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Let G be a finitely generated virtually-free group. We consider Birget-Rhodes expansion 6f,
which yields an inverse monoid and which is denotedk{ G) in the following. We show that for a
finite idempotent presentatidf, the word problem of a quotient monadidI(G) /P can be solved in
linear time on a RAM. The uniform word problem, whefeand the presentatioR are also part of
the input, is EXPTIME-complete. WithM (G) / P we associate a relational structure, which contains
for every rational subset of IM(G)/P a binary relation, consisting of all paifg;, y) such that
y can be obtained fromz by right multiplication with an element fronk.. We prove that the first-
order theory of this structure is decidable. This result iegpthat the emptiness problem for boolean
combinations of rational subsets B¥I(G)/ P is decidable, which, in turn implies the decidability
of the submonoid membership problemIdf(G)/P. These results were known previously for free
groups, only. Moreover, we provide a new algorithmic apphofac these problems, which seems to
be of independent interest even for free groups.

We also show that one cannot expect decidability results ichrtarger frameworks than virtually-
free groups because the subgroup membership problem of aosyddrin an arbitrary groug= can
be reduced to a word problem of sorfd(G) /P, where P depends only orf{. A consequence is
that there is a hyperbolic grou and a finite idempotent presentatiéhsuch that the word problem
is undecidable for some finitely generated submonoithé{G)/ P. In particular, the word problem
of IM(G) /P is undecidable.

1. Introduction

Decidability and complexity questions concerning wordijdeans for monoids are a clas-
sical topic in the interplay between logic, algebra, and jglexity theory.

In this paper, we are interested in the class of inverse nisndn the same way as
groups can be represented by groups of permutations, eeosoids can be represented
by monoids of partial injections, see e.g. [21]. Algoritlenguestions for inverse monoids
have received increasing attention over the past few yaatsinverse monoid theory has
led to applications in combinatorial group theory, see E,6,14,17,24,26,27]. Let us
also refer to the survey [15].

Here, we will deal mainly with inverse monoids that are dafibg the Birget-Rhodes
expansion over a grou@, see [3,4]. This expansion associatesz@n inverse monoid
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IM(G), where the elements are pairs of the fofh g) such thatlJ is a finite subset of
G with 1, g € U. Multiplication is defined by the ruléU, g)(V, h) = (U U gV, gh). The
monoidIM(G) is denoted by>® in [3,4].

In fact, we take a slightly more general starting point wheeeconsider pairsU, g)
such that is a finite subset of a s§twhereG acts on the left. This more general viewpoint
is more flexible and is done to have a basis to cope with the dMiartyleakin expansion
[13] as well, see below. We also refer to [28,9] for more baokigd, which show that these
constructions are not arbitrary, but play an important ioléne theory of inverse monoids.

In Section 6.2 we consider quotient monoids of the féM{G) / P whereG is a finitely
generated virtually-free group (i.€5,has a finitely generated free subgroup of finite index)
andP is afinite set of equations between idempotent elemenritel o). We call P afinite
idempotent presentatioWe prove that the word problem &3 (G)/P can be solved in
linear time on a random access machine (RAM). In the caseenhés a finitely generated
free group, the decidability of the word problemIdi(F')/ P has been shown by Margolis
and Meakin in [14] by a reduction to the monadic second-otideory of the full infinite
binary tree. This theory is decidable by Rabin’s tree thed22], but its complexity is non-
elementary. Hence, the approach from [14] results in a hementary algorithm for the
word problem. An alternative proof using finite automatatfoe decidability of the word
problem has been given in [26], but without any complexityta. Using tree automata,
it has been shown in [11] that the word problenibf(F') /P (with F' a free group, again)
can be solved in polynomial time. In fact, after having ammemd the results in the present
paper the authors of [11] observed that their techniqudd giénear time algorithm in the
case of free groups on a RAM, too.

The algorithm presented here has at least two advantagss:ifis more general, since
we may assume without any difficulty th@tis a virtually-free group, and second, it yields
a direct algorithm for the word problem. This second pointhisprimary focus in this pa-
per. In contrast, in [11] the word problem is solved by tratish via Rabin’s tree theorem
a fixed monadic second-order formula (which only dependserfiked idempotent pre-
sentationP) into a fixed tree automaton. The tree automaton runs inflitieee on a tree
constructed from the input. Hence, the existence of a litiear algorithm is ensured, but
the algorithm is not actually provided. It is hard to imagthat anybody will ever write a
code for an actual implementation which runs through aké¢hgteps. Our algorithm uses
simple data structures over the group, only, and an actydeimentation is fairly easy.

If the idempotent presentatioR is part of the input, then our algorithm has an ex-
ponential running time in the worst-case. This is unavdigtalm [11] it has been shown
for free groupsF' that the uniform word problem for monoids of the foldal(F')/P is
EXPTIME-complete.

For the case tha® is not a virtually-free group, it turns out that the word plesh of
IM(G)/P might be undecidable, even if the word problen(bis easy. We show that the
subgroup membership problem of a subgréfifn an arbitrary groug can be reduced to
aword problem of somBM(G) / P, whereP depends only ofi{. Thus in general, the word
problem ofIM(G)/ P is undecidable for hyperbolic groups, by a result of Ripg.[R8fact,
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we can construct a finitely generated submonoifhé{G)/P where the word problem is
undecidable.

The Birget-Rhodes expansion is quite similar to a constraaif Margolis and Meakin
[13,14]. Margolis and Meakin associate with a grotipand a generating séi for G
a monoid M (G, X). The elements of\/ (G, X) are pairs of the form(U, g), whereU
is a finite and connected subgraph of the Cayley gréH,>) of G with respect to
3., which containsl andg. Multiplication of two such pairs is again defined by the rule
(U,g)(V,h) = (U U gV, gh). Here one has to notice that the gra@pacts freely on the
Cayley graplC(G, ) by left multiplication® This construction can be again generalized
by giving up the restriction to connected subgraphs of thdeyegraphC (G, ). This re-
sults in an inverse monoifG(G, X) (SG for subgraph). It turns out that our linear time
solution of the word problem diM(G)/P can be carried over t8G(G, X)/P. However,
in order to avoid an overload in technical notations we dowatk out the details, see
Section 6.6.

In Section 7 we associate with the monoldI(G)/P a relational structure
R(IM(G)/P), which contains for every rational subsetC IM(G)/P a binary relation,
consisting of all pair§z, y) such thaty can be obtained from by right multiplication with
an element fronL.. We prove that the first-order theory of this structure iSdigale. As for
the word problem, this result generalizes a correspondisglt from [11] for free groups.
We reduce the first-order theory B{IM(G)/P) to the monadic second-order theory of
the Cayley graph ofr with respect to some generating setsafBy a result of Muller and
Schupp [19] this latter theory is decidable wh@&ris virtually-free.

Our motivation for investigating the first-order theoryRfIM(G)/P) is the fact that
various algorithmic questions concerning rational subséIM(G)/ P, like for instance
the emptiness problem for boolean combinations of ratieatd or the submonoid mem-
bership problem, can be reduced to the first-order theofy(&if1(G)/P). Hence, for a
virtually free groupG, these problems are decidable.

2. Inverse Monoids

Let M be a monoid and let/* be the free monoid over the skf.

Theword problenof M is the computational problem, which asks for two given words
u,v € M* whetherr(u) = 7(v), wherer : M* — M is the canonical morphism. Here,
one needs some finite description of elementd/ofin particular,M has to be countable.
In our paper these requirements will be fulfilled.

A monoid M is called aninverse monoidif for every x € M there exists a unique
elementz—! € M such that:

x ezt =271

By ¥ we denote a finite alphabet and we ¥et! = {a~! | a € ¥} be a copy oft. By

aA groupG acts freely on a seX,, if forall x € X andg € G, gz = = impliesg = 1.

