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Let G be a finitely generated virtually-free group. We consider the Birget-Rhodes expansion ofG,
which yields an inverse monoid and which is denoted byIM(G) in the following. We show that for a
finite idempotent presentationP , the word problem of a quotient monoidIM(G)/P can be solved in
linear time on a RAM. The uniform word problem, whereG and the presentationP are also part of
the input, is EXPTIME-complete. WithIM(G)/P we associate a relational structure, which contains
for every rational subsetL of IM(G)/P a binary relation, consisting of all pairs(x, y) such that
y can be obtained fromx by right multiplication with an element fromL. We prove that the first-
order theory of this structure is decidable. This result implies that the emptiness problem for boolean
combinations of rational subsets ofIM(G)/P is decidable, which, in turn implies the decidability
of the submonoid membership problem ofIM(G)/P . These results were known previously for free
groups, only. Moreover, we provide a new algorithmic approach for these problems, which seems to
be of independent interest even for free groups.

We also show that one cannot expect decidability results in much larger frameworks than virtually-
free groups because the subgroup membership problem of a subgroupH in an arbitrary groupG can
be reduced to a word problem of someIM(G)/P , whereP depends only onH. A consequence is
that there is a hyperbolic groupG and a finite idempotent presentationP such that the word problem
is undecidable for some finitely generated submonoid ofIM(G)/P . In particular, the word problem
of IM(G)/P is undecidable.

1. Introduction

Decidability and complexity questions concerning word problems for monoids are a clas-
sical topic in the interplay between logic, algebra, and complexity theory.

In this paper, we are interested in the class of inverse monoids. In the same way as
groups can be represented by groups of permutations, inverse monoids can be represented
by monoids of partial injections, see e.g. [21]. Algorithmic questions for inverse monoids
have received increasing attention over the past few years,and inverse monoid theory has
led to applications in combinatorial group theory, see e.g.[2,5,6,14,17,24,26,27]. Let us
also refer to the survey [15].

Here, we will deal mainly with inverse monoids that are defined by the Birget-Rhodes
expansion over a groupG, see [3,4]. This expansion associates toG an inverse monoid
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IM(G), where the elements are pairs of the form(U, g) such thatU is a finite subset of
G with 1, g ∈ U . Multiplication is defined by the rule(U, g)(V, h) = (U ∪ gV, gh). The
monoidIM(G) is denoted bỹGR in [3,4].

In fact, we take a slightly more general starting point wherewe consider pairs(U, g)
such thatU is a finite subset of a setG whereG acts on the left. This more general viewpoint
is more flexible and is done to have a basis to cope with the Margolis-Meakin expansion
[13] as well, see below. We also refer to [28,9] for more background, which show that these
constructions are not arbitrary, but play an important rolein the theory of inverse monoids.

In Section 6.2 we consider quotient monoids of the formIM(G)/P whereG is a finitely
generated virtually-free group (i.e.,G has a finitely generated free subgroup of finite index)
andP is a finite set of equations between idempotent elements ofIM(G). We callP afinite
idempotent presentation. We prove that the word problem ofIM(G)/P can be solved in
linear time on a random access machine (RAM). In the case whereF is a finitely generated
free group, the decidability of the word problem ofIM(F )/P has been shown by Margolis
and Meakin in [14] by a reduction to the monadic second-ordertheory of the full infinite
binary tree. This theory is decidable by Rabin’s tree theorem [22], but its complexity is non-
elementary. Hence, the approach from [14] results in a non-elementary algorithm for the
word problem. An alternative proof using finite automata forthe decidability of the word
problem has been given in [26], but without any complexity bound. Using tree automata,
it has been shown in [11] that the word problem ofIM(F )/P (with F a free group, again)
can be solved in polynomial time. In fact, after having announced the results in the present
paper the authors of [11] observed that their techniques yield a linear time algorithm in the
case of free groups on a RAM, too.

The algorithm presented here has at least two advantages: First, it is more general, since
we may assume without any difficulty thatG is a virtually-free group, and second, it yields
a direct algorithm for the word problem. This second point isthe primary focus in this pa-
per. In contrast, in [11] the word problem is solved by translating via Rabin’s tree theorem
a fixed monadic second-order formula (which only depends on the fixed idempotent pre-
sentationP ) into a fixed tree automaton. The tree automaton runs in linear time on a tree
constructed from the input. Hence, the existence of a lineartime algorithm is ensured, but
the algorithm is not actually provided. It is hard to imaginethat anybody will ever write a
code for an actual implementation which runs through all these steps. Our algorithm uses
simple data structures over the group, only, and an actual implementation is fairly easy.

If the idempotent presentationP is part of the input, then our algorithm has an ex-
ponential running time in the worst-case. This is unavoidable: In [11] it has been shown
for free groupsF that the uniform word problem for monoids of the formIM(F )/P is
EXPTIME-complete.

For the case thatG is not a virtually-free group, it turns out that the word problem of
IM(G)/P might be undecidable, even if the word problem ofG is easy. We show that the
subgroup membership problem of a subgroupH in an arbitrary groupG can be reduced to
a word problem of someIM(G)/P , whereP depends only onH. Thus in general, the word
problem ofIM(G)/P is undecidable for hyperbolic groups, by a result of Rips [23]. In fact,
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we can construct a finitely generated submonoid ofIM(G)/P where the word problem is
undecidable.

The Birget-Rhodes expansion is quite similar to a construction of Margolis and Meakin
[13,14]. Margolis and Meakin associate with a groupG and a generating setΣ for G
a monoidM(G,Σ). The elements ofM(G,Σ) are pairs of the form(U, g), whereU
is a finite and connected subgraph of the Cayley graphC(G,Σ) of G with respect to
Σ, which contains1 andg. Multiplication of two such pairs is again defined by the rule
(U, g)(V, h) = (U ∪ gV, gh). Here one has to notice that the groupG acts freely on the
Cayley graphC(G,Σ) by left multiplication.a This construction can be again generalized
by giving up the restriction to connected subgraphs of the Cayley graphC(G,Σ). This re-
sults in an inverse monoidSG(G,Σ) (SG for subgraph). It turns out that our linear time
solution of the word problem ofIM(G)/P can be carried over toSG(G,Σ)/P . However,
in order to avoid an overload in technical notations we do notwork out the details, see
Section 6.6.

In Section 7 we associate with the monoidIM(G)/P a relational structure
R(IM(G)/P ), which contains for every rational subsetL ⊆ IM(G)/P a binary relation,
consisting of all pairs(x, y) such thaty can be obtained fromx by right multiplication with
an element fromL. We prove that the first-order theory of this structure is decidable. As for
the word problem, this result generalizes a corresponding result from [11] for free groups.
We reduce the first-order theory ofR(IM(G)/P ) to the monadic second-order theory of
the Cayley graph ofG with respect to some generating set ofG. By a result of Muller and
Schupp [19] this latter theory is decidable whenG is virtually-free.

Our motivation for investigating the first-order theory ofR(IM(G)/P ) is the fact that
various algorithmic questions concerning rational subsets of IM(G)/P , like for instance
the emptiness problem for boolean combinations of rationalsets or the submonoid mem-
bership problem, can be reduced to the first-order theory ofR(IM(G)/P ). Hence, for a
virtually free groupG, these problems are decidable.

2. Inverse Monoids

LetM be a monoid and letM∗ be the free monoid over the setM .
Theword problemofM is the computational problem, which asks for two given words

u, v ∈ M∗ whetherπ(u) = π(v), whereπ : M∗ → M is the canonical morphism. Here,
one needs some finite description of elements ofM ; in particular,M has to be countable.
In our paper these requirements will be fulfilled.

A monoidM is called aninverse monoid, if for every x ∈ M there exists a unique
elementx−1 ∈M such that:

xx−1x = x

x−1xx−1 = x−1

By Σ we denote a finite alphabet and we letΣ−1 = {a−1 | a ∈ Σ} be a copy ofΣ. By

aA groupG acts freely on a setX, if for all x ∈ X andg ∈ G, gx = x impliesg = 1.
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Γ we denote the disjoint union ofΣ andΣ−1. Define(a−1)−1 = a; thus,−1 becomes
an involution on the alphabetΓ. We extend this involution to words fromΓ∗ by setting
(a1 · · · an)−1 = a−1

n · · · a−1
1 for a1, . . . , an ∈ Γ.

Consider the free monoidΓ∗ modulo the following defining equations (also called the
Vagner equations):

xx−1x = x

xx−1yy−1 = yy−1xx−1

The quotient monoid ofΓ∗ modulo the Vagner equations for allx, y ∈ Γ∗ is an inverse
monoid. Actually, it is thefree inverse monoidgenerated byΣ. This observation involves
a little computation, which can be found e.g. in the textbook[21] (as well as the following
facts).

Remark 1.

(1) The idempotents of an inverse monoid (i.e., the elementse satisfyinge2 = e) are
exactly the elements of the formxx−1, and idempotents commute.

(2) For every setG, its monoid of partially defined injections fromG to G forms an
inverse monoid; and vice versa: IfM is any inverse monoid, then we can realize
M as a submonoid of the monoid of partially defined injections fromM toM .

