d−1). Hence λ′ is an AB-homomorphism. Let us define:

λ′i = λi ◦ λ
′ for all 1 ≤ i ≤ n+m, θ′t = θt.

Since Alph(S, ~λ′) = Alph(S, ~λ) − {W, W̄}, the inequality A(S, ~λ′) ≤ K0 still holds.

In this sytem we now have:

PicWd ≡i P
′
i c

′W ′d′

‖θt(λi(d
−1Li))‖ = ‖θt(λi(Si))‖ (170)

2χH(d−1Li) = 0 ≤ 2χH(Si) − 2 (171)

The conjunction of comparisons (170) (171) imply

∆i(S
′, λ′, θ′t) < ∆i(S, λ, θt). (172)

and finally

‖(S ′, ~λ′, θ′t)‖ < ‖(S, ~λ, θt)‖.
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The system S ′ = S together with ~λ′ = (λ′i)1≤i≤n+m and θ′t fulfills the hypothesis

of lemma 22 and has smaller size. By induction hypothesis the conclusion of the

lemma holds for (S ′, ~λ′, θ′t). This proves that it holds for (S, ~λ, θt) too.

Subcase 2.4:W ′ = W ,γ(W ) is a T-type.

Let us observe that ‖θt(cWd)‖ = ‖θt(c
′Wd′)‖. In view of equation (157), decom-

position (158) and the above equality, point (1) of lemma 9 applies: there exists

d, d′ ∈ γ3(W ) such that

θt(cWd) = θt(c
′Wd′); θt(d

−1Li) = θt(d
′−1L′

i).

We can then conclude as in subcase 2.1.

Subcase 2.5:W ′ = W̄ ,γ(W ) is a T-type.

Then γ(W ) = γ(W̄ ) = IT (γ(W )). But the two atomic T-types are exchanged by

the involution IT , which makes this subcase impossible.

Subcase 2.6:W ′ /∈ {W, W̄},γ(W ) is a T-type.

By (157) θt(cWLi) = θt(c
′W ′L′

i). Using that γ(W ) = γ(W ′) is a T-type, we can

apply lemma 9 on P = θt(cW ), P ′ = θt(cW
′), S = θt(Li), S

′ = θt(L
′
i). We distin-

guish 3 subsubcases according to which point of lemma 9 occurs.

subsubcase 2.6.1: ‖θt(cW )‖ = ‖θt(cW
′)‖.

This corresponds to point (1) of lemma 9: there exists some d ∈ γ3(W ) such that,

θt(cW ) = θt(cW
′)d, dθt(Li) = θt(L

′
i). (173)

We can end this subsubcase as for case 2.3.

subsubcase 2.6.2: ‖θt(cW )‖ < ‖θt(cW
′)‖.

This corresponds to point (2) of lemma 9: ∃d ∈ Ge(W ), P ′
1, P

′
2, P

′
3 ∈ Ht,P

′
1, P

′
3 have

a T-type,P ′
2 has a H-type γ(P ′

3) · γ(θt(L
′
i)) 6= ∅ and

θt(cW ) = P ′
1d, θt(c

′W ′) = P ′
1 · P

′
2 · P

′
3, dθt(Li) = P ′

2P
′
3θt(L

′
i). (174)

Applying lemma 14, we obtain some P2, S ∈ W such that:

dLi = P2 · S, θt(P2) = P ′
2, θt(S) = θt(P

′
3L

′
i). (175)

first step

Let us assume, in this step, that W ′ ∈ Ŵ.

By axiom (23), c′ ∈ Ŵ, by axiom (24) c′W ′ ∈ Ŵ. Axiom(34) on AB-

homomorphisms implies that P ′
1 · P ′

2 · P ′
3 ∈ domIt. Axiom (24) implies that all

the P ′
i (1 ≤ i ≤ 3) belong to dom(It) and axiom (34) implies that

W,P2 ∈ Ŵ. (176)

We saw above that γ(P ′
3) is a T-type and, by hypothesis, A(S, ~λ) ≤ K0 < Card(V0).

Hence, we can choose a letter W3 ∈ W such that

W3 /∈ Alph(S, ~λ), γ(W3) = γ(P ′
3), µ(W3) = µ(P ′

3), δ(W3) = δ(P ′
3).
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1 1c

P ′
1 P ′

3P ′
2

d 1

Li

θt(cW )

θt(L
′
i)

θt

θt(Li)

θt(c
′W ′)

11

SP2

Fig. 11. subsubcase 2.6.2

We define a monoid-homomorphism λ′ : W → W by

λ′(e) = e for all e ∈ ιA(A) ∪ ιB(B)

λ′(W ′′) = W ′′ for all W ′′ ∈ W − {W ′, W̄ ′}

λ′(W ′) = c′−1cWd−1P2W3 (177)

λ′(W̄ ′) = I(c′−1cWd−1P2W3) . (178)

and we define a new monoid-homomorphism θ′ : Wt → Ht by

θ′(ιA(a) = a for all a ∈ A

θ′(ιB(b) = b for all b ∈ B

θ′(W ′′) = W ′′ for all W ′′ ∈ W − {W3, W̄3}

θ′(W3) = P ′
3 (179)

θ′(W̄3) = It(P
′
3). (180)

As in the above cases we can check that λ′, θ′t are AB-homomorphisms. Let us check

that, for every W ′′ ∈ Alph(S, ~λ)

θ′t(λ
′(W ′′)) = θt(W

′′). (181)

Since W3 /∈ Alph(S, ~λ),W 3 /∈ Alph(S, ~λ), for every W ′′ ∈ Alph(S, ~λ) − {W ′, W̄ ′},

θ′t(λ
′
t(W

′′)) = θ′t(W
′′) = θt(W

′′).
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Moreover

θ′t(λ
′(W ′)) = θ′t(c

′−1cWd−1P2W3) by (179)

= c′−1θt(cW )d−1θ′t(P2)P
′
3 by (179)

= c′−1θt(cW )d−1θt(P2)P
′
3 ( no occurrence of W3, W̄3 in P2)

= c′−1θt(cW )d−1P ′
2P

′
3 by (175), second equation

= c′−1P ′
1dd

−1P ′
2P

′
3 by (174), first equation

= θt(W
′) by (174), second equation.

Finally, since λ′, θ′t, θt preserve the involutions IW, It, we also get

θ′t(λ
′(W̄ ′)) = θt(W̄

′).

Let us define

λ′i = λi ◦ λ
′ for all 1 ≤ i ≤ n+m.