3
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I" we denote the disjoint union of andX~!. Define (a=!)~! = q; thus, ~! becomes
an involution on the alphabdt. We extend this involution to words fromi* by setting

(a1---a,)"t= a;1~~~a1_1 foray,...,a, €T.
Consider the free monoid* modulo the following defining equations (also called the
Vagner equations
zz lr =z
zr”lyy™t = gy laa!

The quotient monoid of * modulo the Vagner equations for ally € I'* is an inverse
monoid. Actually, it is thefree inverse monoidenerated by.. This observation involves
a little computation, which can be found e.g. in the textbf2#{ (as well as the following
facts).

Remark 1.

(1) The idempotents of an inverse monoid (i.e., the elemesggisfyinge? = ¢) are
exactly the elements of the formx:—!, and idempotents commute.

(2) For every set;, its monoid of partially defined injections frogto G forms an
inverse monoid; and vice versa:1f is any inverse monoid, then we can realize
M as a submonoid of the monoid of partially defined injectionsfM to M.

Given an inverse monoid/, the quotient of\/ modulo the equationsz—' = 1 is a
group. Itis themaximal group imagef M, since every homomorphism frofd to a group
factorizes through this quotient. An inverse monoid isezll-unitary, if only idempotents
are mapped to the identity of the maximal group image.

As an example consider the following construction. Gebe group with a left-action
on a (non-empty) sef, i.e., there is a mapping: G x G — G with 1 -z = z and
g-(h-z)=gh-xforg,h € Gandz € G. Forg -  we will also writegx. Forg € G and
afinite set/ C G we can define a partial injectiopy ;) as follows:

Lug) tG\U =G, z+— g tx.
Thus, this injection is defined almost everywhere. The setlgfartial injections of type
L(v,¢) forms an inverse monoid, because it is a submonoid in the idafpartially defined
injections fromg to G. A direct verification shows that multiplication is defineg b

L(U,g) © L(V,h) = LUUgV,gh)- )

Note that.(y 4y = ¢(v,5) does notimplyy = h in general. However, in all cases of interest
in this paper(~ is an infinite group acting freely on the sgtThen,.y 4y = ¢(v,5) implies

g = h and we obtain arF-unitary monoid. For the interested reader we state that the
monoid of these ;4 is E-unitary if and only if forallg € Gthese{z € G | gz # x }

is either empty or infinite. In particular, § is finite, butG acts non-trivially, then the the
monoid is notE-unitary. Note that for a finite s&f the empty function becomes part of
this monoid, but this function behaves asexq so the maximal group image is trivial.

4
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3. The inverse monoidIM(G)

The starting point for our construction is guided by the eglnabove G is a group with
a left-action on a non-empty s6t moreover we fix an element € G. Henceforthg is
viewed as a pointed set. By slight abuse of language we watea shorthand fayx € G.
Thus, depending on the conteytdenotes either an element in the grasor in the set
G. But there will be no risk of confusion. In our applicatiogiss just the vertex set of the
Cayley graph of5 and therng = G.

We give a monoid structure to the set of pait§ g), whereU is a finite subset of
andg € G. The multiplication is defined in analogy to equation (2):

U, 9)(V,h) = (U U gV, gh).

Note that in this settingU, g) = (V, h) implies both,U = V andg = h. Associativity
of this operation and the Vagner equations can be verifieity easdefining (U, g) ! =
(97U, g1). The idempotents in this monoid are of the foftn 1). Thus, we have defined
an inverse monoid where its maximal group imagé and the monoid is in fadb-unitary,
because only idempotents become the identity in the maxdnoaip image.

We use the point € G for thelocalizationat the idempotent{x}, 1). This means that
we are considering the subsemigroup of elements of the form

({+h DU, 9) ({1 1) = (UU{x9%},9).
The localization has the effect that we always have« € U for all elementyU, g) in
the localization. According to our convention (to read) € U asx,gx € U) we can
also simply writel, g € U. The localization yields an inverse monoid which we dengte b
IM(G). Note however that the monoid depends also on the elerment

We repeat: elements &M (G) are pairs(U, g), whereU C G is finite andl, g € U.
The neutral elementig 1}, 1). The inverse ofU, g) is (¢ 'U, g~1), and the idempotents
are the pairgU, 1) with 1 € U.

If G is infinite and ifG acts freely org, then(U, g) can be identified with the partial
injection.(y, 4y (Wwherel, g € U) as defined above. In particular, the inverse mondidg)
has a natural representation as monoid of partially definadtions ovelG, and not only
over the seiM(G) itself.

For the interested reader we add the following remark:

Remark 2. The inverse monoidM(G) is E-unitary. Actually, it is anF-inverse monoid,
which is a stronger assertion, see e.g. [16]: [F'iinverse, because evet¥/, g) € IM(G)
admits a canonical decompositiéii, g) = ({1, g}, 9)(¢9~'U, 1) where(g—'U, 1) is idem-
potentand{1, g}, g) is thegreatestelement having the same image in the maximal group
image aqU, g). Itis the greatest element with respect to the natural ovegch is defined

for inverse monoids by letting < ¢, if s = te for some idempotert.

Assume that the grou@ is generated b¥. Theng becomes the vertex set of a directed
graph with a distinguished vertexand labeled directed edgés, a, ax) with z € G and
a € X. Thus, we can speak of connected subsets. @y IM (G, ¥) we mean the inverse
submonoid ofIM(G) generated by the element$l,a},a) with a € X. It is also the

5



June 6, 2007 15:52 WSPC/INSTRUCTION FILE ijac final

submonoid ofiM(G) generated by the sét({1,a},a) | a €T }, wherel' = ¥ U 71,
Note that(U, g) € IM(G, X) implies thatU is connected.

The above construction is very much in the spirit of a cortsion given by Birget and
Rhodes [3,4]. We therefore cdlM(G) the Birget-Rhodes expansiaf G. In fact, Birget
and Rhodes considér= G with its natural left-action and they denote the monidif{ G)
by GR.Fora given generating sEtof (G, Birget and Rhodes also consider the submonoid
IM(G, ¥) (denoted byGZ% in [4] and called the cut-down af® to X) generated by the
pairs({1,a},a) witha € T = LU X~L. If S is finite, thenIM(G, X) is finitely generated.
Clearly, for generating sels;, 3, of G we have

IM(G, %) € IM(G, £, US,) C IM(G).

If Fis the free group generated By thenIM(F, X) is the free inverse monoid generated
by ¥, see [4,20].

The geometrical interpretation O¥ (G, ) refers to the set of all paird/, g), where
1,9 € U andU is a finite and connected subset of fBayley graphC(G, ) of G with
respect to the set, which is the directed graph

C(G,%)=(G,{(9,;h) eGxG | g'hex }).

Note that an edggy, i) can be labeled by = g='h € ¥ and it is no harm to imagine that
for each edgég, h) we have an implicit edgéh, ¢) labeled bya=! = h=1g € ¥ 71,

Whether or not the word problem @f1(G) is decidable depends ghandG. Itis clear
however that the word problem @F is reducible to the word problem aM(G); more
precisely, it is reducible to the word problemIdfi(G, X). Indeed, ley € G be given by a
worday - - - a, With a; € T. Then we havg = 1in G if and only if (U, ¢)(U, g) = (U, g),
whereU = {a;---a; | 0 <i <n }.Forthe other way round, & has a decidable word
problem and if the presentation of the geas well as the group action G x G — G is
effective, then the word problem &8 (G) is decidable, too.