Given an inverse monoidM , the quotient ofM modulo the equationsxx−1 = 1 is a
group. It is themaximal group imageofM , since every homomorphism fromM to a group
factorizes through this quotient. An inverse monoid is calledE-unitary, if only idempotents
are mapped to the identity of the maximal group image.

As an example consider the following construction. LetG be group with a left-action
on a (non-empty) setG, i.e., there is a mapping· : G × G → G with 1 · x = x and
g · (h · x) = gh · x for g, h ∈ G andx ∈ G. Forg · x we will also writegx. Forg ∈ G and
a finite setU ⊆ G we can define a partial injectionι(U,g) as follows:

ι(U,g) : G \ U → G, x 7→ g−1x.

Thus, this injection is defined almost everywhere. The set ofall partial injections of type
ι(U,g) forms an inverse monoid, because it is a submonoid in the monoid of partially defined
injections fromG to G. A direct verification shows that multiplication is defined by

ι(U,g) ◦ ι(V,h) = ι(U∪gV,gh). (2)

Note thatι(U,g) = ι(V,h) does not implyg = h in general. However, in all cases of interest
in this paper,G is an infinite group acting freely on the setG. Then,ι(U,g) = ι(V,h) implies
g = h and we obtain anE-unitary monoid. For the interested reader we state that the
monoid of theseι(U,g) isE-unitary if and only if for allg ∈ G the set{x ∈ G | gx 6= x }

is either empty or infinite. In particular, ifG is finite, butG acts non-trivially, then the the
monoid is notE-unitary. Note that for a finite setG the empty function becomes part of
this monoid, but this function behaves as azero, so the maximal group image is trivial.

4



June 6, 2007 15:52 WSPC/INSTRUCTION FILE ijac˙final

3. The inverse monoidIM(G)

The starting point for our construction is guided by the example above:G is a group with
a left-action on a non-empty setG, moreover we fix an element∗ ∈ G. HenceforthG is
viewed as a pointed set. By slight abuse of language we writeg as a shorthand forg∗ ∈ G.
Thus, depending on the context,g denotes either an element in the groupG or in the set
G. But there will be no risk of confusion. In our applicationsG is just the vertex set of the
Cayley graph ofG and thenG = G.

We give a monoid structure to the set of pairs(U, g), whereU is a finite subset ofG
andg ∈ G. The multiplication is defined in analogy to equation (2):

(U, g)(V, h) = (U ∪ gV, gh).

Note that in this setting(U, g) = (V, h) implies both,U = V andg = h. Associativity
of this operation and the Vagner equations can be verified easily by defining (U, g)−1 =

(g−1U, g−1). The idempotents in this monoid are of the form(U, 1). Thus, we have defined
an inverse monoid where its maximal group image isG and the monoid is in factE-unitary,
because only idempotents become the identity in the maximalgroup image.

We use the point∗ ∈ G for the localizationat the idempotent({∗}, 1). This means that
we are considering the subsemigroup of elements of the form

({∗}, 1)(U, g)({∗}, 1) = (U ∪ { ∗, g∗ } , g).

The localization has the effect that we always have∗, g∗ ∈ U for all elements(U, g) in
the localization. According to our convention (to read1, g ∈ U as∗, g∗ ∈ U ) we can
also simply write1, g ∈ U . The localization yields an inverse monoid which we denote by
IM(G). Note however that the monoid depends also on the element∗.

We repeat: elements ofIM(G) are pairs(U, g), whereU ⊆ G is finite and1, g ∈ U .
The neutral element is({ 1 } , 1). The inverse of(U, g) is (g−1U, g−1), and the idempotents
are the pairs(U, 1) with 1 ∈ U .

If G is infinite and ifG acts freely onG, then(U, g) can be identified with the partial
injectionι(U,g) (where1, g ∈ U ) as defined above. In particular, the inverse monoidIM(G)

has a natural representation as monoid of partially defined functions overG, and not only
over the setIM(G) itself.

For the interested reader we add the following remark:

Remark 2. The inverse monoidIM(G) is E-unitary. Actually, it is anF -inverse monoid,
which is a stronger assertion, see e.g. [16]: It isF -inverse, because every(U, g) ∈ IM(G)

admits a canonical decomposition(U, g) = ({1, g} , g)(g−1U, 1) where(g−1U, 1) is idem-
potent and({1, g} , g) is thegreatestelement having the same image in the maximal group
image as(U, g). It is the greatest element with respect to the natural order, which is defined
for inverse monoids by lettings ≤ t, if s = te for some idempotente.

Assume that the groupG is generated byΣ. ThenG becomes the vertex set of a directed
graph with a distinguished vertex1 and labeled directed edges(x, a, ax) with x ∈ G and
a ∈ Σ. Thus, we can speak of connected subsets ofG. By IM(G,Σ) we mean the inverse
submonoid ofIM(G) generated by the elements({1, a}, a) with a ∈ Σ. It is also the
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submonoid ofIM(G) generated by the set{ ({1, a}, a) | a ∈ Γ }, whereΓ = Σ ∪ Σ−1.
Note that(U, g) ∈ IM(G,Σ) implies thatU is connected.

The above construction is very much in the spirit of a construction given by Birget and
Rhodes [3,4]. We therefore callIM(G) the Birget-Rhodes expansionof G. In fact, Birget
and Rhodes considerG = G with its natural left-action and they denote the monoidIM(G)

by G̃R. For a given generating setΣ of G, Birget and Rhodes also consider the submonoid
IM(G,Σ) (denoted byG̃R

Σ in [4] and called the cut-down of̃GR to Σ) generated by the
pairs({1, a}, a) with a ∈ Γ = Σ∪Σ−1. If Σ is finite, thenIM(G,Σ) is finitely generated.
Clearly, for generating setsΣ1,Σ2 of G we have

IM(G,Σ1) ⊆ IM(G,Σ1 ∪ Σ2) ⊆ IM(G).

If F is the free group generated byΣ, thenIM(F,Σ) is the free inverse monoid generated
by Σ, see [4,20].

The geometrical interpretation ofIM(G,Σ) refers to the set of all pairs(U, g), where
1, g ∈ U andU is a finite and connected subset of theCayley graphC(G,Σ) of G with
respect to the setΣ, which is the directed graph

C(G,Σ) =
(
G,

{
(g, h) ∈ G×G

∣∣ g−1h ∈ Σ
})
.

Note that an edge(g, h) can be labeled bya = g−1h ∈ Σ and it is no harm to imagine that
for each edge(g, h) we have an implicit edge(h, g) labeled bya−1 = h−1g ∈ Σ−1.

Whether or not the word problem ofIM(G) is decidable depends onG andG. It is clear
however that the word problem ofG is reducible to the word problem ofIM(G); more
precisely, it is reducible to the word problem ofIM(G,Σ). Indeed, letg ∈ G be given by a
worda1 · · · an with ai ∈ Γ. Then we haveg = 1 in G if and only if (U, g)(U, g) = (U, g),
whereU = { a1 · · · ai | 0 ≤ i ≤ n }. For the other way round, ifG has a decidable word
problem and if the presentation of the setG as well as the group action· : G × G → G is
effective, then the word problem ofIM(G) is decidable, too.

4. Finite idempotent presentations

An idempotent presentationP overIM(G) is given by a set of pairs(e, e′) wheree = (E, 1)

ande′ = (E′, 1) are idempotents ofIM(G). This defines a quotient monoidIM(G)/P ,
wheree = e′ are the defining relations overIM(G) for all (e, e′) ∈ P . The maximal group
image ofIM(G)/P is still the groupG. Thus, for a generating setΣ of G (and the choice
of ∗ ∈ G) we obtain a sequence of canonical homomorphisms:

Σ∗ → (Σ ∪ Σ−1)∗ → IM(G,Σ) → IM(G) → IM(G)/P → G.

4.1. Confluent Rewriting over finite subsets

In inverse monoids an equatione = e′ between idempotents is equivalent to the two equa-
tionse = ee′ ande′ = ee′. Since idempotents commute in an inverse monoid,ee′ is idem-
potent, too. LetP ⊆ IM(G) × IM(G), wheree ande′ are idempotents for all(e, e′) ∈ P .
Thus, if P is a set of defining equations between idempotents we may assume that all
elements ofP have the form(e, ee′).
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In our context this means that((E, 1), (E′, 1)) ∈ P impliesE ⊆ E′. Instead of writing
((E, 1), (E′, 1)) ∈ P we simply write(E,E′) ∈ P henceforth, and we assume that1 ∈

E ⊆ E′.
The assumptionE ⊆ E′ leads to a natural rewrite relation=⇒

P
over finite subsets ofG:

ForU,U ′ ⊆ G finite we defineU =⇒
P

U ′, if there is someg ∈ G and(E,E′) ∈ P with

gE ⊆ U andU ′ = U ∪ gE′. By
∗

⇐⇒
P

we denote as usual the reflexive, symmetric, and

transitive closure of the one-step rewrite relation=⇒
P

. We have the following:

Lemma 3. Let U,U ′ ⊆ G, and f, f ′ ∈ G with 1, f ∈ U , 1, f ′ ∈ U ′. Let P be an
idempotent presentation overIM(G). Then the following two assertions are equivalent:

(a) (U, f) = (U ′, f ′) in IM(G)/P .
(b) U

∗
⇐⇒

P
U ′ andf = f ′.