Let us notice that γ(W ′) is a T-type while γ(P2) is a H-type. Hence ‖θt(P2)‖ = 0 <

‖θt(W
′)‖ which proves that

W ′, W̄ ′ /∈ Alph(P2)

Hence Alph(S ′, ~λ′) = Alph(S, ~λ) ∪ {W3, W̄3} − {W ′, W̄ ′}. We thus obtain

A(S ′, ~λ′) ≤ K0. (182)

Equality (181) and inequality (182) ensure that the new triple (S, ~λ′, θ′) fulfills the

hypothesis of lemma 22.

Let us evaluate now the size of this new triple.

(λ′i(wi), λ
′
i(w

′
i) = (λ′(PicWLi), λ

′(P ′
i c

′W ′L′
i))

= (λ′(Pi)cWλ′(d−1P2S), λ′(P ′
i )c

′(c′−1cWd−1P2W3)λ
′(L′

i))

= (λ′(Pi)cWd−1P2 · λ
′(S)), λ′(P ′

i )cWd−1P2 ·W3λ
′(L′

i)) by (6.2.1)

Let us set

Qi = λ′(Pi)cWd−1P2, Ti = λ′(S), Q′
i = λ′(P ′

i )cWd−1P2, T ′
i = W3λ

′(L′
i)

∆(Qi, Ti, Q
′
i, T

′
i , θ

′
t) ≤ 3 + 4‖θ′t(W3)θ

′
t(λ

′(L′
i))‖

= 3 + 4‖P ′
3‖ + 4‖θt(L

′
i)‖ ( by (179), (181))

< 4(‖P ′
3‖ + ‖P ′

3‖ + ‖P ′
3‖) + 4‖θt(L

′
i)‖ ( because ‖P ′

1‖ ≥ 1)

≤ ∆(Pi, Si, P
′
i , S

′
i, θt). (183)

The hypothesis that Pi, P
′
i are related by the monoid-congruence generated

by the set of pairs {(λj(wj), λj(w
′
j)) | i + 1 ≤ j ≤ n + m} implies that



February 10, 2006 17:15 WSPC/INSTRUCTION FILE hnneq

Contents 49

λ′(Pi), λ
′(P ′

i ) are related by the monoid-congruence generated by the set of pairs

{(λ′(λj(wj)), λ
′(λj(w

′
j))) | i+ 1 ≤ j ≤ n+m}. It follows that

∆i(S, ~λ
′, θ′t) ≤ ∆(Qi, Ti, Q

′
i, T

′
i , θ

′
t) < ∆(Pi, Si, P

′
i , S

′
i, θt) = ∆i(S, ~λ, θt)

and thus:

‖(S ′, ~λ′, θ′)‖ < ‖(S, ~λ, θ)‖.

By induction hypothesis, conclusions (135-137) are true for (S, ~λ′), which also im-

plies that they hold for (S, ~λ).

second step

Let us handle the situation where W ′ does not belong to Ŵ.

We just cancel the last line of (178) and can conclude as in first step.

subsubcase 2.6.3: ‖θt(cW )‖ > ‖θt(c
′W ′)‖.

Symetric to subsubcase 2.6.2. 2

Check that the algebraic lemmas apply to Wt (as well as to W).

6.2.2. From W-solutions to t-solutions

Easy direction.
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7. Equations over U

7.1. The group U

Let us adjoin to W̌ an alphabet of inverses W̌ . The extended alphabet W ′ :=

W̌ ∪ W̌ ∪ Ŵ is now endowed with a total involution W 7→ W̄ , which extends the

partial involution IW. The maps γ, µ, δ are extended to W ′ in such a way that the

axiom (31) of AB-algebras is fulfilled by W ′∗ ∗A ∗B endowed with this involution.

We define the group

U := 〈A ∗B,W ′; W̄eW = δ(W )(e) (e ∈ Gi(W ),W ∈ W)〉 (184)

i.e. it is an HNN-extension of the free product A ∗B with, as stable letters, all the

letters W from W ′ and as partial isomorphisms, the maps δ(W ). We identify ιA
(resp. ιB) with the natural embedding of A (resp. B) into A ∗B. We denote by ≡U

the monoid-congruence over W ′∗ ∗A∗B generated by the set of relations (184). We

denote by

πU : W ′∗ ∗A ∗B → U

the homomorphism z 7→ [z]≡U
. All the pairs of (58) also belong to ≡U, hence ≡⊆≡U.

Thus, there exists a unique map π̄U : W → U such that

πU |W∗∗A∗B = π≡ ◦ π̄U .

An element z ∈ W ′∗∗A∗B is said to be a reduced sequence iff it does not contain any

factor of the form W̄eW with W ∈ W ′, e ∈ Gi(W ). We denote by Red(A ∗ B,W ′)

the subset of W ′∗ ∗A ∗B consisting of all reduced sequences.

Lemma 23. Let z, z′ be some reduced sequences in W∗ ∗ A ∗ B. Then z ≡U z′ if

and only if z ≡ z′.

This lemma is obtained via the analogue of lemma 1, but in the case of an HNN-

extension with a set W ′ of stable letters (instead of just {t, t̄}). Such an analogue

can be obtained from lemma 1, by induction over the number of stable letters.

Lemma 24. Let z, z′ ∈ W∗ ∗ A ∗ B such that γ(z) = γ(z′) 6= ∅. Then z ≡U z′ if

and only if z ≡ z′.

Every z such that γ(z) 6= ∅ is a reduced sequence. This lemma is thus a direct

corollary of lemma 23.

7.2. From W-equations to U-equations

We use here the notion of system of equations with rational constraint over U, as

defined in §2.4.1 for any monoid. Let us consider a system of W-equations of the

form described in (133), together with a morphism:

SW = ((wi, w
′
i)i∈I , I

′); σH ∈ HomAB((WH , I), (WH , I
′)).
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The involution I
′ is given by formulas (63). Let us notice that every letter Wk ∈ W1,

i.e. on which I
′ has a “non-standard”value, fulfills (66), so that γ(Wk) must be a

H-type and Gi(Wk) = Ge(Wk).

Let zi, z
′
i ∈ W∗

t ∗A ∗B be some representatives, modulo ≡, of wi, w
′
i. By lemma 18,

we can also choose an AB-homomorphism σ̃H : W∗
t ∗A ∗B → W∗

t ∗A ∗B such that

π≡ ◦ σH = σ̃H ◦ π≡. For every W ∈ Wt we consider the following rational subsets

of W∗
t ∗A ∗B:

RI,W := {z ∈ W∗
t ∗A ∗B | γ(z) = γ(W ) ∧ z ∈ Ŵ∗

t ∗A ∗B ⇔W ∈ Ŵt},

Rµ,W := {z ∈ W∗
t ∗A ∗B | γ(z) = γ(W ) ∧ µ(z) = µ(W )},

Rδ,W := {z ∈ W∗
t ∗A ∗B | γ(z) = γ(W ) ∧ δ(z) = δ(W )}.