4. Finite idempotent presentations

Anidempotent presentatidd overIM(G) is given by a set of pair&, ') wheree = (E, 1)
ande’ = (E’,1) are idempotents ofM(G). This defines a quotient monoidI(G)/ P,
wheree = ¢’ are the defining relations ov&I(G) for all (¢, e’) € P. The maximal group
image ofIM(G)/ P is still the groupG. Thus, for a generating s& of G (and the choice
of x € G) we obtain a sequence of canonical homomorphisms:

S (SUDTHF S IM(G,B) — IM(G) — IM(G)/P — G.

4.1. Confluent Rewriting over finite subsets

In inverse monoids an equatien= ¢’ between idempotents is equivalent to the two equa-
tionse = ee’ ande’ = ee’. Since idempotents commute in an inverse monaitlis idem-
potent, too. LetP C IM(G) x IM(G), wheree ande’ are idempotents for ale, e’) € P.
Thus, if P is a set of defining equations between idempotents we maynasthat all
elements ofP have the forn{e, ee’).
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In our context this means th@tE, 1), (E’,1)) € PimpliesE C E’. Instead of writing
((E,1),(E',1)) € P we simply write(E, E’) € P henceforth, and we assume that
ECFE.

The assumptioy C E’ leads to a natural rewrite relati@%:) over finite subsets df:
ForU,U’ C G finite we define/ = U’, if there is somegy € G and(E, E’) € P with

gE C UandU’ = U U gE'. By %» we denote as usual the reflexive, symmetric, and
transitive closure of the one-step rewrite relatic?. We have the following:

Lemma 3. LetU, U’ C G,andf,f' € Gwithl,f € U, 1,f € U’. Let P be an
idempotent presentation ovEY¥[(G). Then the following two assertions are equivalent:

@ (U, f) = U, f)inIM(G)/P.
(b) U%) Uandf = f'.

Proof. For (a) = (b) assume thatU, f) = (X,g)(E,1)(Y,h) and (U', ") =
(X,9)(E',1)(Y,h) for some(E,E’") € P.Clearly, f = gh = f’. Moreover,U =
XUgFUgY andU’ = X UgE’ U gY. In particular,gEl C U andU’ = U U gF'.
HenceU = U'.

For (b) = (a) assume that/ = U'. ThengE C U andU’ = U U gFE’ for some
g € Gand(E,E’") € P. Sincel € E impliesg € U we obtain

U, f) = (U, 9)(E,)(g" U, g7 f),
and
U, )= (U, g)(E", 1)(g~'U, g7 f).
Hence(U, f) = (U’ f) in IM(G)/ P. a
It turns out that the system? is strongly confluent. This means that whenever
U «—=U=U",
P P
then there exists somié C G with
U =V<=U".
P P

Indeed it suffices to také€ = U’ U U" and the result is immediate. Now strong confluence
implies confluence [1], hendé % U’ is equivalent to the existence of soWiesuch that

both U :;> V andU’ :;> v, where:;> denotes the reflexive and transitive closure of

=
P

Lemma4. LetU,U’ C G. ThenU %» U’ is equivalent to the following two conditions:

(a) HV:U%VandU’ cV.



June 6, 2007 15:52 WSPC/INSTRUCTION FILE ijac final

*

(b) IV U’ = V'andU C V',

Proof. If U % U’, then (a) and (b) hold due to confluence of the system
Conversely, if (a) and (b) hold with andV’, then we havé/ :;> 1% :;> VUV’ due

to U’ C V. By symmetry we havé/’ :;> 1’4 :1} V UV’ and hencé/ % U’ i

Remark 5. Due to Lemmas 3 and 4 it is enough to focus on the following lembin
order to solve the word problem féM(G)/P: Let P be a finite list of pair§ E, E’) with
1€ ECE C GandE, E are finite. Decide for two given finite subséfsU’ C G
whether there exists somé C G such thal/ :;> VandU' C V.

If P C IM(G,X) x IM(G,X), then we might consider the quotient monoid
IM(G, ¥)/P, too. However, the inclusioiM(G,>) C IM(G) defines a canonical em-
beddingIM(G,X)/P — IM(G)/P: Indeed, let(U,g), (U’,g9) € IM(G,X) such that
(U,g) = (U',g) in IM(G)/P. Thus, there exists a finit¢’ C G with U :;> V and

*

U’ = V. SinceU, U’ and all sets occurring i are connected, it follows that every sub-

set, which appears in the derivatibh=;> Vorl’ =;> V has to be connected, too. This

implies (U, g) = (U’, g) in IM(G, £)/P. It follows that the word problem dM(G, ¥)/P
can be directly reduced to the word probleni¥®f(G) /P and issues like connectedness do
not play a central role anymore. Therefore we focus our titaronIM(G)/ P, rather than
IM(G, %)/ P.

Moreover, basically we are interestedgn= G, and forG = G the word problem
of IM(G)/P can be stated as a word problemIdi(G,¥)/P for someX as follows:
Let (U, g),(V,h) € IM(G) be given. Choose a generating &&for G which contains
U,V,and allE U E' with ((E,1),(E’,1)) € P. (If G is finitely generated and is
finite, thenX can be chosen to be finite.) Thdi,andV are connected i8(G, Y), i.e.,
(U,g),(V,h) € IM(G,X). Thus,(U,g) = (V,h) in IM(G)/P if and only if (U,g) =
(V,h) inIM(G,X)/P.

Let us finish this section with another concept which is a maoi for the rest of
the paper: For a subs&t’ of the groupG define the one-step rewrite reIaticlaDﬁv?/ with

U = U’ for U,U’ C G ifthere is somg € W and(FE, E’) € P such thayF g U and

U =UUgE'. Note thatP:V>V is a subset of?» More precisely, we have:

= C = ifWwcWwW, and

PW PwW’
PG P

The relation—> is still strongly confluent, but if/” and P are finite, then in additior=-

) P,

is terminating in the sense that every chéﬁr;%v U, ﬁv Us ﬁv --- becomes stationary.

8
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This is clear becausé C U; C U, for all i. Hence every; in this chain is a subset of
the finite set

UU U gE'.
geW,(E,E"eP

Therefore, for finite set§/ and 1V there is a unique finite subsét C G such that 0]
U == U and (ii)U = U’ impliesU’ = U.
PW PW PW

max

We also writel/ = U to denote the fact thdf I%V U’ impliesU’ = U. The subset
U is a normal form with respect to the rewrite relati}g%, i.e., with respect to inclusion

U is the largest sdt”’ such that/ ﬁ/} U'.

5. Undecidability results

We cannot expect that the word problemIdi(G)/P is decidable, in general. In fact,
we can reduce theubmonoid membership problesha groupG to the word problem of
IM(G)/ P for some idempotent presentatidhquite easily. Usually, theubgroup mem-
bership problemis of more interest than the submonoid membership problem,vee
obtain an even better result, because we can refld¢ér) /P by IM(G, X)/P and the
latter monoid is finitely generated (which is the naturatisgtwhen dealing with word
problems). We will be more precise in a moment. Let us stresgelier that there are
finitely generated groups, where the subgroup membersbipigmm is decidable, but the
submonoid membership problem is not, [12].

We start with a finitely generated grodp and a finite se® C G. By ©* we mean
the submonoid irG' generated by; and by(0) = (6 U ©~1)* we mean the subgroup
generated byp.

The submonoid (resp. subgroup) membership problenBfasks whether on input
g € G we haveg € ©* (resp.g € (©)). More natural uniform variants of these problems
are obtained by putting the generating €einto the input. However, with respect to un-
decidability we get a stronger result if we consider the naiferm setting as above. Note
that the word problem off is nothing but the subgroup membership problemdos (.

We choose a finite sét such tha® C ¥ and such thakl generates:. Define the finite
idempotent presentatiafi(©) by:

PO)={{1},{Lt}) [tcO}.

Recall that this means that we add defining equations of e (¢1},1) = ({1,¢},1)
forallt € ©.