Proof. For (a) ⇒ (b) assume that(U, f) = (X, g)(E, 1)(Y, h) and (U ′, f ′) =

(X, g)(E′, 1)(Y, h) for some(E,E′) ∈ P . Clearly, f = gh = f ′. Moreover,U =

X ∪ gE ∪ gY andU ′ = X ∪ gE′ ∪ gY . In particular,gE ⊆ U andU ′ = U ∪ gE′.
HenceU =⇒

P
U ′.

For (b) ⇒ (a) assume thatU =⇒
P

U ′. ThengE ⊆ U andU ′ = U ∪ gE′ for some

g ∈ G and(E,E′) ∈ P . Since1 ∈ E impliesg ∈ U we obtain

(U, f) = (U, g)(E, 1)(g−1U, g−1f),

and

(U ′, f) = (U, g)(E′, 1)(g−1U, g−1f).

Hence(U, f) = (U ′, f) in IM(G)/P .

It turns out that the system=⇒
P

is strongly confluent. This means that whenever

U ′ ⇐=
P

U =⇒
P

U ′′,

then there exists someV ⊆ G with

U ′ =⇒
P

V ⇐=
P

U ′′.

Indeed it suffices to takeV = U ′ ∪U ′′ and the result is immediate. Now strong confluence
implies confluence [1], henceU

∗
⇐⇒

P
U ′ is equivalent to the existence of someV such that

bothU
∗

=⇒
P

V andU ′ ∗
=⇒

P
V , where

∗
=⇒

P
denotes the reflexive and transitive closure of

=⇒
P

.

Lemma 4. LetU,U ′ ⊆ G. ThenU
∗

⇐⇒
P

U ′ is equivalent to the following two conditions:

(a) ∃V : U
∗

=⇒
P

V andU ′ ⊆ V .
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(b) ∃V ′ : U ′ ∗
=⇒

P
V ′ andU ⊆ V ′.

Proof. If U
∗

⇐⇒
P

U ′, then (a) and (b) hold due to confluence of the system=⇒
P

.

Conversely, if (a) and (b) hold withV andV ′, then we haveU
∗

=⇒
P

V
∗

=⇒
P

V ∪ V ′ due

toU ′ ⊆ V . By symmetry we haveU ′ ∗
=⇒

P
V ′ ∗

=⇒
P

V ∪ V ′, and henceU
∗

⇐⇒
P

U ′.

Remark 5. Due to Lemmas 3 and 4 it is enough to focus on the following problem in
order to solve the word problem forIM(G)/P : Let P be a finite list of pairs(E,E′) with
1 ∈ E ⊆ E′ ⊆ G andE,E′ are finite. Decide for two given finite subsetsU,U ′ ⊆ G

whether there exists someV ⊆ G such thatU
∗

=⇒
P

V andU ′ ⊆ V .

If P ⊆ IM(G,Σ) × IM(G,Σ), then we might consider the quotient monoid
IM(G,Σ)/P , too. However, the inclusionIM(G,Σ) ⊆ IM(G) defines a canonical em-
beddingIM(G,Σ)/P →֒ IM(G)/P : Indeed, let(U, g), (U ′, g) ∈ IM(G,Σ) such that
(U, g) = (U ′, g) in IM(G)/P . Thus, there exists a finiteV ⊆ G with U

∗
=⇒

P
V and

U ′ ∗
=⇒

P
V . SinceU,U ′ and all sets occurring inP are connected, it follows that every sub-

set, which appears in the derivationU
∗

=⇒
P

V or U ′ ∗
=⇒

P
V has to be connected, too. This

implies(U, g) = (U ′, g) in IM(G,Σ)/P . It follows that the word problem ofIM(G,Σ)/P

can be directly reduced to the word problem ofIM(G)/P and issues like connectedness do
not play a central role anymore. Therefore we focus our intention onIM(G)/P , rather than
IM(G,Σ)/P .

Moreover, basically we are interested inG = G, and forG = G the word problem
of IM(G)/P can be stated as a word problem ofIM(G,Σ)/P for someΣ as follows:
Let (U, g), (V, h) ∈ IM(G) be given. Choose a generating setΣ for G which contains
U, V , and allE ∪ E′ with ((E, 1), (E′, 1)) ∈ P . (If G is finitely generated andP is
finite, thenΣ can be chosen to be finite.) Then,U andV are connected inC(G,Σ), i.e.,
(U, g), (V, h) ∈ IM(G,Σ). Thus,(U, g) = (V, h) in IM(G)/P if and only if (U, g) =

(V, h) in IM(G,Σ)/P .
Let us finish this section with another concept which is a maintool for the rest of

the paper: For a subsetW of the groupG define the one-step rewrite relation=⇒
P,W

with

U =⇒
P,W

U ′ for U,U ′ ⊆ G if there is someg ∈ W and(E,E′) ∈ P such thatgE ⊆ U and

U ′ = U ∪ gE′. Note that=⇒
P,W

is a subset of=⇒
P

. More precisely, we have:

=⇒
P,W

⊆ =⇒
P,W ′

if W ⊆W ′, and

=⇒
P,G

= =⇒
P

.

The relation=⇒
P,W

is still strongly confluent, but ifW andP are finite, then in addition=⇒
P,W

is terminating in the sense that every chainU
∗

=⇒
P,W

U1
∗

=⇒
P,W

U2
∗

=⇒
P,W

· · · becomes stationary.
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This is clear becauseU ⊆ Ui ⊆ Ui+1 for all i. Hence everyUi in this chain is a subset of
the finite set

U ∪
⋃

g∈W,(E,E′)∈P

gE′.

Therefore, for finite setsU andW there is a unique finite subset̂U ⊆ G such that (i)
U

∗
=⇒
P,W

Û and (ii)U
∗

=⇒
P,W

U ′ impliesU ′ ∗
=⇒
P,W

Û .

We also writeU
max
=⇒
P,W

Û to denote the fact that̂U
∗

=⇒
P,W

U ′ impliesU ′ = Û . The subset

Û is a normal form with respect to the rewrite relation=⇒
P,W

, i.e., with respect to inclusion

Û is the largest setU ′ such thatU
∗

⇐⇒
P,W

U ′.

5. Undecidability results

We cannot expect that the word problem ofIM(G)/P is decidable, in general. In fact,
we can reduce thesubmonoid membership problemof a groupG to the word problem of
IM(G)/P for some idempotent presentationP quite easily. Usually, thesubgroup mem-
bership problemis of more interest than the submonoid membership problem, and we
obtain an even better result, because we can replaceIM(G)/P by IM(G,Σ)/P and the
latter monoid is finitely generated (which is the natural setting when dealing with word
problems). We will be more precise in a moment. Let us stress however that there are
finitely generated groups, where the subgroup membership problem is decidable, but the
submonoid membership problem is not, [12].

We start with a finitely generated groupG and a finite setΘ ⊆ G. By Θ∗ we mean
the submonoid inG generated byΘ; and by〈Θ〉 = (Θ ∪ Θ−1)∗ we mean the subgroup
generated byΘ.

The submonoid (resp. subgroup) membership problem forΘ asks whether on input
g ∈ G we haveg ∈ Θ∗ (resp.g ∈ 〈Θ〉). More natural uniform variants of these problems
are obtained by putting the generating setΘ into the input. However, with respect to un-
decidability we get a stronger result if we consider the non-uniform setting as above. Note
that the word problem ofG is nothing but the subgroup membership problem forΘ = ∅.

We choose a finite setΣ such thatΘ ⊆ Σ and such thatΣ generatesG. Define the finite
idempotent presentationP (Θ) by:

P (Θ) = { ({1} , {1, t}) | t ∈ Θ } .

Recall that this means that we add defining equations of the form ({1} , 1) = ({1, t} , 1)

for all t ∈ Θ.
For the subgroup membership problem we consider the finitelygenerated monoid

IM(G,Σ)/P (Θ∪Θ−1), but for submonoid membership problem we are forced to work in
IM(G)/P (Θ) which is not finitely generated, in general.

Theorem 6. LetΘ andΣ as above.

9
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1.) If the finitely generated inverse monoidIM(G,Σ)/P (Θ ∪ Θ−1) has a decidable word
problem, then we can decide on inputg = a1 · · · am ∈ G with ai ∈ Σ for 1 ≤ i ≤ m

whether or notg ∈ 〈Θ〉.
2.) If the inverse monoidIM(G)/P (Θ) has a decidable word problem, then we can decide

on inputg = a1 · · · am ∈ G with ai ∈ Σ for 1 ≤ i ≤ m whether or notg ∈ Θ∗. More
precisely, we have:

g ∈ Θ∗ ⇐⇒ ({1, g} , 1) = 1 in IM(G)/P (Θ).

Proof. Let g ∈ G. By the choice ofP (Θ) and the techniques from Section 6.4 the follow-
ing conditions are equivalent:

• 1 = ({1, g}, 1) in IM(G)/P (Θ).
• There existsU ⊆ G with g ∈ U and{1}

∗
=⇒
P (Θ)

U .