RH,W := {σ̃H(W )} if W ∈ WH ; RH,W := W∗
t ∗A ∗B if W /∈ WH

We define the rational constraint C : W∗
t ∗A ∗B → Rat(U) by:

∀W ∈ Wt, C(W ) := πU(RI,W ) ∩ πU(Rµ,W ) ∩ πU(Rδ,W ) ∩ πU(RH,W ),

∀e ∈ ιA(A) ∪ ιB(B), C(e) := πU({e}).

Let us define a system of equations over U with rational constraint:

SU(σH) := ((zi, z
′
i)1≤i≤n,C),

(note that SU(σH) does really depend on SW and σH , but not on the choice of σ̃H).

Lemma 25. The map Φ : HomAB((Wt, I), (Wt, I
′)) → Hom(W∗

t ∗A ∗B,U), σW 7→

πW ◦ σW ◦ π̄U induces a bijection from the set of solutions of SW which extend σH ,

into the set of solutions of SU(σH).

We prove this lemma in the subsequent three subsections; see figure 12 for the

general context and figure 13 for the details of the proof.

7.2.1. From W-solutions to U-solutions

Let σW be a solution of SW, extending σH .Let σU := Φ(σW) i.e.

σU := π≡ ◦ σW ◦ π̄U.

From the definitions of zi, z
′
i we get

σU(zi) = π̄U(σW(wi) = π̄U(σW(w′
i) = σU(z′i), (186)

thus σU is a solution of the system of equations (zi, z
′
i)1≤i≤n.

The map π≡ ◦ σW is an AB-homomorphism, hence it maps I on I
′ and preserves

γ, µ, δ. It follows that, for every W ∈ Wt:

σW(π≡(W )) ∈ π≡(RI,W ) ∩ π≡(Rµ,W ) ∩ π≡(Rδ,W ).
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t ∗A ∗B
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σH
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Fig. 12. lemma 25: the context

As σW extends σH we get, for every W ∈ W:

σW(π≡(W )) ∈ π≡(RH,W ).

Applying π̄U on both sides of the above membership relations we obtain that, for

every W ∈ Wt:

σU(W ) ∈ C(W ). (187)

Moreover the three maps π≡, σW, π̄U are fixing every element of A ∪B, so that, for

every e ∈ A ∪B:

σU(e) ∈ C(e). (188)

By (186)(187)(188) σU is a solution of SU(σH).

7.2.2. From U-solutions to W-solutions

Let σU be a solution of SU(σH).

Since, for every W ∈ Wt, σU(W ) ∈ C(W ) ⊆ πU(Rµ,W ), there is a choice map

σ̃U : Wt → W∗
t ∗A ∗B fulfilling:

∀W ∈ Wt, σ̃U(W ) ∈ Rµ,W , πU(σ̃U(W )) = σU(W ). (189)

Let us denote by σ̃U the unique monoid homomorphism fixing every element of

A ∗ B and extending the above choice map. Since σU(W ) ∈ C(W ), there exist

zI,W ∈ RI,W , zδ,W ∈ Rδ,W , zH,W ∈ RH,W fulfilling

πU(σ̃U(W )) = πU(zI,W ) = πU(zδ,W ) = πU(zH,W ).
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t ∗A ∗B
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Fig. 13. lemma 25:the proof

All these zI,W , zδ,W , zH,W have a non-empty image by γ and are equivalent with

σ̃U(W ) modulo ≡U. By lemma 24:

σ̃U(W ) ≡ zI,W ≡ zδ,W ≡ zH,W .

The equivalence ≡ preserves the AB-structure of W∗ ∗ A ∗ B (see (59-60)), hence,

for every W ∈ Wt,

σ̃U(W ) ∈ Ŵt ∗A ∗B ⇔W ∈ Ŵt

δ(σ̃U(W )) = δ(W )

π≡(σ̃U(W )) = π≡(σ̃H(W )) if W ∈ WH . (190)

The map σ̃U : Wt → W∗
t ∗ A ∗ B defined by (189) can thus be extended into an

AB-homomorphism σ̃U : W∗
t ∗A∗B → W∗

t ∗A∗B . By lemma 16 it defines a unique

AB-homomorphism σW : Wt → Wt fulfilling:

π≡ ◦ σW = σ̃W ◦ π≡. (191)

By (190)(191) σW extends σH .

By hypothesis σ̃U ◦ πU is a solution of SU(σH) hence:

πU(σ̃U(zi)) = πU(σ̃U(z′i))
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i.e. σ̃U(zi) ≡U σ̃U(z′i). We know that γ(zi) = γ(z′i) 6= ∅ and that σ̃U preserves γ.

Using lemma 24 we conclude that σ̃U(zi) ≡ σ̃U(z′i), hence

σU(wi) = σU(w′
i).

Using (191), π≡ ◦ σW ◦ π̄U = σ̃W ◦ π≡ ◦ π̄U = σ̃W ◦ πU = σU. Finally, σW is a solution

of SW which extends σH and

σU = Φ(σW).

7.2.3. Bijection Φ

Subsubsection 7.2.2 established that Φ is surjective. Let us check it is injective.

Suppose that σW, σ
′
W

∈ HomAB(Wt,Wt) fulfill:

π≡ ◦ σW ◦ π̄U = π≡ ◦ σ′
W ◦ π̄U

As π≡ is surjective we get

σW ◦ π̄U = σ′
W ◦ π̄U.

By lemma 24, π̄U is injective over {z ∈ Wt | γ(z) 6= ∅}, hence, for every g ∈

Wt ∪ ιA(A) ∪ ιB(B),

σW(g) = σ′
W(g),

which implies

σ = σ′.

By the above three subsubsections, lemma 25 is proved.
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8. Transfer of solvability

8.1. The structure of U

Since U is built from two finite groups A,B by a finite number of operations which

are either a free product or an HNN-extension, U is a virtually free group.

Let us notice that, for the particular virtually free groups K of the form:

K = A ∝ F (V) (192)

i.e. a semi-direct product of a finite group A by a free group with finite rank, the

decidability of the satisfiability problem for equations with rational constraints in K

is Turing-reducible to the same problem in the free group F (V). Hence, by the main

theorem of [DHG05], this problem is decidable. By successive sequences of Tietze

transformations, we show that U can be constructed from a group K of the form

(192) by a finite number of HNN-extensions, with associated subgroups of strictly

smaller cardinality than A.

First transformation Let t ∈ W such that δ(t) is a full isomorphism A→ B, for

example we can choose t such that δ(t) = ϕ. Let us apply the Tietze transformation:

b−− > t̄ϕ−1(b)t for all b ∈ B

we obtain a presentation with A as base group and relations of the form:

W̄aW = δ(W )(a); for Gi(W ) = Ge(W ) = A

W̄aW = t̄ϕ−1(δ(W )(a))t; for Gi(W ) = A,Ge(W ) = B,W 6= t.