For the subgroup membership problem we consider the fingelyerated monoid
IM(G, X)/P(©UO~1), but for submonoid membership problem we are forced to work i
IM(G)/P(©) which is not finitely generated, in general.

Theorem 6. Let©® andX as above.
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1.) If the finitely generated inverse mondM (G, ¥)/P(© U ©~1) has a decidable word
problem, then we can decide on ingut a; - - - a,, € G witha; € X for1 <i<m
whether or noyy € (0).

2.) Ifthe inverse monoitM(G)/P(©) has a decidable word problem, then we can decide
oninputg = ay - - - a,, € G witha; € X for 1 <i < m whether or noyy € ©*. More
precisely, we have:

g €0 < ({1,g},1) = 1inIM(G)/P(O).

Proof. Letg € G. By the choice ofP(©) and the techniques from Section 6.4 the follow-
ing conditions are equivalent:

o 1=({1,4},1)inIM(G)/P(O).
e There existd/ C G with g € U and{1} 1%) U.

o gc O
This proves the second item. ReplaciR¢O) by P(© U ©~1) we also get:
1=({1,¢9},1)InIM(G)/P(OUO™ ) «— g€ (0).

But the problem is that{1, g},1) ¢ IM(G, X), in general. We always hav¢1,g},1) €
IM(G, X U{g}), but this is not what we wish. So, we need a more subtle argtimender
to prove the first item.

Assume thatIM(G,¥)/P(© U ©71) has a decidable word problem. Then, also
G has a decidable word problem (fgr = a;---a,, € G with a; € T we have
g = 1lin G if and only if (U,g)(U,g) = (U,g) in IM(G,%)/P(© U ©~1), where
U = {a1---a; | 0<i<m}). By induction on the lengthn of the worda; - - - a.,
we present an algorithm, which cheaks: - - a,, = g € (0). Form = 0 we clearly have
1 =g € (©). Nowassume thak > 1. We letV = {a;---a; € G | 0 <i<m }. Note
thatV andV U {¢} are connected in the Cayley graph®@fwith respect to the generating
setX. Sincem > 1 we havel € V. Hence, we havéV,1), (V U {g},1) € IM(G, X). If
(V,1) # (VU{g},1)inIM(G,%)/P(© U©~1) (which can be checked by assumption),
theng ¢ (©). On the other hand, if/;1) = (VU{g},1) inIM(G, X)/P(OUO™1), then

by definition ofP(®:®> : there must exisk € V with g € h(0). SinceV is finite and the
ue-1

word problem ofG is decidable, we can find such areffectively. Sincg©) is a subgroup
of G, we havey € (©) ifand only if » € (©). But,h = ay - - - a; for some0 < i < m and
hence, by induction, we can chekke (O). |

By a results of Rips [23], there exists a hyperbolic grawpgogether with a finitely
generated subgrouf of G such that the membership problem f@rin G is undecid-
able. Using a refinement of Rips construction by Wise [29] we choose the grou@
hyperbolic, torsion-free, and residually-finite. Thugdther with Theorem 6, we obtain:

Corollary 7. There exists a torsion-free and residually-finite hypeidbgtoup G, a finite
set¥ C @G, and a finite idempotent presentatidh over IM(G, ) such that the word
problem of the finitely presented mondM (G, )/ P is undecidable.

10
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Even if the subgroup membership problem is decidablefoas it is the case for the
Abelian groupZ x Z, the word problem ofM(G)/P might be undecidable. This follows
from a result of [17].

Proposition 8 ([17,7]). There exists a finite idempotent presentat®rover IM(Z x Z)
such thaflM(Z x Z)/P has an undecidable word problem.

6. The word problem of IM(G) /P for virtually free groups G
6.1. Virtually Free Groups

Due to the undecidability results in Section 5 we cannot Hopéo go far beyond free
groups in order to generalize the results from [11,14,268F best we are able to do in
the present paper are virtually free groups. Thereforelferést of this paper, we assume
that G is a finitely generated virtually free group. This me&nhsas a finitely generated
non-trivial free subgroug” of finite index. We fix a finite subséil of G such thatl € H
andG can be written as the disjoint union

G=J Fh 9)

heH

We let X be a minimal set of generators féf and letl’ = XU {a™! | a € £} asin
Section 2. A wordu € T'* is calledreduced if it contains no factor of the fornaa =1
with a € T'. Clearly, the set of reduced words is in one-to-one cormedpnce withF'. It
follows that every element af can uniquely be written in the forih, whereu € T* is
reduced and, € H. Itis easy to see, that this normal form can be computed &alitime.
More precisely, the normal form can be computed with the bép finite, confluent, and
terminating string rewriting system over the alphabet I' U H, see also [25]:

aa”! —1 forael,
ha — u(h,a)g(h,a) forhe H,a €T,
Wi — u(h, h)g(h, ') for b, € H.

Here u(h,a),u(h,h’) € T* and g(h,a),g(h,h’) € H are chosen such thdta =
u(h, a)g(h,a) andhh’ = u(h,h')g(h, ') hold in the group . Moreover, eithell € H is
identified with the empty word (by some additional rule), c& eeepl € H as a distin-
guished letter ofA and we work with non-empty words ovér only. The latter viewpoint
is more suitable for our purposes.

Working form left to right on an input string ovek, the above string rewriting sys-
tem basically describes the work of a deterministic pushrdautomaton and some easy
reflection yields the well-known fact that the word problemn the virtually free grougg>
can be solved in linear time [18,25].

If the groupG is not part of the input, then the sizesAfand the rewrite system above
are viewed as constants. In particulawie A* is a word of lengtm, then its normal form
uh € T'*H has length at most- n wherec is a fixed constant depending Ghonly.

11
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6.2. Solving the word problem ofM(G) /P

We also fix the seg to beG itself, hencej = G with the left-regular action o7 on G.
This is not the most general framework, see Section 6.6,tkawoids an overloading of
notations.

In order to have a concise representation of an elerfiénj) € IM(G) we use the
following convention. The paifU, g) is given by an alternating sequence

(al,bl, .. .,an,bn),

withn > 1,a; € A, b; € {0,1} for1 < i < n,anda; = 1, b, = b,, = 1. We read a word
of A* as an element aff and then we defing =a; - - - a,, and

U={a1---a;| 1<i<n, bj=1}

Recall that in our setting/ is not necessarily connected. This is why we use thetits
Following our convention, the pai{1},1) becomes the sequen¢g, 1) where the left
component is thé € H as a letter ofA and the right component is the hite {0, 1} used
as a flag to indicate thdte H is in the sequence.

For a concise representation of a r(le, E’) € P with E C E’ we use an alternating
sequenc€as,by,...,an,b,) Withn > 1,a; € A, b; € {0,1,2} for1 < i < n, and
a1 = 1, by = 2. Then we define:

E:{CL1(L1| bz:L ISZSTL},
E’:{a1-~-ai| biZL 1§l§n}

From our concise representation of the pélrs, g1), . .., (Un, gm), it is easy to compute
in linear time a pair(U, ¢g) such thatU, g) = (U1,91) - , (Unm, gm) In IM(G); we just
have to concatenate the alternating sequences for the(pairg, ), . .., (Um, gm). Hence,
by Remark 5 the word problem &¥(G) /P can be reduced in linear time to the following
problem:
INPUT: Finite subset#/, U’ C G, represented by alternating sequences.
QUESTION: Is therd” C G such that/ :;> VandU’ C V?

We do not attack this problem directly, but we perform someppscessing on the
systemP first.

6.3. Preprocessing

The preprocessing part transforms the input systemmto another much larger system
P, which is then used to solve the word problemIbf(G)/P. This leads to an optimal
algorithm as we will discuss later.