• g ∈ Θ∗.

This proves the second item. ReplacingP (Θ) by P (Θ ∪ Θ−1) we also get:

1 = ({1, g}, 1) in IM(G)/P (Θ ∪ Θ−1) ⇐⇒ g ∈ 〈Θ〉.

But the problem is that({1, g}, 1) 6∈ IM(G,Σ), in general. We always have({1, g}, 1) ∈

IM(G,Σ∪{g}), but this is not what we wish. So, we need a more subtle argument in order
to prove the first item.

Assume thatIM(G,Σ)/P (Θ ∪ Θ−1) has a decidable word problem. Then, also
G has a decidable word problem (forg = a1 · · · am ∈ G with ai ∈ Γ we have
g = 1 in G if and only if (U, g)(U, g) = (U, g) in IM(G,Σ)/P (Θ ∪ Θ−1), where
U = { a1 · · · ai | 0 ≤ i ≤ m }). By induction on the lengthm of the worda1 · · · am

we present an algorithm, which checksa1 · · · am = g ∈ 〈Θ〉. Form = 0 we clearly have
1 = g ∈ 〈Θ〉. Now assume thatm ≥ 1. We letV = { a1 · · · ai ∈ G | 0 ≤ i < m }. Note
thatV andV ∪ {g} are connected in the Cayley graph ofG with respect to the generating
setΣ. Sincem ≥ 1 we have1 ∈ V . Hence, we have(V, 1), (V ∪ {g} , 1) ∈ IM(G,Σ). If
(V, 1) 6= (V ∪ {g} , 1) in IM(G,Σ)/P (Θ ∪ Θ−1) (which can be checked by assumption),
theng 6∈ 〈Θ〉. On the other hand, if(V, 1) = (V ∪{g} , 1) in IM(G,Σ)/P (Θ∪Θ−1), then
by definition of =⇒

P (Θ∪Θ−1)
there must existh ∈ V with g ∈ h〈Θ〉. SinceV is finite and the

word problem ofG is decidable, we can find such anh effectively. Since〈Θ〉 is a subgroup
of G, we haveg ∈ 〈Θ〉 if and only if h ∈ 〈Θ〉. But,h = a1 · · · ai for some0 ≤ i < m and
hence, by induction, we can checkh ∈ 〈Θ〉.

By a results of Rips [23], there exists a hyperbolic groupG together with a finitely
generated subgroupH of G such that the membership problem forH in G is undecid-
able. Using a refinement of Rips construction by Wise [29] we can choose the groupG
hyperbolic, torsion-free, and residually-finite. Thus, together with Theorem 6, we obtain:

Corollary 7. There exists a torsion-free and residually-finite hyperbolic groupG, a finite
setΣ ⊆ G, and a finite idempotent presentationP over IM(G,Σ) such that the word
problem of the finitely presented monoidIM(G,Σ)/P is undecidable.

10
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Even if the subgroup membership problem is decidable forG, as it is the case for the
Abelian groupZ × Z, the word problem ofIM(G)/P might be undecidable. This follows
from a result of [17].

Proposition 8 ([17,7]). There exists a finite idempotent presentationP over IM(Z × Z)

such thatIM(Z × Z)/P has an undecidable word problem.

6. The word problem of IM(G)/P for virtually free groups G

6.1. Virtually Free Groups

Due to the undecidability results in Section 5 we cannot hopefor to go far beyond free
groups in order to generalize the results from [11,14,26]. The best we are able to do in
the present paper are virtually free groups. Therefore for the rest of this paper, we assume
thatG is a finitely generated virtually free group. This meansG has a finitely generated
non-trivial free subgroupF of finite index. We fix a finite subsetH of G such that1 ∈ H

andG can be written as the disjoint union

G =
⋃

h∈H

Fh. (9)

We let Σ be a minimal set of generators forF and letΓ = Σ ∪ {a−1 | a ∈ Σ} as in
Section 2. A wordu ∈ Γ∗ is calledreduced, if it contains no factor of the formaa−1

with a ∈ Γ. Clearly, the set of reduced words is in one-to-one correspondence withF . It
follows that every element ofG can uniquely be written in the form̂uh, whereû ∈ Γ∗ is
reduced andh ∈ H. It is easy to see, that this normal form can be computed in linear time.
More precisely, the normal form can be computed with the helpof a finite, confluent, and
terminating string rewriting system over the alphabet∆ = Γ ∪H, see also [25]:

aa−1 → 1 for a ∈ Γ,

ha → u(h, a)g(h, a) for h ∈ H, a ∈ Γ,

hh′ → u(h, h′)g(h, h′) for h, h′ ∈ H.

Here u(h, a), u(h, h′) ∈ Γ∗ and g(h, a), g(h, h′) ∈ H are chosen such thatha =

u(h, a)g(h, a) andhh′ = u(h, h′)g(h, h′) hold in the groupG. Moreover, either1 ∈ H is
identified with the empty word (by some additional rule), or we keep1 ∈ H as a distin-
guished letter of∆ and we work with non-empty words over∆ only. The latter viewpoint
is more suitable for our purposes.

Working form left to right on an input string over∆, the above string rewriting sys-
tem basically describes the work of a deterministic push-down automaton and some easy
reflection yields the well-known fact that the word problem for the virtually free groupG
can be solved in linear time [18,25].

If the groupG is not part of the input, then the sizes of∆ and the rewrite system above
are viewed as constants. In particular ifw ∈ ∆∗ is a word of lengthn, then its normal form
ûh ∈ Γ∗H has length at mostc · n wherec is a fixed constant depending onG only.

11
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6.2. Solving the word problem ofIM(G)/P

We also fix the setG to beG itself, henceG = G with the left-regular action ofG onG.
This is not the most general framework, see Section 6.6, but it avoids an overloading of
notations.

In order to have a concise representation of an element(U, g) ∈ IM(G) we use the
following convention. The pair(U, g) is given by an alternating sequence

(a1, b1, . . . , an, bn),

with n ≥ 1, ai ∈ ∆, bi ∈ {0, 1} for 1 ≤ i ≤ n, anda1 = 1, b1 = bn = 1. We read a word
of ∆∗ as an element ofG and then we defineg = a1 · · · an and

U = {a1 · · · ai | 1 ≤ i ≤ n, bi = 1}.

Recall that in our settingU is not necessarily connected. This is why we use the bitsbi.
Following our convention, the pair({1}, 1) becomes the sequence(1, 1) where the left
component is the1 ∈ H as a letter of∆ and the right component is the bit1 ∈ {0, 1} used
as a flag to indicate that1 ∈ H is in the sequence.

For a concise representation of a rule(E,E′) ∈ P with E ⊆ E′ we use an alternating
sequence(a1, b1, . . . , an, bn) with n ≥ 1, ai ∈ ∆, bi ∈ {0, 1, 2} for 1 ≤ i ≤ n, and
a1 = 1, b1 = 2. Then we define:

E = {a1 · · · ai | bi = 1, 1 ≤ i ≤ n},

E′ = {a1 · · · ai | bi ≥ 1, 1 ≤ i ≤ n}.

From our concise representation of the pairs(U1, g1), . . . , (Um, gm), it is easy to compute
in linear time a pair(U, g) such that(U, g) = (U1, g1) · · · , (Um, gm) in IM(G); we just
have to concatenate the alternating sequences for the pairs(U1, g1), . . . , (Um, gm). Hence,
by Remark 5 the word problem ofIM(G)/P can be reduced in linear time to the following
problem:

INPUT: Finite subsetsU,U ′ ⊆ G, represented by alternating sequences.
QUESTION: Is thereV ⊆ G such thatU

∗
=⇒

P
V andU ′ ⊆ V ?

We do not attack this problem directly, but we perform some preprocessing on the
systemP first.

6.3. Preprocessing

The preprocessing part transforms the input systemP into another much larger system
P∞ which is then used to solve the word problem ofIM(G)/P . This leads to an optimal
algorithm as we will discuss later.

The underlying undirected graph of the Cayley graphC(F,Σ) of the free groupF is a
tree. The nodes can be represented by reduced words fromΓ∗. A subsetS ⊆ F is called
suffix-closed if for all reduced wordsuv ∈ S we havev ∈ S, too.

Let P be a finite list of pairs(E,E′) as above. We insistE ⊆ E′, but the assumption
1 ∈ E is not needed anymore. In a first step of our preprocessing phase we compute a finite

12
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suffix-closed subsetS ⊆ F such that
⋃

(E,E′)∈P

HE′ ⊆ SH,

whereH is from (9). It is clear that the computation of a suitable setS ⊆ F is possible
in polynomial time with respect to the size ofP . The important point is that whenever
x ∈ gE′ for someg ∈ G and(E,E′) ∈ P , thenx ∈ FSH: Indeed, letg = fh with
f ∈ F andh ∈ H. Thenx ∈ fHE′ ⊆ fSH. As we will see this makes it possible to
replace the relation=⇒

P
by some relation=⇒

P∞,F
. Thus, most of our work can be performed

over a tree-like structure: the Cayley graph ofF .
We first define a systemP0 as follows:

P0 = {(B,B′) | B ⊆ B′ ⊆ SH, B =⇒
P

B′}.