Second transformation Taking as new set of generators:

A ∪ {t, t̄} ∪ {W ∈ W,Gi(W ) = Ge(W ) = A,W 6= t}

∪{tW̄ ,Gi(W ) = B,Ge(W ) = A} ∪ {Wt̄,Gi(W ) = A,Ge(W ) = B}

we obtain a set of relations of the form:

V̄ aV = δ′(V )(a) for V ∈ V,

with δ′ : V → PIs(A,A).

Decomposition Let VA := {V ∈ V,dom(δ′(V )) = im(δ′(V ) = A} and let

K := 〈A; V̄ aV = δ′(V )(a) for V ∈ VA〉.

We claim that K is of the form (192) and U is obtained from K by a finite number

of HNN-extension operations, with associated subgroups of cardinality < |A|.

8.2. Inductive transfer

We prove now a general transfer theorem for systems of equations with rational

constraints. We first treat the case of groups since it is technically simpler.
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8.2.1. Inductive transfer for groups

Proposition 26. Let H be a group and G an HNN-extension of H with finite as-

sociated subgroups. The satisfiability problem for systems of equations with rational

constraints in G is Turing-reducible to the pair of problems (Q1, Q2), where

1- Q1 is the SAT-problem for systems of equations with rational constraints in U

2- Q2 is the SAT-problem for systems of equations with rational constraints in H

Proof: Let us consider a system S0 of equations with rational constraints in G.

By proposition 89 it can be reduced to a system SG in quadratic normal form. By

lemma 20, solving SG is reduced to problem P1 and the auxiliary problem AP1:

P1 Compute the alphabet Wt.

AP1 Solve the disjunction of all the pairs of systems St(S, ~W,~e),SH(S, ~W,~e) by a

common σt ∈ HomAB(Wt,Ht).

For every value of ~W,~e, by lemma 21 AP1 reduces to:

AP2 Find an involution I
′ ∈ I and a solution σW ∈ HomAB((Wt, I), (Wt, I

′)) to

the systems St(S, ~W,~e), and find a ψt ∈ HomAB((Wt, I
′), (Ht, It)) such that σW ◦ψt

solves SH(S, ~W,~e) .

By lemma 25, and a (finite) enumeration of all the I
′ ∈ I, and σH ∈

HomAB(WH ,WH), AP2 reduces to

P2

P2.1 Solve the system SU(σH),

P2.2 Find a ψH,t ∈ HomAB((WH , I
′), (Ht, It)), solving σH(SH(S, ~W,~e)). Let us ex-

amine now the remaining problems P1,P2.1,P2.2.

Problem P1 consists, for every letter W ∈ W, in deciding whether there exists

an AB-homomorphism from the sub-AB-algebra 〈W 〉 into Ht. Let us suppose I
′ is

given by the formulas (63) of §3.5.4. For every W ∈ WH we define the sets

CI(W ) := H; if W ∈ Ŵ0,

CI(Wk) := {h ∈ H | akhbk = h−1}, ; CI(W̄k) := {h ∈ H | a−1
k hb−1

k = h−1},

Cγ(W ) := {h ∈ H | γ(W ) ⊆ γ(h)}; Cµ(W ) := {h ∈ H | µ1(W ) = µA,1(h)},

Cδ(W ) := {h ∈ H | ∀t ∈ γ(W ), δ(t,W ) = δ(t, h)},

C(W ) := CI(W ) ∩ Cγ(W ) ∩ Cµ(W ) ∩ Cδ(W ).

Let us denote, for any monoid M, by EQR(M) the set of all subsets of M which can

be defined by a system of equations with rational constraints. We observe that CI

take values in EQR(H), Cγ take values in B({{1}, A,B,H}) and Cµ take values in

B(RAT(H)) . The map Cδ take values which are intersections of subsets of the form

SH(c, d) := {h ∈ H | cs ∼ sd} (193)
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for c, d ∈ A ∪ B and of subsets of the form H − SH(c, d). It is clear that

SH(c, d) ∈ EQR(H). We can notice that, ch 6= hd ⇔ ∃h′ ∈ H, h−1chd−1 =

h′ ∧ h′ /∈ {1} i.e. H − SH(c, d) belongs to EQR(H). Therefore, each of the four

subsets CI(W ),Cγ(W ),Cµ(W ),Cδ(W ) belongs to EQR(H), so that C(W ) also be-

longs to EQR(H). Deciding whether C(W ) = ∅ is thus an instance of Q2.

Let W ∈ W −WH . We set now

CI(W ) := H ∗ {t, t̄}∗,

Cγ(W ) := {s ∈ H∗{t, t̄}∗ | γ(W ) ⊆ γ(s)}; Cµ(W ) := {s ∈ H∗{t, t̄}∗ | µ1(W ) = µA(s)}

Cδ(W ) := {s ∈ H ∗ {t, t̄}∗ | ∀t ∈ γ(W ), δ(t,W ) = δ(t, s)}

and finally

C(W ) := CI(W ) ∩ Cγ(W ) ∩ Cµ(W ) ∩ Cδ(W ).

The subset Cγ(W ) is recognized by the t-automaton R6, with suitably chosen ini-

tial and terminal states (along equation (40)), Cµ(W ) is a finite union of subsets

recognized by the t-automaton A with modified initial and terminal states. The

subset Cδ(W ) is an intersection of subsets of the form:

S(c, d) := {s ∈ H ∗ {t, t̄}∗ | cs ∼ sd} (194)

for some c, d ∈ A ∪ B, and of subsets of the form H ∗ {t, t̄}∗ − S(c, d). Each set

S(c, d) is recognized by some t-automaton with set of labels in

F = {SH(c, d) | c, d ∈ A ∪B} ⊆ EQR(H).

Each set H ∗ {t, t̄}∗ − S(c, d) is recognized by some t-automaton with set of labels

in

F = {SH(c, d) | c, d ∈ A ∪B} ∪ {H − SH(c, d) | c, d ∈ A ∪B} ⊆ EQR(H).

It follows that Cδ(W ) is recognized by some t-automaton with labels in EQR(H). Fi-

nally, the subset C(W ) is recognized by some t-automaton D with labels in EQR(H).

The emptiness problem for L(D) reduces to the emptiness problem for elements of

EQR(H) (given by a system of equations with rational constraints), which are them-

selves instances of Q2.

The problem P2.1, first line, is an instance of Q1, while P2.2 is an instance of Q2.