The underlying undirected graph of the Cayley grggh, X) of the free groupf’ is a
tree. The nodes can be represented by reduced wordsIfrol subsetS C F' is called
suffix-closed if for all reduced wordsv € S we havev € S, too.

Let P be a finite list of pair E, E’) as above. We insist C FE’, but the assumption
1 € F is not needed anymore. In a first step of our preprocessinggplia compute a finite

12
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suffix-closed subsef C F such that
J HE' csH,
(E,E"eP

whereH is from (9). It is clear that the computation of a suitable Set F' is possible
in polynomial time with respect to the size &f. The important point is that whenever
x € gE' for someg € G and(E,E’) € P, thenz € FSH: Indeed, lety = fh with

f € Fandh € H. Thenz € fHE' C fSH. As we will see this makes it possible to
replace the relat|0ﬁ:> by some relation—> . Thus, most of our work can be performed

over a tree-like structure the Cayley grath)f
We first define a systerR, as follows:

Py={(B,B')| BC B'C SH, B=>B'}.

Lemma 9. LetU,U’ C G. Then we hav& = U’ if and only ifU = U'.
0,

Proof. By definition, if U :> U’ then there is som¢ € F and(B,B’) € P, with
fBCUandU' =UU fB’ On the other hand, sinde = B’ there is somg € G and
(E,E’) € Pwith gF C BandB’ = BU gFE’. Thus, we gey”gE C U becausg¢B C U
andgE C B, and we gel// = U U fgE’ becausd/' = U U fB’, B = BUgE' and
fB C U.HenceU = U'.

For the other direction, l&t = U’. Forsomef € F,h € H,and(E,E’) € P we

obtainfhE C U andU’ = U U fhE’. We haveh E C hE' C SH by definition ofS, and
hE = hE'.Hence(hE, hE') € P, and thereforé/ = U'. O
0

In the following letl’; = T" U {1}. Thus,I'; is the ball of radiud in the Cayley graph
of F'. Sincel'; is finite (in fact its size is a constant,d is not part of the input) we have
the notion of a normal form from the end of Section 4.1.1&t0 andPi already defined
as a system of pais3, B') with B C B’ C SH. Recall thatB 22 B definesB in terms

of B with respect taP;. Let us defineP; ., as follows:

Py ={(B,B')| BC SH, B = BNSH, B 2% B}

’L)Fl

PuFl

Observe that there are exacgy?’!! rules in P, ,. The computation o, ; (and its rep-
resentation) is expensive, but still it can be performedxipoaential time in the size of
the original systemP. Note also that if( B, B’) € P; then there is exactly one subset
B"” C SH such thatB’ C B” and(B, B"”) € P;;. This follows becausé € T';.

Lemma 10. Leti > 0 andU, U’ C G be finite subsets @¥. Then the following statements
are equivalent:

o IV : U%VandU’gV.
e JV/': U= V'andU’' C V'.
P F

13
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Proof. The equivalence holds fér= 0 by Lemma 9.
Thus, leti > 0 and assume first that P%; V for someU’ C V. We have to show that

there is somé’’ with U P:*>F V' andU’ C V'. However, this is trivial, because for each
1+1

(B, B’) € P, there is soméB, B"”) € P,; with B’ C B".

It remains to show the other direction. Assume tUatP:*>F V'andU' C V'. It
i+1,

is enough to show that there 1§ with V/ C V andU == V. Let for this purpose

P={(B,B)|BC SH,B ;‘:ar’ﬁ B}. Clearly for eac{ B, B') € P, there is now some
7yl 1
(B, B) € Pwith B' C B. Hence, for some subsgt’ we havell = V" andV’ C V"'
B.F
It is therefore enough to find someéwith U P:*; V andV” C V. But this is again trivial

becaus¢B, B) € P implies B PéF B. -

Recall that(B, B’) € P; implies the existence of some uniquB, B”) € P;;; with
B C B’ C B” C SH. There are at most exponentially many rules and each rule can
change at most polynomially often when increasing the ind&kus, after an exponential
time computation we must find an indé% 0 such thatP; = P,; ;. In order to be precise
we havei < [SH|2!SH1,

We stop the preprocessing phase here and défine= P;. From our construction and
Lemma 10, we immediately obtain:

Lemma 11. The following assertions hold:

e Forall (B, B') € P, we haveB’' = BN SH, whereB Pm:‘? B.
¢ JV: U ? VandU’ C Vifandonly if3V’: U P:> V' andU’ C V.
This finishes the preprocessing phase. By this phase we farilk the following
problem:
INPUT: Finite subset§/, U’ C G.

QUESTION: Is therd/ such thal/ P:*; VandU’ C V?

6.4. Solving the word problem

The basic idea is to replace the relatief=> in the problem above by some%d/ where

00y 00

W C Fis finite. We fix for this section the following notation: Lét and P., as above
and consider two finite subseis U’ C G. There is a finite suffix-closed st C F such
that(B, B’) € P, impliesB C B’ C SH. We letW C F' be some finite subtree of the
Cayley graph off" with

{(1lUUUU’' C WSH. (15)
We letT be defined by pm__a%[/ U.

14
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We will prove the following theorem which reduces the wordigem ofIM(G)/P to
the problem of computing/.

Theorem 12. The following statements are equivalent:
(@ 3IV:U :P> VandU’ CV,
(b) U' C U.

The direction from (b) to (a) has been seen in Lemma 10. Thiewlif part is to show
the direction from (a) to (b). This will cover the rest of trecton.
The following notation is crucial: For a subsEtC G and an elemenf € F' define
the derivation
Vof=V'

byV' =V U fB’,where(B,B’') € P,,andfB=Vn fSH.
Note thatl/ o f is defined for alllV C G andf € F since all subsets &f H appear as a
left-hand side of some rule iR,,. Clearly,Vo f = V/ impliesV/ = V', andV = 4

impliesV’ C V o f for somef € F.
By Lemma 11, there is somié with U :;> V andU’ C V if and only if there is a

sequencéfi, ..., ) with f; € F for 1 < i < m such that
U/ gfjoflo'”ofmn

SinceU’ C W SH by (15) it is therefore enough to prove the following lemmaider to
show Theorem 12:

Lemma 13. Let fy,..., f,, € F. Then we have
(/joflo"'ofmmWSHg [/j
First we restrict our attention to some special type of @ddions which we call tree-like.

Definition 14. A derivationU o fio---o f,, is calledtree-like if the following conditions
hold:

1) W={f1,..., fn} for somen < m.

@ figifr,. ficatforl <i<m.
(3) Foralll < ¢ <mthereissomg € {1,...,i—1} and some: € I' with f;a = f;

in F.
The conditions above mean thgf;, ..., f;} forms a subtree of sizéin the Cayley
graph of I for all + and which includesV for n < i < m. Moreover, we insist that
m > |[W| =n.

The next statement is the key lemma. It says that in a treedigkivation, if a right-hand
side of a rule appears in a subset, then this subset remaargint. It cannot become larger
by further applications of rules. More formally:

15
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Lemma 15. LetTU o fi1o---0 f,, be atree-like derivation. For < ¢ < m define a subset
B(i) of SH by

[iB(i)=Uo fyo- o fiN f;SH.
ThenB(:) is a right-hand side of a rule i, and we have:
fiB(i)=Uo fio- o fnn f;SH.
Proof. The statement is trivial fom = n becausd/ o fioiofn = U, due toW =

{f1,..., fn} and the facl/ Pg’ﬁ U. Moreover, it is easy to see th&(i) is a right-hand

side of a rule inP,, for all 5.
Now, letm >nandV =U o fi o--- o f,,_1. Note that

velrsH (21)
<m
by the choice o#V in (15). We have to show that

forall 1 < i < m. By definition of f; B(¢) this holds fori = m. By induction we may
assume thaf; B(i) =V N f;SH forall 1 <i < m.