Lemma 9. LetU,U ′ ⊆ G. Then we haveU =⇒
P

U ′ if and only ifU =⇒
P0,F

U ′.

Proof. By definition, if U =⇒
P0,F

U ′ then there is somef ∈ F and (B,B′) ∈ P0 with

fB ⊆ U andU ′ = U ∪ fB′. On the other hand, sinceB =⇒
P

B′ there is someg ∈ G and

(E,E′) ∈ P with gE ⊆ B andB′ = B ∪ gE′. Thus, we getfgE ⊆ U becausefB ⊆ U

andgE ⊆ B, and we getU ′ = U ∪ fgE′ becauseU ′ = U ∪ fB′, B′ = B ∪ gE′ and
fB ⊆ U . HenceU =⇒

P
U ′.

For the other direction, letU =⇒
P

U ′. For somef ∈ F , h ∈ H, and(E,E′) ∈ P we

obtainfhE ⊆ U andU ′ = U ∪ fhE′. We havehE ⊆ hE′ ⊆ SH by definition ofS, and
hE =⇒

P
hE′. Hence(hE, hE′) ∈ P0 and thereforeU =⇒

P0,F
U ′.

In the following letΓ1 = Γ ∪ {1}. Thus,Γ1 is the ball of radius1 in the Cayley graph
of F . SinceΓ1 is finite (in fact its size is a constant, ifG is not part of the input) we have
the notion of a normal form from the end of Section 4.1. Leti ≥ 0 andPi already defined
as a system of pairs(B,B′) withB ⊆ B′ ⊆ SH. Recall thatB

max
=⇒
Pi,Γ1

B̂ definesB̂ in terms

of B with respect toPi. Let us definePi+1 as follows:

Pi+1 = {(B,B′) | B ⊆ SH, B′ = B̂ ∩ SH, B
max
=⇒
Pi,Γ1

B̂}.

Observe that there are exactly2|SH| rules inPi+1. The computation ofPi+1 (and its rep-
resentation) is expensive, but still it can be performed in exponential time in the size of
the original systemP . Note also that if(B,B′) ∈ Pi then there is exactly one subset
B′′ ⊆ SH such thatB′ ⊆ B′′ and(B,B′′) ∈ Pi+1. This follows because1 ∈ Γ1.

Lemma 10. Let i ≥ 0 andU,U ′ ⊆ G be finite subsets ofG. Then the following statements
are equivalent:

• ∃V : U
∗

=⇒
P

V andU ′ ⊆ V .

• ∃V ′ : U
∗

=⇒
Pi,F

V ′ andU ′ ⊆ V ′.

13
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Proof. The equivalence holds fori = 0 by Lemma 9.
Thus, leti ≥ 0 and assume first thatU

∗
=⇒
Pi,F

V for someU ′ ⊆ V . We have to show that

there is someV ′ with U
∗

=⇒
Pi+1,F

V ′ andU ′ ⊆ V ′. However, this is trivial, because for each

(B,B′) ∈ Pi there is some(B,B′′) ∈ Pi+1 with B′ ⊆ B′′.
It remains to show the other direction. Assume thatU

∗
=⇒

Pi+1,F
V ′ andU ′ ⊆ V ′. It

is enough to show that there isV with V ′ ⊆ V andU
∗

=⇒
Pi,F

V . Let for this purpose

P̂ = {(B, B̂) | B ⊆ SH,B
max
=⇒
Pi,Γ1

B̂}. Clearly for each(B,B′) ∈ Pi+1 there is now some

(B, B̂) ∈ P̂ with B′ ⊆ B̂. Hence, for some subsetV ′′ we haveU
∗

=⇒
bP,F

V ′′ andV ′ ⊆ V ′′.

It is therefore enough to find someV with U
∗

=⇒
Pi,F

V andV ′′ ⊆ V . But this is again trivial

because(B, B̂) ∈ P̂ impliesB
∗

=⇒
Pi,F

B̂.

Recall that(B,B′) ∈ Pi implies the existence of some unique(B,B′′) ∈ Pi+1 with
B ⊆ B′ ⊆ B′′ ⊆ SH. There are at most exponentially many rules and each rule can
change at most polynomially often when increasing the indexi. Thus, after an exponential
time computation we must find an indexi ≥ 0 such thatPi = Pi+1. In order to be precise
we havei ≤ |SH| 2|SH|.

We stop the preprocessing phase here and defineP∞ = Pi. From our construction and
Lemma 10, we immediately obtain:

Lemma 11. The following assertions hold:

• For all (B,B′) ∈ P∞ we haveB′ = B̂ ∩ SH, whereB
max
=⇒

P∞,Γ1

B̂.

• ∃V : U
∗

=⇒
P

V andU ′ ⊆ V if and only if∃V ′ : U
∗

=⇒
P∞,F

V ′ andU ′ ⊆ V ′.

This finishes the preprocessing phase. By this phase we are left with the following
problem:

INPUT: Finite subsetsU,U ′ ⊆ G.
QUESTION: Is thereV such thatU

∗
=⇒

P∞,F
V andU ′ ⊆ V ?

6.4. Solving the word problem

The basic idea is to replace the relation
∗

=⇒
P∞,F

in the problem above by some
∗

=⇒
P∞,W

where

W ⊆ F is finite. We fix for this section the following notation: LetP andP∞ as above
and consider two finite subsetsU,U ′ ⊆ G. There is a finite suffix-closed setS ⊆ F such
that(B,B′) ∈ P∞ impliesB ⊆ B′ ⊆ SH. We letW ⊆ F be some finite subtree of the
Cayley graph ofF with

{1} ∪ U ∪ U ′ ⊆WSH. (15)

We letÛ be defined byU
max
=⇒

P∞,W
Û .

14
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We will prove the following theorem which reduces the word problem ofIM(G)/P to
the problem of computinĝU .

Theorem 12. The following statements are equivalent:

(a) ∃V : U
∗

=⇒
P

V andU ′ ⊆ V ,

(b) U ′ ⊆ Û .

The direction from (b) to (a) has been seen in Lemma 10. The difficult part is to show
the direction from (a) to (b). This will cover the rest of the section.

The following notation is crucial: For a subsetV ⊆ G and an elementf ∈ F define
the derivation

V ◦ f = V ′

by V ′ = V ∪ fB′, where(B,B′) ∈ P∞ andfB = V ∩ fSH.
Note thatV ◦ f is defined for allV ⊆ G andf ∈ F since all subsets ofSH appear as a

left-hand side of some rule inP∞. Clearly,V ◦f = V ′ impliesV =⇒
P∞,F

V ′, andV =⇒
P∞,F

V ′

impliesV ′ ⊆ V ◦ f for somef ∈ F .
By Lemma 11, there is someV with U

∗
=⇒

P
V andU ′ ⊆ V if and only if there is a

sequence(f1, . . . , fm) with fi ∈ F for 1 ≤ i ≤ m such that

U ′ ⊆ Û ◦ f1 ◦ · · · ◦ fm.

SinceU ′ ⊆ WSH by (15) it is therefore enough to prove the following lemma inorder to
show Theorem 12:

Lemma 13. Letf1, . . . , fm ∈ F . Then we have

Û ◦ f1 ◦ · · · ◦ fm ∩WSH ⊆ Û .

First we restrict our attention to some special type of derivations which we call tree-like.

Definition 14. A derivationÛ ◦ f1 ◦ · · · ◦ fm is calledtree-like, if the following conditions
hold:

(1) W = {f1, . . . , fn} for somen ≤ m.
(2) fi /∈ {f1, . . . fi−1} for 1 ≤ i ≤ m.
(3) For all 1 < i ≤ m there is somej ∈ {1, . . . , i−1} and somea ∈ Γ with fja = fi

in F .

The conditions above mean that{f1, . . . , fi} forms a subtree of sizei in the Cayley
graph ofF for all i and which includesW for n ≤ i ≤ m. Moreover, we insist that
m ≥ |W | = n.

The next statement is the key lemma. It says that in a tree-like derivation, if a right-hand
side of a rule appears in a subset, then this subset remains invariant. It cannot become larger
by further applications of rules. More formally:

15
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Lemma 15. Let Û ◦ f1 ◦ · · · ◦ fm be a tree-like derivation. For1 ≤ i ≤ m define a subset
B(i) of SH by

fiB(i) = Û ◦ f1 ◦ · · · ◦ fi ∩ fiSH.

ThenB(i) is a right-hand side of a rule inP∞, and we have:

fiB(i) = Û ◦ f1 ◦ · · · ◦ fm ∩ fiSH.

Proof. The statement is trivial form = n becausêU ◦ f1 ◦ · · · ◦ fn = Û , due toW =

{f1, . . . , fn} and the fact̂U
max
=⇒

P∞,W
Û . Moreover, it is easy to see thatB(i) is a right-hand

side of a rule inP∞ for all i.
Now, letm > n andV = Û ◦ f1 ◦ · · · ◦ fm−1. Note that

V ⊆
⋃

i<m

fiSH (21)

by the choice ofW in (15). We have to show that

fiB(i) = V ◦ fm ∩ fiSH

for all 1 ≤ i ≤ m. By definition offiB(i) this holds fori = m. By induction we may
assume thatfiB(i) = V ∩ fiSH for all 1 ≤ i < m.