2

By induction over the size of the associated subgroups, we obtain

Theorem 27. Let H be a group and G an HNN-extension of H with finite asso-

ciated subgroups. The satisfiability problem for systems of equations with rational

constraints in G is Turing-reducible to the SAT-problem for systems of equations

with rational constraints in H.
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8.2.2. Inductive transfer for cancellative monoids

We will prove the extension of proposition 26 to cancellative monoids:

Proposition 28. Let H be a cancellative monoid and G an HNN-extension of H

with finite associated subgroups. The satisfiability problem for systems of equations

with rational constraints in G is Turing-reducible to the pair of problems (Q1, Q2),

where

1- Q1 is the SAT-problem for systems of equations with rational constraints in U

2- Q2 is the SAT-problem for systems of equations with rational constraints in H

What becomes difficult here is the computation of Wt: it requires to determine,

for a given symbol W ∈ W whether there exists a t-sequence s such that: s ∈ H ( if

γ(s) is a H-type), s is not invertible ( if γ(W ) specifies that W does not belong to

the domain of IW), and cs 6= sd for some c, d ∈ A∪B ( if the value of δ(W ) imposes

this). The non-invertibility condition is expressed via an universally quantified for-

mula (∀h′, h · h′ 6= 1) and the non-commutation condition is a disequation. Since

no hypothesis ensures that the satisfiability of such formulas over H is decidable,

we give up the hope to compute Wt. Instead, we enumerate all the subalphabets

W ′ ⊆ W ( closed under IW ) and apply the above method in the sub-AB-algebra W
′

generated by W ′ instead of the sub-AB-algebra Wt. But the above difficulty arises

in the computation of ψt : W
′ → Ht. We have to compute, for every W ′ ∈ W ′, an

image ψt(W
′) having the same behaviour w.r.t. I, γ, µ, δ. We avoid here this diffi-

culty by computing a weak AB-homomorphism ψt : W
′ → Ht.

We call weak AB-homomorphism from M1 to M2 any map ψ : M1 → M2 fulfilling

the seven properties (195-201) below:

ψ : (M1, ·, 1M1
) → (M2, ·, 1M2

) is a monoid homomorphism (195)

∀a ∈ A,∀b ∈ B,ψ(ιA,1(a)) = ιA,2(a), ψ(ιB,1(b)) = ιB,2(b) (196)

∀m ∈ M1 − γ−1
1 ({∅}), m ∈ dom(I1) ⇒ ψ(m) ∈ dom(I2) (197)

∀m ∈ M̂1, I2(ψ(m)) = ψ(I1(m)) (198)

∀m ∈ M1, γ2(ψ(m)) ⊇ γ1(m) (199)

∀m ∈ M1,∀t ∈ γ1(m), p1(µ2(t, ψ(m))) = p1(µ1(t,m)), (200)

∀m ∈ M1,∀t ∈ γ1(m), δ2(t, ψ(m)) ⊇ δ1(t,m). (201)

where the map p1 : B2(Q) → B(Q) denotes the first projection. We have thus re-

placed the axioms (34),(37),(38) by the weaker axioms (197),(200),(201). It remains

true that the above list of axioms can be checked on the generators only, i.e. the

following analogue of lemma 10 is true.

Lemma 29. Let M2 = 〈M2, ·, 1M2
, ιA,2, ιB,2, I2, γ2, µ2, δ2〉 be some AB-algebra. Let

W
′ be the sub-AB-algebra generated by some subalphabet W ′ ⊆ W , which is closed
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under IW. Let ψ : W
′ → M2 be some monoid-homomorphism. This map ψ is a weak

AB-homomorphism if and only if,

1- ιA ◦ ψ = ιA,2, ιB ◦ ψ = ιB,2
and for every g ∈ W ′ ∪A ∪B, t ∈ γ(g):

2- g ∈ dom(I) ⇒ ψ(g) ∈ dom(I2)

2’- I2(ψ(g)) = ψ(I(g))

3- γ2(ψ(g)) ⊇ γ(g)

4- p1(µ2(t, ψ(g))) = p1(µ(t, g))

5- δ2(t, ψ(g)) ⊇ δ(t, g).

Given two AB-algebras M1,M2, we denote by WHomAB(M1,M2) the set of

all weak AB-homomorphisms from M1 to M2. We can then express the solutions

of the original equation over G via some AB− (resp. weak AB−) homomorphisms.

Lemma 30. Let S = ((Ei)1≤i≤n, µA, µU ) be a system of equations over G, with

rational constraint. Let us suppose that S is in normal form. A monoid homomor-

phism

σ : U∗ → G

is a solution of S if and only if, there exists an admissible choice ( ~W,~e) of variables

of W (resp. elements of A ∪ B), an alphabet W ′ ⊆ W posessing all these variables

and closed under IW, an involution I
′ ∈ I, an AB-homomorphism σW : (〈W ′〉, I),→

(〈W ′〉, I′) and a weak AB-homomorphism ψt : Wt → Ht such that:

1- σW is a solution of St(S, ~W,~e),

2- σW ◦ ψt is a solution of SH(S, ~W,~e),

3- σ = σ ~W,~e
◦ σW ◦ ψt ◦ π̄G.

Proof: Follows from previous lemmas. Make more precise. 2

Algorithm scheme

1- Enumerate the subalphabets W ′ which are closed under the involutin IW.

2- Enumerate the involutions I
′ ∈ I and the admissible vectors ~W,~e.

3- For every value of W ′, I′, ~W,~e :

4- W
′ := 〈W ′〉.

5- Find a solution σW ∈ HomAB((W′, I), (W′, I′)) to the system St(S, ~W,~e) by the

following procedure

5.1- Enumerate all the σH ∈ HomAB((W′
H , I), (W

′
H , I

′)),

5.2- Find a solution σU for the system SU(σH),

5.3- σW := Φ−1(σU)

6- Find a ψt ∈ WHomAB((W′, I′), (Ht, It)) such that σW ◦ ψt solves SH(S, ~W,~e).

7- Endfor

8- If some pair σW, ψt is found then S is satisfiable else S is unsatisfiable.

(We summarize on figure 14 the different maps to be found; doted arrows correspond

to weak AB-homomorphisms). Let us precise how one can achieve every line of this

scheme.
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ψt
(Ht, It)G

σtσ

π̄G

π≡

U

σU

σW

σH

U∗

π̄U

W ′∗ ∗A ∗B

(W′, I′)

(W′, I)σ ~W,~e

W
′
H

W
′
H

Fig. 14. the algorithm: monoid case

Line 5.2 is an instance of Q1. Let us show that line 6 can be achieved by a Turing-

reduction to Q2.