Choosej € {1,...,m — 1} anda € T such thatfja = f,, in F. Assume that
fiSHN f,,SH # () for somel < i < m. Then for some:,y € S we have:

fix = f7ny'

This is true becaudg),, . ;; F'h is a disjoint union. The situation looks as follows:

{fla"'vfm—l}

a

fm

Since the Cayley graph df is a tree, the geodesic froifj to f,,, passes througlfi;. This
meansf;x = fn,y = f;z, wherez is either a suffix ofc or a suffix ofy:

fix = fmy = fjz

fi fj .fm

SinceS is suffix-closed we deduce thate S and hencef;SHN f,,SH C f;SH. By (21)
it follows that

fmSHOV C fnSHO | ) fiSH C f;SH.

<m

16



June 6, 2007 15:52 WSPC/INSTRUCTION FILE ijac final

Hence,f,,SHNV C f;SHNV = f;B(j) C V. Therefore we have
Vo fm=V U(fiB(j)) o fm (24)

Now, (f;B(j)) © fm = fj(B(j) o a), becausef,,, = f;a with a € T'. Moreover,B(j) is
the right-hand side of some rule ip,,. Thus, by Lemma 11:

B(j)oan SH = B(j).
It follows
(fiB(j)) o fm N [;5H = [;(B(j) eanNSH) = f;B(j)
and therefore
VofmnfiSH = (VU(f;B(j))o fm)N f;SH  (by (24))
= (VN f;SH)U((f;B(j)) o fm N fjSH)
= (VN f;SH)U f;B(j)
=VnfSH
= f;B(j) C V.

We obtain forl < i < m:

VofuNfiSH=VUWVof,NfwSH))N fi;SH
=(VnfiSH)YUWVo fi,NfiSHN fnSH)
C fiB(i)U(Vo fN fiSHN f;SH)
C fiB(i)U(£SHAV)
= fiB(i).
Sincef;B(i) C Vo f,, N f;SH, itfollows thatf; B(i) = V o f,, N f;SH. O

The following lemma shows that we can restrict to tree-likeidhtions.

Lemma 16. Letg, ..., gr € F. Then there is a tree-like derivatidn o fio-+-o fm such
that:

(/joglo...ogkg(/joflo...ofm.

Proof. Clearly for everyg € F' we have
Uogioogn CUogogio-og.

Hence we may replacly, . . ., gr } by some larger set. We add many ngwn the left of
the sequence, . .., g;. This enlarges the valug but then we may assume that for some
tree-like derivationi/ o f; o -+ o f,, with k > m we have{gi,...,9x} = {f1,-- -+ fm}
andinfactg; = f; for1 <i < m.

17



June 6, 2007 15:52 WSPC/INSTRUCTION FILE ijac final

We showU o gro---ogg C Uo fio---o fy, byinduction overk. The casé& = m is
clear. Now assume that> m. By induction, we havéfoglo ogp_1 C Uoflo 0 frm.
Hence it is enough to show that

Uofio---ofmogpCUofro-0fm.

Howeverg, = f; for somel <i < m.

LetV = ﬁofl o--+0o f,. WeshowV o f; = Vforall1 <i < m.AsinLemma 15
let f;B(i) = Uo fio---o fiN f;SH. Then Lemma 15 says th&tn f;SH = f;B(i).
SinceB(i) is a right-hand side aP.,, we obtain

Vofi=VU(fiB@i)o fi)=V Uf;B(@l)=V. m|

We are now able to prove Lemma 13:

Proof of Lemma 13By Lemma 16 we may assume tHato fro0---0 f is tree-like. In
particular,n < m andW = {fi,..., f,}. Every element of¥/ SH is contained in some
fiSH for1 < i <n.ByLemma 15 we have

UofroofmNfiSH=Uofio--ofiN f,SH.
However,U o f; o --- o f; = U for everyi < n. Therefore

Uofroofm NWSHCUo fro-ofun(|JfiSH)

i=1

I

«
Il
-

(Uoflo"'ofmmfiSH)

3

(Uoflo <o fiN f;SH)

o
Il
_

C:

(U N f;SH) C

o
Il
s

This proves Lemma 13 and hence Theorem 12.

6.5. A Linear Time Computation

The setting is as follows. The virtually free grotpis fixed as well as the systef. In a
preprocessing phase we have computed the syBtgrand a suffix-closed subsstC F
such thatB C B’ C SH, forall (B, B’) € Py, in constant time.

The input to our problem are two finite subsétsy’ C G. We assume that they are
given as alternating sequences as described in Sectio6.iork on a RAM, therefore
we may use pointers to realize subtrees of the Cayley graph®inceS andH are viewed
as constants we can realize a subfiiéén linear time in the input size di’ andU’ such
that W satisfies

{1}uUuU C WSH.
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Our task is now to computé Pg’év U in linear time. The final test whethéF C U can

be performed in linear time by readidg once more.
In order to computé/ P%j/ U we build a listL = (fy, ..., f,) which initially con-

tains all elements ofl/.

As long asL is not empty we perform the following steps: Lebe the first element of
L. Removef from L. Compute a seB such thatf B = fSHNU in constant time. By table
lookup in P, find asetB’ suchtha{ B, B’) € P,.If B # B, thenreplac& byUU f B’
in constant time, and add all elements W to the listL, wheregSH N fB’ # () and
g # f. This amounts to calculate the intersectidim fB’H~'S~! and can be performed
in constant time. (IfB = B’ then we do nothing.)

Once the listL is empty we claim that/ = U. Before we prove that claim let us
analyze the complexity. The inner parts of the loop can bépeed in constant time.
Thus, we have to give an upper bound on the number of times werdar the loop. After
each iteration of the loop, the ligtis shorter or we have added less thaiements where
c = |S|?|H|? is a constant. Let us associate a weigho the pair(U, L) by

w=cWSH\U|+|L|.

Here|L| denotes the length of the ligt The weight is always a non-negative integer and
in the beginning it is at mos + 1)|W SH|. This is linear in the input size df andU’.
We show that the weight decreases in each round.

Inside the loop there are two cases: eitlie= B’ or B # B’. If B = B’ thenU
is not changed butZ.| decreases by. If B # B’, thenU becomes larger. We still have
U C WSH and hence the size §f".SH \ U| decreases by at leaktThis subtracts from
the weight at least units, but we add td. less tharc elements. Thus the weight decreases
totally by at least.. Thus, after at mogtc + 1)|W .S H| rounds the lisf. must be empty.

It remains to show, that we have calculatédFor this we show the following invariant:
After each round of the loop the ligt contains all elementg € W such thatly/ o g # U.
This is certainly true in the beginning because at this titneontains all elements di/.
Consider the situation wheris the first element of and f has just been removed. Inside
the loop we have replacdd by U o f and sincedJ o f o f = U o f we do not need in
L anymore in order to keep the invariant for this round. Helficeel are in the situation
U = Uo f then the invariant is not changed. Thus we may assumé/thas been replaced
by U U fB’ with B # B'.

Now, if

(UUfB)og#UUfB,

for someg € W theng # f and eithelJ o g # U or gSH N fB’ # (. In the first case
g is still in the list and in the second cagéas added to the lisf.. Thus, in both caseg

is in the list L after the inner part of the loop has been finished. Once thé lis empty
the invariant says thdt is irreducible with respect to the rewriting syst%m:ﬁ/ . Hence

U="0U.
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This shows, that the sét can be calculated in linear time. Summarizing we have shown
the following result:

Theorem 17. Let G be a finitely generated virtually-free group and fetbe a finite idem-
potent presentation ové@M(G). Then the word problem of the inverse monBidi(G)/ P
can be solved in linear time on a RAM.