Choosej ∈ {1, . . . ,m − 1} and a ∈ Γ such thatfja = fm in F . Assume that
fiSH ∩ fmSH 6= ∅ for some1 ≤ i < m. Then for somex, y ∈ S we have:

fix = fmy.

This is true because
⋃

h∈H Fh is a disjoint union. The situation looks as follows:

fi

fj

fm

a

{f1, . . . , fm−1}

Since the Cayley graph ofF is a tree, the geodesic fromfi to fm passes throughfj . This
meansfix = fmy = fjz, wherez is either a suffix ofx or a suffix ofy:

fix = fmy = fjz

fi fj fm

SinceS is suffix-closed we deduce thatz ∈ S and hencefiSH ∩fmSH ⊆ fjSH. By (21)
it follows that

fmSH ∩ V ⊆ fmSH ∩
⋃

i<m

fiSH ⊆ fjSH.
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Hence,fmSH ∩ V ⊆ fjSH ∩ V = fjB(j) ⊆ V . Therefore we have

V ◦ fm = V ∪ (fjB(j)) ◦ fm. (24)

Now, (fjB(j)) ◦ fm = fj(B(j) ◦ a), becausefm = fja with a ∈ Γ. Moreover,B(j) is
the right-hand side of some rule inP∞. Thus, by Lemma 11:

B(j) ◦ a ∩ SH = B(j).

It follows

(fjB(j)) ◦ fm ∩ fjSH = fj(B(j) ◦ a ∩ SH) = fjB(j)

and therefore

V ◦ fm ∩ fjSH = (V ∪ (fjB(j)) ◦ fm) ∩ fjSH (by (24))

= (V ∩ fjSH) ∪ ((fjB(j)) ◦ fm ∩ fjSH)

= (V ∩ fjSH) ∪ fjB(j)

= V ∩ fjSH

= fjB(j) ⊆ V.

We obtain for1 ≤ i < m:

V ◦ fm ∩ fiSH = (V ∪ (V ◦ fm ∩ fmSH)) ∩ fiSH

= (V ∩ fiSH) ∪ (V ◦ fm ∩ fiSH ∩ fmSH)

⊆ fiB(i) ∪ (V ◦ fm ∩ fiSH ∩ fjSH)

⊆ fiB(i) ∪ (fiSH ∩ V )

= fiB(i).

SincefiB(i) ⊆ V ◦ fm ∩ fiSH, it follows thatfiB(i) = V ◦ fm ∩ fiSH.

The following lemma shows that we can restrict to tree-like derivations.

Lemma 16. Letg1, . . . , gk ∈ F . Then there is a tree-like derivation̂U ◦ f1 ◦ · · · ◦ fm such
that:

Û ◦ g1 ◦ · · · ◦ gk ⊆ Û ◦ f1 ◦ · · · ◦ fm.

Proof. Clearly for everyg ∈ F we have

Û ◦ g1 ◦ · · · ◦ gk ⊆ Û ◦ g ◦ g1 ◦ · · · ◦ gk.

Hence we may replace{g1, . . . , gk} by some larger set. We add many newg on the left of
the sequenceg1, . . . , gk. This enlarges the valuek, but then we may assume that for some
tree-like derivationÛ ◦ f1 ◦ · · · ◦ fm with k ≥ m we have{g1, . . . , gk} = {f1, . . . , fm}

and in factgi = fi for 1 ≤ i ≤ m.
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We showÛ ◦ g1 ◦ · · · ◦ gk ⊆ Û ◦ f1 ◦ · · · ◦ fm by induction overk. The casek = m is
clear. Now assume thatk > m. By induction, we havêU ◦g1◦· · ·◦gk−1 ⊆ Û ◦f1◦· · ·◦fm.
Hence it is enough to show that

Û ◦ f1 ◦ · · · ◦ fm ◦ gk ⊆ Û ◦ f1 ◦ · · · ◦ fm.

Howevergk = fi for some1 ≤ i ≤ m.
Let V = Û ◦ f1 ◦ · · · ◦ fm. We showV ◦ fi = V for all 1 ≤ i ≤ m. As in Lemma 15

let fiB(i) = Û ◦ f1 ◦ · · · ◦ fi ∩ fiSH. Then Lemma 15 says thatV ∩ fiSH = fiB(i).
SinceB(i) is a right-hand side ofP∞, we obtain

V ◦ fi = V ∪ (fiB(i) ◦ fi) = V ∪ fiB(i) = V.

We are now able to prove Lemma 13:

Proof of Lemma 13.By Lemma 16 we may assume thatÛ ◦ f1 ◦ · · · ◦ fm is tree-like. In
particular,n ≤ m andW = {f1, . . . , fn}. Every element ofWSH is contained in some
fiSH for 1 ≤ i ≤ n. By Lemma 15 we have

Û ◦ f1 ◦ · · · ◦ fm ∩ fiSH = Û ◦ f1 ◦ · · · ◦ fi ∩ fiSH.

However,Û ◦ f1 ◦ · · · ◦ fi = Û for everyi ≤ n. Therefore

Û ◦ f1 ◦ · · · ◦ fm ∩WSH ⊆ Û ◦ f1 ◦ · · · ◦ fm ∩ (
n⋃

i=1

fiSH)

=

n⋃

i=1

(Û ◦ f1 ◦ · · · ◦ fm ∩ fiSH)

=

n⋃

i=1

(Û ◦ f1 ◦ · · · ◦ fi ∩ fiSH)

=

n⋃

i=1

(Û ∩ fiSH) ⊆ Û .

This proves Lemma 13 and hence Theorem 12.

6.5. A Linear Time Computation

The setting is as follows. The virtually free groupG is fixed as well as the systemP . In a
preprocessing phase we have computed the systemP∞ and a suffix-closed subsetS ⊆ F

such thatB ⊆ B′ ⊆ SH, for all (B,B′) ∈ P∞ in constant time.
The input to our problem are two finite subsetsU,U ′ ⊆ G. We assume that they are

given as alternating sequences as described in Section 6.1.We work on a RAM, therefore
we may use pointers to realize subtrees of the Cayley graph ofF . SinceS andH are viewed
as constants we can realize a subtreeW in linear time in the input size ofU andU ′ such
thatW satisfies

{1} ∪ U ∪ U ′ ⊆WSH.
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Our task is now to computeU
max
=⇒

P∞,W
Û in linear time. The final test whetherU ′ ⊆ Û can

be performed in linear time by readingU ′ once more.
In order to computeU

max
=⇒

P∞,W
Û we build a listL = (f1, . . . , fn) which initially con-

tains all elements ofW .
As long asL is not empty we perform the following steps: Letf be the first element of

L. Removef fromL. Compute a setB such thatfB = fSH∩U in constant time. By table
lookup inP∞ find a setB′ such that(B,B′) ∈ P∞. If B 6= B′, then replaceU byU ∪fB′

in constant time, and add all elementsg ∈ W to the listL, wheregSH ∩ fB′ 6= ∅ and
g 6= f . This amounts to calculate the intersectionW ∩ fB′H−1S−1 and can be performed
in constant time. (IfB = B′ then we do nothing.)

Once the listL is empty we claim thatU = Û . Before we prove that claim let us
analyze the complexity. The inner parts of the loop can be performed in constant time.
Thus, we have to give an upper bound on the number of times we can enter the loop. After
each iteration of the loop, the listL is shorter or we have added less thanc elements where
c = |S|2|H|2 is a constant. Let us associate a weightω to the pair(U,L) by

ω = c|WSH \ U | + |L|.

Here|L| denotes the length of the listL. The weight is always a non-negative integer and
in the beginning it is at most(c + 1)|WSH|. This is linear in the input size ofU andU ′.
We show that the weight decreases in each round.

Inside the loop there are two cases: eitherB = B′ or B 6= B′. If B = B′ thenU
is not changed but|L| decreases by1. If B 6= B′, thenU becomes larger. We still have
U ⊆WSH and hence the size of|WSH \ U | decreases by at least1. This subtracts from
the weight at leastc units, but we add toL less thanc elements. Thus the weight decreases
totally by at least1. Thus, after at most(c+ 1)|WSH| rounds the listL must be empty.

It remains to show, that we have calculatedÛ . For this we show the following invariant:
After each round of the loop the listL contains all elementsg ∈ W such thatU ◦ g 6= U .
This is certainly true in the beginning because at this timeL contains all elements ofW .
Consider the situation wheref is the first element ofL andf has just been removed. Inside
the loop we have replacedU by U ◦ f and sinceU ◦ f ◦ f = U ◦ f we do not needf in
L anymore in order to keep the invariant for this round. Hence if we are in the situation
U = U ◦f then the invariant is not changed. Thus we may assume thatU has been replaced
byU ∪ fB′ with B 6= B′.