By lemma 29, line 6 amounts to find some tuple (ψt(W ))W∈W′ such that conditions

1-5 of lemma 29 are fulfilled and (ψt(W ))W∈W′

H
is a solution of σW(SH(S, ~W,~e)).

Conditions 1-5 can be expressed by the following constraints. For every W ∈ W ′
H :

CI(W ) := H if W ∈ W ′ − Ŵ; CI(W ) := I(H) if W ∈ Ŵ0, (202)

CI(Wk) := {h ∈ I(H) | akhbk = h−1}, CI(W̄k) := {h ∈ I(H) | a−1
k hb−1

k = h−1}, if Wk ∈ Ŵ0,(203)

Cγ(W ) := {h ∈ H | γ(W ) ⊆ γ(h)}; Cµ(W ) := {h ∈ H | µ1(W ) = µA(h)}, (204)

Cδ(W ) := {h ∈ H | ∀t ∈ γ(W ), δ(t,W ) ⊆ δ(t, h)}, (205)

For every W ∈ W ′ −W ′
H :

CI(W ) := {s ∈ H ∗ {t, t̄}∗ |W ∈ dom(I′) ⇒ s ∈ dom(It)}, (206)

Cγ(W ) := {s ∈ H∗{t, t̄}∗ | γ(W ) ⊆ γ(s)}; Cµ(W ) := {s ∈ H∗{t, t̄}∗ | µ1(W ) = µA(s)}(207)

Cδ(W ) := {s ∈ H ∗ {t, t̄}∗ | ∀t ∈ γ(W ), δ(t,W ) ⊆ δ(t, s)}. (208)

Finally, for every W ∈ W ′:

C(W ) := CI(W ) ∩ Cγ(W ) ∩ Cµ(W ) ∩ Cδ(W ). (209)

The values of the C∗(W ) have been modified in such a way that, now, every subset

C(W ) with W ∈ W ′
H belongs to EQR(H) while every subset C(W ) with W ∈

W ′−W ′
H is recognized by some t-automaton with labels in EQR(H). Line 6 amounts

thus to:
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- find a solution in H to the system σW(SH(S, ~W,~e)) with the additional constraints

C(W ) for W ∈ W ′
H - this is an instance of Q2

- find an element in the set C(W ) for W ∈ W ′ −W ′
H - this reduces to finitely many

instances of Q2.

We have thus proved proposition 28. By induction over the size of the associated

subgroups, we obtain

Theorem 31. Let H be a cancellative monoid and G an HNN-extension of H with

finite associated subgroups. The satisfiability problem for systems of equations with

rational constraints in G is Turing-reducible to the SAT-problem for systems of

equations with rational constraints in H
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9. Equations with positive rational constraints over G

9.1. Positive rational constraints

No negation in the rat constraints. We adapt the above reductions by the following

replacements:

- weak-homorphism ψt
- but Ht is replaced by Ht+ i.e. we do not require the image of the generators to

be reduced; since A is supposed ≈-compatible, such a ψt leads to a solution of the

equations (this is obvious) and also satisfies the rational constraints. We thus obtain

a proof of the

Theorem 32. Let H be a cancellative monoid and G an HNN-extension of H with

finite associated subgroups. The satisfiability problem for systems of equations with

positive rational constraints in G is Turing-reducible to the SAT-problem for systems

of equations with positive rational constraints in H.

9.2. Basic constraints

The set of constraints here is C =: {{g} | g ∈ G} ∪ {H,G}. This set turns out to be

useful for the decidability of the positive first-order theory of G. Here also we use:

- weak-homorphism ψt
- the AB-structure Ht is replaced by Ht+.

Theorem 33. Let H be a cancellative monoid and G an HNN-extension of H with

finite associated subgroups. The satisfiability problem for systems of equations with

basic constraints in G is Turing-reducible to the SAT-problem for systems of equa-

tions with constants in H.

9.3. Constants

The set of constraints is now C := {{g} | g ∈ G} ∪ {G}. The following theorem is

an immediate corollary of theorem 33.

Theorem 34. Let H be a cancellative monoid and G an HNN-extension of H with

finite associated subgroups. The satisfiability problem for systems of equations with

constants in G is Turing-reducible to the SAT-problem for systems of equations with

constants in H.
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10. Equations and disequations with rational constraints over G

We recall that the notion of systems of equations and disequations with rational

constraints over a monoid has been defined in §2.4.2.

10.1. Rational constraints

Let us show how to reduce a system of equations and disequations (with rational

constraints), over G to a systems of equations (with rational constraints) over Ht

together with a system of equations/disequations (with rational constraints) over

H.

Let us start with a system of equations with rational constraints, over G, which is

in normal form (see proposition 19):

((Ei)1≤i≤n, (Ēi)n+1≤i≤2n, µA,G, µU ) (210)

The equations Ei have the form

Ei : (Ui,1, Ui,2Ui,3) for all 1 ≤ i ≤ n (211)

while the disequations Ēi have the form

Ēi : (Ui,1, Ui,2) for all n+ 1 ≤ i ≤ 2n (212)

where, for every i ∈ [1, n], the symbols Ui,1, Ui,2, Ui,3, Un+i,1, Un+i,2 belong to the

alphabet of unknowns U . Let us consider the alphabet V0 := [1, 2n] × [1, 3] × [1, 9]

and the alphabet W constructed from this V0 in §3.5. We consider all the vectors

(Wi,j,k) where 1 ≤ i ≤ 2n, 1 ≤ j ≤ 3, 1 ≤ k ≤ 9 of elements of W ∪ {1} and all

triple (ei,1,2, ei,2,3, ei,3,1) ∈ (A ∪B)3 such that: the vectors

(Wi,j,k)1≤i≤n,1≤j≤3,1≤k≤9, (ei,1,2, ei,2,3, ei,3,1)1≤i≤n

fulfill conditions (94-104) and their counterpart for disequations

(Wi,j,k)n+1≤i≤2n,1≤j≤2,1≤k≤9, (ei,1,2)n+1≤i≤2n

fulfill the analogous conditions:

p1(Wi,j,k) = (i, j, k) ∈ V0 for Wi,j,k 6= 1 (213)

γ(

9∏

k=1

Wi,j,k) = (1, H, b, 1, 1) for some b ∈ {0, 1} (214)

µ(

9∏

k=1

Wi,j,k) = µU (Ui,j) (215)

γ(
4∏

k=1

Wi,1,k) = γ(
∏4
k=1Wi,2,k) (216)

Wi,j,5 ∈ W ∧ γ(Wi,j,5) is a H-type (217)

ei,1,2 ∈ Gi(Wi,1,5) = Gi(Wi,2,5) (218)
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A vector ( ~W,~e) fulfilling (94-104) for the indices i ∈ [1, n] and (213-218) for the

indices i ∈ [n + 1, 2n], is called an admissible vector. For every admissible vector