The linear time complexity above is in sharp contrast to thiéoun time complexity,
where the grougs and the systen¥ become part of the input.

Theorem 18. The following problem is EXPTIME-complete:

INPUT: A finitely generated virtually free group, given say by a finite confluent string
rewriting system as in Section 6.1, a finite idempotent preegion P overIM(G), elements
9,9 € G, and finite seté/, U’ C G with1,g € U and1,¢’ € U’

QUESTION: Do we havél, g) = (U’, ¢') in IM(G)/P?

Proof. In the uniform setting the algorithm presented here caht&iperformed in expo-
nential time. The problem is hard for exponential time duflig. |

6.6. The word problem oiM(G)/ P for the Margolis-Meakin expansion

In Section 6.3-6.5 we have restricted our attentiog te G. However, we can generalize
the results at least to a situation where the gr@upcts freely on the s&j. This means
gxr = x impliesg = 1 for g € G andz € G. In this case, every orbit @ is a copy ofG.
Thus, the se§ can be written as a disjoint union of copies(@f

We fix a setB C G of minimal cardinality such that

U Fcas
(E,E")eP
SinceB has minimal cardinalityyb = ¢'t’ for g, ¢’ € G, b,b' € Bimpliesb = V' andg =
g'. Note that we may assume thaiis a finite set included in the unidd ; /) cp £ In
particular, the sizé is smaller than the input size &f. The next step in the preprocessing
phase computes a finite suffix-closed suliset F' such that

|J HE' csHB.
(E,E"EP
Basically, all steps go through now, if we replace all ocenoes ofSH by SH, whereH
denotes the sdif 5. In particular Assertion (6.4) remains valid because thmaof G on
g is free. Details are left to the interested reader. Thus,amesolve the word problem of
IM(G)/ P, iffirst, G acts freely org, and second, if there is an effective decomposition of
G as a disjoint union of copies @f.

In particular, we can cope with the construction of Margalied Meakin [13,14] as
mentioned in the introduction. The elements df(G, X) are pairs of the form(U, g),
whereU is a finite and connected subgraph of the Cayley gt&gh ), which containd
andg. Multiplication of two such pairs is again defined by the r(#2® The group& acts
freely on the vertices and directed edges of the Cayley gtéghy:) by left multiplication.
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7. Decision problems for rational subsets oIM(G) /P

In this section, we associate with the inverse moniif{G)/P a relational structure
R(IM(G)/P) and we prove that this structure has a decidable first-onéery. As a conse-
guence, we deduce the decidability of several computdtfmoalems concerning rational
subsets ofM(G)/ P. First, we recall some basic definitions from logic.

7.1. Logic

See [8] for more details on the subject of this sectiorsignatureis a countable sef
of relational symbols, where each relational symBoE S has an associated arityz. A
(relational) structureover the signaturé is a tupleA = (A, (R*)res), whereA is a set
(the universe ofd) and R4 is a relation of aritynr over the setd, which interprets the
relational symbolR. We will assume that every signature contains the equalitybel =
and that=" is the identity relation on the seit. As usual, a constanatc A can be encoded
by the unary relatiodc}. Usually, we denote the relatioR also with R.

Next, let us introducenonadic second-order logic (MSO-logidt)et V; (resp.Vs) be
a countably infinite set dirst-order variableqresp.second-order variablgshich range
over elements (resp. subsets) of the univetséirst-order variables (resp. second-order
variables) are denoted y, 2, 2/, etc. (respX, Y, Z, X', etc.).MSO-formulasover the
signatureS are constructed from the atomic formulBéz1, ..., z,,) andz € X (where
ReS z1,...,2n,,x € Vi, and X € V5) using the boolean connectives A, andV,
and quantifications over variables froifh andV,. The notion of a free occurrence of a
variable is defined as usual. A formula without free occuresnof variables is called an
MSO-sentencd-or an MSO-sentence we write A = ¢ if ¢ evaluates to true inl.

A first-order formulaover the signaturé is an MSO-formula that does not contain any
occurrences of second-order variables. Tits-order theoryof the structured is the set
of all first-order sentences such that4 | ¢.

7.2. Relation structures over rational subsets

Recall that for a monoid/, the clasRAT (M) of all rational subsetsf M is the smallest
class of subsets a¥/, which contains all finite subsets and which is closed undémny
multiplication, and Kleene star. The Kleene star assoeitiea subsel. C M the sub-
monoid L* generated by.. A rational languagd. € RAT(M) can be represented either
by a rational (or regular) expression with constants frbmor by a (non-deterministic)
finite automaton with transitions labeled with elementsrfidf .

With the monoidM (with neutral element) we associate the relational structure

R(M) = (_]\4'7 (reachL)LeRAT(M), 1),
where
reachy, = {(x,y) | 3z € L : 2z = y}.

The following result generalizes a corresponding resulimfr[11] for the monoid
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IM(F,X)/P, whereF is the free group generated Byand P is a finite idempotent pre-
sentation.

Theorem 19. LetG be a finitely generated virtually-free group and [ete a finite idem-
potent presentation ovdM (G). Then the first-order theory of the structR¢IM(G)/ P)
is decidable.

The proof of Theorem 19 follows the proof for the correspogdiesult from [11]. We
will reduce the first-order theory &¥(IM(G)/P) to the monadic second-order theory of
the Cayley graplC(G,X). Before we do this, let us first recall some known results on
monadic second-order logic over graphs.

In the following, we view a Cayley grapf(G, X)) of a groupG as a directed graph
with edges labeled by symbols from There is an edgéy, h) with labelq if and only if
ga = h. Thus, as a relational structure the universe is thé&seith the constant and for
eacha € ¥ there is binary relation

Ea:{(g,h)GGXG |g71h:a}.

Implicitly, we may think that for each edgg, h) there is also also an eddg, g) with
labelh~1g. For virtually-free groups, Muller and Schupp have shown:

Theorem 20 ([19]). Let G be virtually-free groupG with a finite generating set. Then
the MSO-theory of the Cayley graphiG, X) is decidable.

Next let us introduce a few MSO-formulas, which are intetgualan the Cayley graph
of the virtually-free group: Let P be a finite idempotent presentation o¥&f(G). Fol-
lowing [14], we define for a subsét C G its closure

clp(U):U{V§G|U=;>V}gG.

It follows that (U,g) = (V,h) in IM(G)/P ifand only if g = h in G andclp(U) =
clp(V). It is easy to see that there exists an MSO-formilaz (X, Y"), expressing that
Y = clp(X) (see also [14]): We just have to say thatis the smallest (with respect to
inclusion) subset o which containsX and which is closed under the relatieila?, ie,

VZ:Y = 7 = Z =Y.Therewrite relatiora? is easily MSO-definable ifi(G, X).

We also have to express in MSO (oM#(G, X)) that a subset of7 is finite. First we
choose a free subgroup of finite index and a finite self (c.f. (9)) such that/ C G
is infinite if and only if for someh € H the intersection” N Uh~! C F is infinite.
The setd/h~! are MSO-definable fronV in C(G, X). Moreover, the free subgrou is
MSO-definable, too (as is any finitely generated subgroug)of

Using Konig’s lemma, finiteness is MSO-definable in finitely bramchirees. In par-
ticular, this is the case for the Cayley graph of the finitedypgrated free group.

Finally we will need the following statement concerning M8@r arbitrary graphs,
which was shown in [11]:

Proposition 21. LetT" be a finite alphabet and lét C I"* be a rational language. There
exists an MSO-formul®each, (z,y, X) over the signature consisting of binary relation
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symbolsE,, a € T', such that for every directed edge-labeled gr&pk- (V, (E,)acr), all
nodess, t € V, and every finite set of nodésC V we haveG |= Reachr(s,t,U) if and
only if there exist a patfipo, ..., pm) (p; € V) anday, ..., a, € T withpy = s, p,, = ¢,
(pi—1,pi) € Eg, fori e {1,...,m},a1---ay, € L,andU = {po,...,pm}

Proof of Theorem 19Me will reduce the first-order theory &(IM(G)/P) to the MSO-
theory ofC(G, X). SinceG is a finitely generated virtually free group, we can concltiae
proof using Theorem 20.