Now, if

(U ∪ fB′) ◦ g 6= U ∪ fB′,

for someg ∈ W theng 6= f and eitherU ◦ g 6= U or gSH ∩ fB′ 6= ∅. In the first case
g is still in the list and in the second caseg is added to the listL. Thus, in both casesg
is in the listL after the inner part of the loop has been finished. Once the list L is empty
the invariant says thatU is irreducible with respect to the rewriting system=⇒

P∞,W
. Hence

U = Û .
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This shows, that the set̂U can be calculated in linear time. Summarizing we have shown
the following result:

Theorem 17. LetG be a finitely generated virtually-free group and letP be a finite idem-
potent presentation overIM(G). Then the word problem of the inverse monoidIM(G)/P

can be solved in linear time on a RAM.

The linear time complexity above is in sharp contrast to the uniform time complexity,
where the groupG and the systemP become part of the input.

Theorem 18. The following problem is EXPTIME-complete:
INPUT: A finitely generated virtually free groupG, given say by a finite confluent string

rewriting system as in Section 6.1, a finite idempotent presentationP overIM(G), elements
g, g′ ∈ G, and finite setsU,U ′ ⊆ G with 1, g ∈ U and1, g′ ∈ U ′

QUESTION: Do we have(U, g) = (U ′, g′) in IM(G)/P?

Proof. In the uniform setting the algorithm presented here can still be performed in expo-
nential time. The problem is hard for exponential time due to[11].

6.6. The word problem ofIM(G)/P for the Margolis-Meakin expansion

In Section 6.3–6.5 we have restricted our attention toG = G. However, we can generalize
the results at least to a situation where the groupG acts freely on the setG. This means
gx = x impliesg = 1 for g ∈ G andx ∈ G. In this case, every orbit ofG is a copy ofG.
Thus, the setG can be written as a disjoint union of copies ofG.

We fix a setB ⊆ G of minimal cardinality such that
⋃

(E,E′)∈P

E′ ⊆ GB.

SinceB has minimal cardinality,gb = g′b′ for g, g′ ∈ G, b, b′ ∈ B impliesb = b′ andg =

g′. Note that we may assume thatB is a finite set included in the union
⋃

(E,E′)∈P E
′. In

particular, the sizeB is smaller than the input size ofP . The next step in the preprocessing
phase computes a finite suffix-closed subsetS ⊆ F such that

⋃

(E,E′)∈P

HE′ ⊆ SHB.

Basically, all steps go through now, if we replace all occurrences ofSH by SH, whereH
denotes the setHB. In particular Assertion (6.4) remains valid because the action ofG on
G is free. Details are left to the interested reader. Thus, we can solve the word problem of
IM(G)/P , if first, G acts freely onG, and second, if there is an effective decomposition of
G as a disjoint union of copies ofG.

In particular, we can cope with the construction of Margolisand Meakin [13,14] as
mentioned in the introduction. The elements ofM(G,Σ) are pairs of the form(U, g),
whereU is a finite and connected subgraph of the Cayley graphC(G,Σ), which contains1
andg. Multiplication of two such pairs is again defined by the rule(2). The groupG acts
freely on the vertices and directed edges of the Cayley graphC(G,Σ) by left multiplication.
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7. Decision problems for rational subsets ofIM(G)/P

In this section, we associate with the inverse monoidIM(G)/P a relational structure
R(IM(G)/P ) and we prove that this structure has a decidable first-order theory. As a conse-
quence, we deduce the decidability of several computational problems concerning rational
subsets ofIM(G)/P . First, we recall some basic definitions from logic.

7.1. Logic

See [8] for more details on the subject of this section. Asignatureis a countable setS
of relational symbols, where each relational symbolR ∈ S has an associated aritynR. A
(relational) structureover the signatureS is a tupleA = (A, (RA)R∈S), whereA is a set
(the universe ofA) andRA is a relation of aritynR over the setA, which interprets the
relational symbolR. We will assume that every signature contains the equality symbol =
and that=A is the identity relation on the setA. As usual, a constantc ∈ A can be encoded
by the unary relation{c}. Usually, we denote the relationRA also withR.

Next, let us introducemonadic second-order logic (MSO-logic). Let V1 (resp.V2) be
a countably infinite set offirst-order variables(resp.second-order variables) which range
over elements (resp. subsets) of the universeA. First-order variables (resp. second-order
variables) are denotedx, y, z, x′, etc. (resp.X, Y , Z, X ′, etc.).MSO-formulasover the
signatureS are constructed from the atomic formulasR(x1, . . . , xnR

) andx ∈ X (where
R ∈ S, x1, . . . , xnR

, x ∈ V1, andX ∈ V2) using the boolean connectives¬,∧, and∨,
and quantifications over variables fromV1 andV2. The notion of a free occurrence of a
variable is defined as usual. A formula without free occurrences of variables is called an
MSO-sentence. For an MSO-sentenceϕ we writeA |= ϕ if ϕ evaluates to true inA.

A first-order formulaover the signatureS is an MSO-formula that does not contain any
occurrences of second-order variables. Thefirst-order theoryof the structureA is the set
of all first-order sentencesϕ such thatA |= ϕ.

7.2. Relation structures over rational subsets

Recall that for a monoidM , the classRAT(M) of all rational subsetsofM is the smallest
class of subsets ofM , which contains all finite subsets and which is closed under union,
multiplication, and Kleene star. The Kleene star associates to a subsetL ⊆ M the sub-
monoidL∗ generated byL. A rational languageL ∈ RAT(M) can be represented either
by a rational (or regular) expression with constants fromM or by a (non-deterministic)
finite automaton with transitions labeled with elements fromM .

With the monoidM (with neutral element1) we associate the relational structure

R(M) = (M, (reachL)L∈RAT(M), 1),

where

reachL = {(x, y) | ∃z ∈ L : xz = y}.

The following result generalizes a corresponding result from [11] for the monoid
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IM(F,Σ)/P , whereF is the free group generated byΣ andP is a finite idempotent pre-
sentation.

Theorem 19. LetG be a finitely generated virtually-free group and letP be a finite idem-
potent presentation overIM(G). Then the first-order theory of the structureR(IM(G)/P )

is decidable.

The proof of Theorem 19 follows the proof for the corresponding result from [11]. We
will reduce the first-order theory ofR(IM(G)/P ) to the monadic second-order theory of
the Cayley graphC(G,Σ). Before we do this, let us first recall some known results on
monadic second-order logic over graphs.

In the following, we view a Cayley graphC(G,Σ) of a groupG as a directed graph
with edges labeled by symbols fromΣ. There is an edge(g, h) with labela if and only if
ga = h. Thus, as a relational structure the universe is the setG with the constant1 and for
eacha ∈ Σ there is binary relation

Ea =
{

(g, h) ∈ G×G
∣∣ g−1h = a

}
.

Implicitly, we may think that for each edge(g, h) there is also also an edge(h, g) with
labelh−1g. For virtually-free groups, Muller and Schupp have shown:

Theorem 20 ([19]). LetG be virtually-free groupG with a finite generating setΣ. Then
the MSO-theory of the Cayley graphC(G,Σ) is decidable.

Next let us introduce a few MSO-formulas, which are interpreted in the Cayley graph
of the virtually-free groupG: Let P be a finite idempotent presentation overIM(G). Fol-
lowing [14], we define for a subsetU ⊆ G its closure

clP (U) =
⋃

{V ⊆ G | U
∗

=⇒
P

V } ⊆ G.

It follows that (U, g) = (V, h) in IM(G)/P if and only if g = h in G and clP (U) =

clP (V ). It is easy to see that there exists an MSO-formulaCLP (X,Y ), expressing that
Y = clP (X) (see also [14]): We just have to say thatY is the smallest (with respect to
inclusion) subset ofG which containsX and which is closed under the relation=⇒

P
, i.e,

∀Z : Y =⇒
P

Z =⇒ Z = Y . The rewrite relation=⇒
P

is easily MSO-definable inC(G,Σ).

We also have to express in MSO (overC(G,Σ)) that a subset ofG is finite. First we
choose a free subgroupF of finite index and a finite setH (c.f. (9)) such thatU ⊆ G

is infinite if and only if for someh ∈ H the intersectionF ∩ Uh−1 ⊆ F is infinite.
The setsUh−1 are MSO-definable fromU in C(G,Σ). Moreover, the free subgroupF is
MSO-definable, too (as is any finitely generated subgroup ofG).

Using König’s lemma, finiteness is MSO-definable in finitely branching trees. In par-
ticular, this is the case for the Cayley graph of the finitely generated free groupF .

Finally we will need the following statement concerning MSOover arbitrary graphs,
which was shown in [11]:

Proposition 21. Let Γ be a finite alphabet and letL ⊆ Γ∗ be a rational language. There
exists an MSO-formulaReachL(x, y,X) over the signature consisting of binary relation
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symbolsEa, a ∈ Γ, such that for every directed edge-labeled graphG = (V, (Ea)a∈Γ), all
nodess, t ∈ V , and every finite set of nodesU ⊆ V we have:G |= ReachL(s, t, U) if and
only if there exist a path(p0, . . . , pm) (pi ∈ V ) anda1, . . . , am ∈ Γ with p0 = s, pm = t,
(pi−1, pi) ∈ Eai

for i ∈ {1, . . . ,m}, a1 · · · am ∈ L, andU = {p0, . . . , pm}.