( ~W,~e) we define the following equations and disequations:

9∏

k=1

Wi,j,k =
∏9
k=1Wi′,j′,k if Ui,j = Ui′,j′ (219)

Wi,1,1Wi,1,2Wi,1,3Wi,1,4ei,1,2 = Wi,2,1Wi,2,2Wi,2,3Wi,2,4 (220)

for all 1 ≤ i ≤ 2n

Wi,2,6Wi,2,7Wi,2,8Wi,2,9 = ei,2,3W i,3,4W i,3,3W i,3,2W i,3,1 (221)

Wi,1,5Wi,1,6Wi,1,7Wi,1,8 = ei,1,3Wi,3,6Wi,3,7Wi,3,8Wi,3,9 (222)

Wi,1,5 = ei,1,2Wi,2,5ei,2,3Wi,3,5ei,3,1 (223)

for all 1 ≤ i ≤ n

∧

d∈Ge(Wi,1,5)

Wi,1,5 · d 6= ei,1,2 ·Wi,2,5 (224)

for all n+ 1 ≤ i ≤ 2n such that τe(Wi,1,5) = τe(Wi,2,5).

We denote by St(S, ~W,~e) the sequence of equations (219-222), by SH(S, ~W,~e)

the sequence of equations and disequations (223-224). For every (i, j) ∈ [1, n] ×

[1, 3] ∪ [n + 1] × [1, 2] we denote by ı,  the smallest pair such that Ui,j = Uı,. By

σ ~W,~e
: U∗ → W we denote the unique monoid-homomorphism such that,

σ ~W,~e
(Ui,j) =

9∏

k=1

Wı,,k.

Lemma 35. Let S = ((Ei)1≤i≤n, (Ēi)n+1≤i≤2n, µA,G, µU ) be a system of equations

and disequations over G, with rational constraint. Let us suppose that S is in normal

form. A monoid homomorphism

σ : U∗ → G

is a solution of S if and only if, there exists an admissible choice ( ~W,~e) of variables

of Wt and elements of A ∪B and an AB-homomorphism

σt : Wt → Ht

solving simultaneously the system St(S, ~W,~e) of equations over Ht and the system

SH(S, ~W,~e) of equations and disequations over H, and such that

σ = σ ~W,~e
◦ σt ◦ π̄G.
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Ui,1

Ui,2

Wi,1,1

Wi,2,1
ei,1,2

Wi,2,9

Wi,1,9Wi,1,5

Wi,2,5

· · ·

· · · · · ·

··
·

d

Fig. 15. Disequation cut into 3 parts

10.1.1. From G-solutions to t-solutions

Let σ : U∗ → G be a monoid homomorphism solving the system S. For every

1 ≤ i ≤ n we construct the vector (Wi,∗,∗, ei,∗,∗) as in §5.2.1. Let us fix now some

disequation from S, i.e. some integer n + 1 ≤ i ≤ 2n. Let us choose, for every

j ∈ [1, 2], some si,j ∈ Red(H, t) such that:

σ(Ui,j) = πG(si,j).

Let us consider some decomposition of the form (5) for si,2, si,1:

si,2 = h0t
α1h1 · · · t

αλhλ · · · t
α`h`, (225)

si,1 = h′0t
α′

1h′1 · · · t
α′

λh′λ · · · t
α′

`′h′`′ , (226)

We know that si,1 6≈ si,2. Let us distinguish the possible forms for si,1, as represented

on figures 16-18.

Case 1: there exists some integer λ ∈ [2, `], some ei,1,2 ∈ B(αλ−1) such that

h0 · · · t
αλ−1hλ−1 = h′0 · · · t

αλ−1h′λ−1ei,1,2, αλ = α′
λ

ei,1,2hλ−1 6= h′λ−1d for all d ∈ A(αλ).

We consider the following factors of si,2, si,1:

Pi,2 = h0 · · · t
αλ−1 , Mi,2 = hλ−1, Si,2 = tαλ · · · tα`h`.
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ei,1,2

··
·

d

· · ·

· · ·

si,2

si,1

· · ·tαλ

hλ−1

h′λ−1

tαλ

Fig. 16. Disequations, case 1

Pi,1 = h′0 · · · t
αλ−1 , Mi,1 = h′λ−1, Si,1 = tαλ · · · tα

′

`′h′`′ .

Following the lines of §5.2.1, these reduced sequences can be cut into nine factors

(Pi,j,k) , 1 ≤ j ≤ 2, 1 ≤ k ≤ 9, and subsequently lifted to nine letters (Wi,j,k) ,

1 ≤ j ≤ 2, 1 ≤ k ≤ 9, such that the vector (Wi,∗,∗, ei,1,2) fulfills conditions (213-

218) and the classes ([Pi,∗,∗]∼) fulfill equations and disequations (220),(224). We

can define σt(Wi,j,k) = [Pi,j,k]∼; σt can be extended into an AB-homomorphism

solving both systems St(S, ~W,~e), SH(S, ~W,~e) and such that

σ = σ ~W,~e
◦ σt ◦ π̄G.

Case 2: there exists λ ∈ [2, `], some ei,1,2 ∈ B(αλ−1) such that

h0 · · · t
αλ−1hλ−1 = h′0 · · · t

αλ−1h′λ−1ei,1,2, αλ = −α′
λ

We consider the factors Pi,2,Mi,2, Si,2, Pi,1,Mi,1 defined by the same formulas as in

case 1, and define

Si,1 = t−αλ · · · tα
′

`′h′`′ .

This time we obtain a vector (Wi,∗,∗) such that τe(Wi,1,5) 6= τe(Wi,2,5). It follows

there is no disequation (224) associated to this index i. The vector (Wi,∗,∗, ei,1,2)
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ei,1,2

··
·

· · ·

· · ·

si,2

si,1

· · ·

hλ−1

h′λ−1

tαλ

t−αλ

Fig. 17. Disequations, case 2

fulfills conditions (213-218) and the classes [Pi,∗,∗]∼) fulfill equation (220).

Case 3: there exists λ ∈ [2, `], such that

si,1 = h0 · · · t
αλ−1hλ−1.

This case can be treated similarly as case 2. We just define Si,1 = 1 and, corre-

spondingly Wi,1,k = 1, for 6 ≤ k ≤ 9.

Case 4: there exists some integer λ ∈ [2, `′], such that

si,2 = h0 · · · t
αλ−1hλ−1.

This case is obtained from Case 3 by exchanging si,1 with si,2.

It remains to treat some degenerated cases.

Case 5: λ = 1 ≤ `, fulfills one of the conditions defining cases 1-3 (except beeing

smaller than 2) or λ = 1 ≤ `′ fulfills the conditions defining case 4 (except beeing

smaller than 2).