Let us fix a first-order sentengge over the (infinite) signature dR(IM(G)/P). Let
Ly,...,L, C IM(G)/P be all rational languages, which appearinand assume thdt;
is represented ip by a finite automatont; with transition labels fromiM(G). Let® C G
be the union of and of all finite subsets C G such tha(U, g) labels a transition in one
of the automatal, ..., A,. Hence, for everyU, g) € IM(G) which labels a transition of
someA;, the setU is connected in the Cayley graghiG, ©), i.e., it belongs tdM(G, ©).
LetI’ = © U ©~! and recall that there is a canonical mapping

v:T* = IM(G, ©) — IM(G)/P

defined byg — ({1,¢},9) forg € I' C G. Each(U, g) € IM(G, ©) can be represented
by a finite word over the alphab&t If U = {g1,...,9x } then a possible representing
word is (g1g7 ") -+ (gkglzl)g. Now everyA; can be viewed as a finite automaton where
the transitions are labeled with words overThus, eachd; also accepts a subset bBf,
and it is justified to use the same symliglto denote the accepted subsel¥®f(G)/P as
well as the accepted subsetldf.

We now translate the first-order sentencever R(IM(G)/P) into an MSO-sentence
@ over the Cayley grapfi(G, ©) such thaR(IM(G)/P) = ¢ifand only ifC(G,0) = ¢.
The following translation is analogous to the one for theedhsitG is free from [11]. For
completeness, we will repeat the arguments.

Let z be a variable inp, which ranges over elements B¥I(G)/P. Hence,x will be
interpreted by a paifU, ¢g), whereU C G is finite andl, g € U. Therefore, we associate
with z two variables in the MSO-sentenge

e an MSO-variableX’ representing/ and
o afirst-order variable’, representing.

The fact, that a paifX’, «') represents indeed an element of the moddIdG) (and hence
IM(G)/P) is expressed by the MSO-formula (over the signaturé(cf, ©)):

valid(z’, X") = (1 € X’ A 2/ € X' A X'isfinite).
Recall that finiteness of a subset@fcan be expressed in MSO. Equality in the monoid
IM(G)/ P is expressed by the MSO-formula

eq’, X',y Y)=(z' =y N IZ:CLp(X',Z) ANCLp(Y', Z)).
We now definep inductively as follows:

(@) Forp = (z = y) definep = eqa’, X', v/, Y").
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(b) LetL € {Ly,...,L, }. Forp = reachy(z,y) define

valid(z’, X"") A valid(y’,Y") A
p=3X"3IY"3Z: < eqa’, X", 2", X") N eqy, Y,y Y") A p,
Y"=X"UZ A Reachp(z',y,2)
whereReachy, is the formula from Proposition 21.

(c) Forp = =) defineg = —.

(d) Fory =91 Ao defined = ¢y A iha. R

(e) Forp =3z : ¢ definep = J2’ IX’ : valid(z’, X') A 1.

The formula

valid(z’, X") A valid(y’,Y") A

3X”3y"37 {eq(:c’,X’,z’,X”) Aeqy, Yy, Y") /\} (35)

Y" =X"UZ A Reachy(«',y', Z)
in (b) expresses the following: There are paifs”’, z’) and (Y”,y’), which represent
the same elements &M (G)/P as (X',2') and (Y',y’), respectively. Moreover, there
is a path inC(G, %), which starts in the node’ € G, ends iny € G and is la-
beled by a word from the rational langua@ie The set of nodes along this path4sand
therefore(a’~1Z,2'~1y') represents an element &f Finally, sinceY” = X" U Z we
have(X” 2')(x'~1Z,2'~1y') = (Y",y') in IM(G). Thus, inIM(G)/P we have (as de-
sired) (X', 2") (2’71 Z, 2"~ Y') = (X", 2") (2" 1 Z, 2"~ Yy) = (Y",y') = (Y',y') with
(/17 2'~Yy') € L. Vive versa, if(X',2")(U,g) = (Y',y') for some(U,g) € L in
IM(G)/P, then (35) is easily seen to be satisfied. Now it is straightfiod to verify that
R(IM(G)/P) [ ¢ if and only if C(G,©) E . In the final step we just translate the
MSO-formulag to another formulg such that (G, ©) = gifand only if C(G,X) = ¢.
This is easy because eagle © is effectively a word in*. This concludes the proof of
Theorem 19 with the help of Theorem 20.

Since every monoidM(G, X))/ P, for ¥ a finite generating set aF, is a finitely gener-
ated submonoid dfM(G)/ P and hence rational, it follows from Theorem 19 that also the
first-order theory of every structuR(IM(G, ¥)/P) is decidable. One should notice that
the first-order theory oR(IM(G, X)/P) depends on the generating 3&tTo see this, let
G be the free group generated byndb, let P = (J, and consider the two generating sets
Y ={a,b} and¥’ = {a,b,ab} of G. Letc = ({1, a,ab},1) € IM(G, %) C IM(G, X');
this element is first-order definable R(IM(G, X)) (note that the neutral element is a
constant in the structure(IM(G, %))). Now let L = {({1,a}, 1)}, which is a rational
subset ofIM(G, ¥). Assume that: is an element ofM(G, ¥) such thatreachy (z, c).
We must haver = c¢. On the other hand, we haweach (y,c) for the elemenyy =
({1,ab},1) € IM(G,Y') \ IM(G, X). Thus, the sentencér : reachr(x,c) A z # ¢
belongs to the first-order theory B{IM(G, ¥’)) but it does not belong to the first-order
theory ofR(IM(G, ¥)).

Let us finish this paper with some applications of Theorenrighe emptiness problem
for boolean combinations of rational subsets of a mordidne asks for a given boolean
combinationB of sets fromRAT (M), whetherB = (. Theorem 19 immediately implies:
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Theorem 22. LetG be a finitely generated virtually-free group and ete a finite idem-
potent presentation ovdM(G). Then the emptiness problem for boolean combinations of
rational subsets ofM(G)/ P is decidable.

The membership problem problem for rational subsel3/&fG)/ P (i.e., the question,
whether a given element &M (G)/P belongs to a given rational subsetIdf(G)/P) is
clearly reducible to the emptiness problem for boolean donatlons of rational subsets
of IM(G)/P. Hence, also the former problem is decidable. Since eveitglffrgenerated
submonoid of a monoid/ belongs taRAT (M), also the submonoid membership problem
of IM(G)/P (i.e., the question, whether a given elemeniMfG)/P belongs to a given
finitely generated submonoid &§¥1(G)/ P) is decidable.

8. Open problems

The undecidability results from Section 5 make it hard to fieh-virtually-free groups
G such that for every finite idempotent presentatidoverIM(G), the word problem of
IM(G)/ P is decidable. Moreover, our techniques from Section 7 catfeffieitely not ex-
tended beyond the virtually-free case: By a result from [h@]MSO-theory of the Cayley
graph of a grou- is decidable if and only it is virtually-free. These results lead to an
open problem, which we state as a conjecturé: 1§ not virtually-free, then there exists a
finite idempotent presentatia® overIM(G) such that the word problem faM(G)/ P is
undecidable.

We have seen that the submonoid membership problem for @ gf@an be reduced
to the word problem of somi&I(G)/ P, but it is open whether we can reduce it to the word
problem of some fixed finitely generated submonoidfG)/P.
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