Proof of Theorem 19.We will reduce the first-order theory ofR(IM(G)/P ) to the MSO-
theory ofC(G,Σ). SinceG is a finitely generated virtually free group, we can concludethe
proof using Theorem 20.

Let us fix a first-order sentenceϕ over the (infinite) signature ofR(IM(G)/P ). Let
L1, . . . , Ln ⊆ IM(G)/P be all rational languages, which appear inϕ, and assume thatLi

is represented inϕ by a finite automatonAi with transition labels fromIM(G). LetΘ ⊆ G

be the union ofΣ and of all finite subsetsU ⊆ G such that(U, g) labels a transition in one
of the automataA1, . . . , An. Hence, for every(U, g) ∈ IM(G) which labels a transition of
someAi, the setU is connected in the Cayley graphC(G,Θ), i.e., it belongs toIM(G,Θ).
Let Γ = Θ ∪ Θ−1 and recall that there is a canonical mapping

γ : Γ∗ → IM(G,Θ) → IM(G)/P

defined byg 7→ ({1, g} , g) for g ∈ Γ ⊆ G. Each(U, g) ∈ IM(G,Θ) can be represented
by a finite word over the alphabetΓ: If U = { g1, . . . , gk } then a possible representing
word is (g1g

−1
1 ) · · · (gkg

−1
k )g. Now everyAi can be viewed as a finite automaton where

the transitions are labeled with words overΓ. Thus, eachAi also accepts a subset ofΓ∗,
and it is justified to use the same symbolLi to denote the accepted subset ofIM(G)/P as
well as the accepted subset ofΓ∗.

We now translate the first-order sentenceϕ overR(IM(G)/P ) into an MSO-sentence
ϕ̂ over the Cayley graphC(G,Θ) such thatR(IM(G)/P ) |= ϕ if and only if C(G,Θ) |= ϕ̂.
The following translation is analogous to the one for the case thatG is free from [11]. For
completeness, we will repeat the arguments.

Let x be a variable inϕ, which ranges over elements ofIM(G)/P . Hence,x will be
interpreted by a pair(U, g), whereU ⊆ G is finite and1, g ∈ U . Therefore, we associate
with x two variables in the MSO-sentencêϕ:

• an MSO-variableX ′ representingU and
• a first-order variablex′, representingg.

The fact, that a pair(X ′, x′) represents indeed an element of the monoidIM(G) (and hence
IM(G)/P ) is expressed by the MSO-formula (over the signature ofC(G,Θ)):

valid(x′,X ′) = (1 ∈ X ′ ∧ x′ ∈ X ′ ∧ X ′ is finite).

Recall that finiteness of a subset ofG can be expressed in MSO. Equality in the monoid
IM(G)/P is expressed by the MSO-formula

eq(x′,X ′, y′, Y ′) = (x′ = y′ ∧ ∃Z : CLP (X ′, Z) ∧ CLP (Y ′, Z)).

We now definêϕ inductively as follows:

(a) Forϕ = (x = y) defineϕ̂ = eq(x′,X ′, y′, Y ′).

23



June 6, 2007 15:52 WSPC/INSTRUCTION FILE ijac˙final

(b) LetL ∈ {L1, . . . , Ln }. Forϕ = reachL(x, y) define

ϕ̂ = ∃X ′′ ∃Y ′′ ∃Z :





valid(x′,X ′′) ∧ valid(y′, Y ′′) ∧

eq(x′,X ′, x′,X ′′) ∧ eq(y′, Y ′, y′, Y ′′) ∧

Y ′′ = X ′′ ∪ Z ∧ ReachL(x′, y′, Z)



 ,

whereReachL is the formula from Proposition 21.
(c) Forϕ = ¬ψ defineϕ̂ = ¬ψ̂.
(d) Forϕ = ψ1 ∧ ψ2 defineϕ̂ = ψ̂1 ∧ ψ̂2.
(e) Forϕ = ∃x : ψ defineϕ̂ = ∃x′ ∃X ′ : valid(x′,X ′) ∧ ψ̂.

The formula

∃X ′′ ∃Y ′′ ∃Z :





valid(x′,X ′′) ∧ valid(y′, Y ′′) ∧

eq(x′,X ′, x′,X ′′) ∧ eq(y′, Y ′, y′, Y ′′) ∧

Y ′′ = X ′′ ∪ Z ∧ ReachL(x′, y′, Z)



 (35)

in (b) expresses the following: There are pairs(X ′′, x′) and (Y ′′, y′), which represent
the same elements ofIM(G)/P as (X ′, x′) and (Y ′, y′), respectively. Moreover, there
is a path inC(G,Σ), which starts in the nodex′ ∈ G, ends iny′ ∈ G and is la-
beled by a word from the rational languageL. The set of nodes along this path isZ and
therefore(x′−1Z, x′−1y′) represents an element ofL. Finally, sinceY ′′ = X ′′ ∪ Z we
have(X ′′, x′)(x′−1Z, x′−1y′) = (Y ′′, y′) in IM(G). Thus, inIM(G)/P we have (as de-
sired) (X ′, x′)(x′−1Z, x′−1y′) = (X ′′, x′)(x′−1Z, x′−1y′) = (Y ′′, y′) = (Y ′, y′) with
(x′−1Z, x′−1y′) ∈ L. Vive versa, if(X ′, x′)(U, g) = (Y ′, y′) for some(U, g) ∈ L in
IM(G)/P , then (35) is easily seen to be satisfied. Now it is straightforward to verify that
R(IM(G)/P ) |= ϕ if and only if C(G,Θ) |= ϕ̂. In the final step we just translate the
MSO-formulaϕ̂ to another formulãϕ such thatC(G,Θ) |= ϕ̂ if and only if C(G,Σ) |= ϕ̃.
This is easy because eachθ ∈ Θ is effectively a word inΣ∗. This concludes the proof of
Theorem 19 with the help of Theorem 20.

Since every monoidIM(G,Σ)/P , for Σ a finite generating set ofG, is a finitely gener-
ated submonoid ofIM(G)/P and hence rational, it follows from Theorem 19 that also the
first-order theory of every structureR(IM(G,Σ)/P ) is decidable. One should notice that
the first-order theory ofR(IM(G,Σ)/P ) depends on the generating setΣ. To see this, let
G be the free group generated bya andb, letP = ∅, and consider the two generating sets
Σ = {a, b} andΣ′ = {a, b, ab} of G. Let c = ({1, a, ab}, 1) ∈ IM(G,Σ) ⊆ IM(G,Σ′);
this element is first-order definable inR(IM(G,Σ)) (note that the neutral element is a
constant in the structureR(IM(G,Σ))). Now let L = {({1, a}, 1)}, which is a rational
subset ofIM(G,Σ). Assume thatx is an element ofIM(G,Σ) such thatreachL(x, c).
We must havex = c. On the other hand, we havereachL(y, c) for the elementy =

({1, ab}, 1) ∈ IM(G,Σ′) \ IM(G,Σ). Thus, the sentence∃x : reachL(x, c) ∧ x 6= c

belongs to the first-order theory ofR(IM(G,Σ′)) but it does not belong to the first-order
theory ofR(IM(G,Σ)).

Let us finish this paper with some applications of Theorem 19.In the emptiness problem
for boolean combinations of rational subsets of a monoidM one asks for a given boolean
combinationB of sets fromRAT(M), whetherB = ∅. Theorem 19 immediately implies:
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Theorem 22. LetG be a finitely generated virtually-free group and letP be a finite idem-
potent presentation overIM(G). Then the emptiness problem for boolean combinations of
rational subsets ofIM(G)/P is decidable.

The membership problem problem for rational subsets ofIM(G)/P (i.e., the question,
whether a given element ofIM(G)/P belongs to a given rational subset ofIM(G)/P ) is
clearly reducible to the emptiness problem for boolean combinations of rational subsets
of IM(G)/P . Hence, also the former problem is decidable. Since every finitely generated
submonoid of a monoidM belongs toRAT(M), also the submonoid membership problem
of IM(G)/P (i.e., the question, whether a given element ofIM(G)/P belongs to a given
finitely generated submonoid ofIM(G)/P ) is decidable.

8. Open problems

The undecidability results from Section 5 make it hard to findnon-virtually-free groups
G such that for every finite idempotent presentationP over IM(G), the word problem of
IM(G)/P is decidable. Moreover, our techniques from Section 7 can bedefinitely not ex-
tended beyond the virtually-free case: By a result from [10]the MSO-theory of the Cayley
graph of a groupG is decidable if and only ifG is virtually-free. These results lead to an
open problem, which we state as a conjecture: IfG is not virtually-free, then there exists a
finite idempotent presentationP overIM(G) such that the word problem forIM(G)/P is
undecidable.

We have seen that the submonoid membership problem for a groupG can be reduced
to the word problem of someIM(G)/P , but it is open whether we can reduce it to the word
problem of some fixed finitely generated submonoid ofIM(G)/P .
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