We take: Pi,1 = Pi,2 = 1, ei,1,2 = 1, Si,1 = 1 (under the condition of case 3),

Si,2 = 1 (under the condition of case 4).

The construction is ended as in the degenerated cases of §5.2.1.

Case 6: ` = `′ = 0.

We take: Pi,1 = Pi,2 = 1, ei,1,2 = 1, Si,1 = Si,2 = 1.

The construction is ended as in the degenerated cases of §5.2.1.
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ei,1,2

··
·

· · ·

· · ·

si,2

hλ−1

h′λ−1

tαλ

si,1

Fig. 18. Disequations, case 3

10.1.2. From t-solutions to G-solutions

Let σt : Wt → Ht be an AB-homomorphism solving both systems St(S, ~W,~e) and

SH(S, ~W,~e).

Owing to the proofs of §5.2.2, we just have to prove that for every i ∈ [n+ 1, 2n],

σt(σ ~W,~e
(Ui,1)) 6≈ σt(σ ~W,~e

(Ui,2)).

Using equation (219) and the definition of σ ~W,~e
, the above unequalityis equivalent

with

σt(

9∏

k=1

Wi,1,k) 6≈ σt(

9∏

k=1

Wi,2,k). (227)

Equation (220) states that

σt(

4∏

k=1

Wi,1,k)ei,1,2 ≈ σt(

4∏

k=1

Wi,2,k). (228)

Let us distinguish several cases according to the values of τe(Wi,j,5). Since, by (217),

γ(Wi,j,5) are H-types, one of the following cases must occur.

Case 1: τe(Wi,2,5) = τe(Wi,1,5) = (1, 1)

By (214), γ(
∏9
k=6Wi,j,k) = (1, 1, 0, 1, 1) for j ∈ [1, 2], which implies that, for every
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j ∈ [1, 2]:

σt(
9∏

k=1

Wi,j,k) = σt(
5∏

k=1

Wi,j,k), (229)

But disequation (224) reads:

σt(Wi,1,5) 6=Ht
ei,1,2 · σt(Wi,2,5). (230)

The conjunction of (228)(229)(230) proves inequality (227).

Case 2: τe(Wi,2,5) = τe(Wi,1,5) = (A, T )

Since σt is a solution of equation (220) and disequation (224), two representatives

of σt(
∏5
k=1Wi,2,k), ( resp. σt(

∏5
k=1Wi,1,k)) cannot be prefixes of two reduced se-

quences which are equivalent modulo ∼. Thus (227) is established.

Case 3: τe(Wi,2,5) = τe(Wi,1,5) = (B, T )

Same argument as for case 2.

Case 4: τe(Wi,2,5) 6= τe(Wi,1,5)

This shows that the projections of σt(
∏9
k=1Wi,2,k), σt(

∏9
k=1Wi,1,k) on {t, t̄}∗ are

non-equal, so that, a fortiori, inequality (227) holds.

10.2. Positive rational constraints

Here we choose C = RAT (G). We adapt the above reductions by the following re-

placements:

- weak-homomorphism ψt
- Ht is still used; for every W ∈ W ′, C(W ) is recognized by a finite t-automaton

with some labels in DEQR+(H) , where DEQR+(H) is the set of subsets of H

which are definable by systems of equations and disequations with positive rational

constraints.

10.3. Basic constraints

The set of constraints here is C =: {{g} | g ∈ G} ∪ {H,G}. Here we use:

- weak-homorphism ψt
- the AB-structure Ht is still used. for every W ∈ W ′, C(W ) is recognized by a finite

t-automaton with some labels in DEQ(H) , where DEQ(H) is the set of subsets of

H which are definable by systems of equations and disequations.

10.4. Constants

The set of constraints here is C =: {{g} | g ∈ G} ∪ {G}. This case follows directly

from the above case.
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11. Equations over an amalgamated product

Embedding into an HNN-extension.

With rational constraints: corollary of theorem ?? and the transfer theorem for

free-products ([Diekert-Lohrey]? mrkus checks this ).

Theorem 36. Let H1,H2 be monoids,two finite subgroups A1 ≤ H1, A2 ≤ H2,

an isomorphism ϕ : A1 → A2. The satisfiability problem for systems of equations

with rational constraints in the amalgamted product 〈H1,H2; a = ϕ(a)(a ∈ A1)〉 is

Turing-reducible to the pair of problems (S1, S2) where

1- S1 is the SAT-problem for systems of equations with rational constraints in H1

2- S2 is the SAT-problem for systems of equations with rational constraints in H2

With constants: reduces to rational constraints over G where the labels of the

t-automaton belong to C = {{m} | m ∈ H1 ∪ H2} ∪ {H1,H2}. Thus finally reduces

to systems of equations on H1 ∗H2 with the same set of constraints. These systems

reduce to systems of equations with constants in H1 and to systems of equations

with constants in H2, by [Diekert-Lohrey, FSTTCS 2003,markus checks].

Theorem 37. Let H1,H2 be monoids, two finite subgroups A1 ≤ H1, A2 ≤ H2,

an isomorphism ϕ : A1 → A2. The satisfiability problem for systems of equations

with constants in the amalgamated product 〈H1,H2; a = ϕ(a)(a ∈ A1)〉 is Turing-

reducible to the pair of problems (S1, S2) where

1- S1 is the SAT-problem for systems of equations with constants in H1

2- S2 is the SAT-problem for systems of equations with constants in H2

The two following variants of theorem 36 also follow from previous results of

[Diekert-Lohrey 2003] combined with the results about HNN-extensions of this pa-

per, via the embedding (11).

Theorem 38. Let H1,H2 be monoids,two finite subgroups A1 ≤ H1, A2 ≤ H2,

an isomorphism ϕ : A1 → A2. The satisfiability problem for systems of equations

and disequations with rational constraints in the amalgamated product 〈H1,H2; a =

ϕ(a)(a ∈ A1)〉 is Turing-reducible to the pair of problems (S1, S2) where

1- S1 is the SAT-problem for systems of equations and disequations with rational

constraints in H1

2- S2 is the SAT-problem for systems of equations and disequations with rational

constraints in H2

Theorem 39. Let H1,H2 be monoids,two finite subgroups A1 ≤ H1, A2 ≤ H2, an

isomorphism ϕ : A1 → A2. The satisfiability problem for systems of equations and

disequations with constants in the amalgamted product 〈H1,H2; a = ϕ(a)(a ∈ A1)〉
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is Turing-reducible to the pair of problems (S1, S2) where

1- S1 is the SAT-problem for systems of equations and disequations with constants

in H1

2- S2 is the SAT-problem for systems of equations and disequations with constants

in H2
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