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Abstract. We study the complexity of satisfiability for the expressive extension
ICPDL of PDL (Propositional Dynamic Logic), which admits intersection and
converse as program operations. Our main result is containment in2EXP, which
improves the previously known non-elementary upper bound and implies2EXP-
completeness due to an existing lower bound for PDL with intersection. The proof
proceeds by showing that every satisfiable ICPDL formula has a modelof tree-
width at most two and then giving a reduction to the emptiness problem for al-
ternating two-way automata on infinite trees. In this way, we also reprove in an
elegant way Danecki’s difficult result that satisfiability for PDL with intersection
is in 2EXP.

1 Introduction

Propositional Dynamic Logic (PDL) was introduced by Fischer and Ladner in 1979 as
a modal logic for reasoning about the input/output behaviour of programs [6]. In PDL,
there are two syntactic entities: formulas, built from Boolean and modal operators and
interpreted as sets of nodes of a Kripke structure; and programs, built from the operators
test, union, composition, and Kleene star (reflexive transitive closure) and interpreted as
binary relations in a Kripke structure. Since its invention, many different extensions of
PDL have been proposed, mainly by allowing additional operators on programs. Three
of the most prominent extensions are PDL with the converse operator (CPDL), PDL
with the intersection operator (IPDL), and PDL with the negation operator on programs
(NPDL), see the monograph [9] and references therein. While some of these extensions
such as CPDL are well-suited for reasoning about programs, most of them aim at the
numerous other applications that PDL has found since its invention. Notable examples
of such applications include agent-based systems [13], regular path constraints [2], and
XML-querying [1, 16]. In AI, PDL received attention due to its close relationship to
description logics [7] and epistemic logic [17].

The most important decision problem for PDL is satisfiability: is there a Kripke
structure which satisfies a given formula at some node? A classical result of Fischer and
Ladner states that satisfiability for PDL isEXP-complete [6, 15]. TheEXP upper bound
extends without difficulty to CPDL and can even be established for several extensions
of CPDL [18]. In contrast, the precise complexity of satisfiability for IPDL was a long
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standing open problem. In [4], Danecki proved a 2EXP upper bound. Alas, Danecki’s
proof is rather difficult and many details are omitted in the published version. One of the
reasons for the difficulty of IPDL is that, unlike PDL, it lacks the tree model property,
i.e., a satisfiable IPDL formula does not necessarily have a tree model. Danecki proved
that every satisfiable IPDL formula has a special model whichcan be encoded by a tree.
This observation paves the way to using automata theoretic techniques in decision pro-
cedures for IPDL. Only recently, a matching 2EXP lower bound for IPDL was shown
by Lange and the third author [10]. Regarding NPDL, it is longknown that satisfiability
is undecidable [9]. As recently shown in [9], the fragment ofNPDL, where program
negation is restricted to atomic programs, is decidable andEXP-complete.

In this paper, we consider extensions of PDL with (at least two of) converse, in-
tersection, and negation. Our main result concerns the complexity of satisfiability in
ICPDL, the extension of PDL with both converse and intersection. Decidability was
shown by the third author in [11] using a reduction to monadicsecond order logic over
the infinite binary tree. However, this only yields a nonelementary algorithm which does
not match the 2EXP lower bound that ICPDL inherits from IPDL. We prove that sat-
isfiability in ICPDL can be decided in 2EXP, and thus settle the complexity of ICPDL
as 2EXP-complete. There are some additional virtues of our result.First, we provide
a shorter and (hopefully) more comprehensible proof of the 2EXP upper bound for
IPDL. Second, the information logic DAL (data analysis logic) [5] is a fragment of
ICPDL (but not of IPDL) and thus inherits the 2EXP upper bound. And third, our result
has applications in description logic and epistemic logic,see [11] for more details.

Our main result is proved in three clearly separated parts. In part one, we establish
a certain model property for ICPDL based on the notion of treewidth. Tree width mea-
sures how close a graph is to a tree, and is one of the most important concepts in modern
graph theory with many applications in computer science. Asmentioned earlier, IPDL
(and hence also ICPDL) does not have the tree model property.We prove that ICPDL
enjoys an ”almost tree model property”: every satisfiable ICPDL formula has a model
of tree width at most two. This part of our proof is comparableto Danecki’s observation
that every satisfiable IPDL formula has a special model whichcan be encoded by a tree.

In part two of our proof, we use the established model property to give a poly-
time reduction of satisfiability in ICPDL to what we callω-regular tree satisfiability
in ICPDL. The latter problem is defined in terms of two-way alternating parity tree
automata (TWAPTAs). A TWAPTA is an alternating automaton that runs on infinite
node-labeled trees and has the possibility to move upwards and downwards in the tree.
Acceptance is defined via a parity condition. Infinite node-labeled trees can be viewed
in a natural way as Kripke structures and thus we can interprete ICPDL formulas in
such trees. Now,ω-regular tree satisfiability in ICPDL is the following problem: given
an ICPDL formulaϕ and a TWAPTAT , is there a tree accepted byT which is a model
for ϕ? Our reduction of satisfiability in ICPDL to this problem is based on a suitable
encoding of width two tree decompositions of Kripke structures. The TWAPTA con-
structed in the reduction accepts precisely such encodings.

Finally, in part three we reduceω-regular tree satisfiability in ICPDL to the empti-
ness problem for TWAPTAs. The latter problem was shown to beEXP-complete in [19].
Since our reduction ofω-regular tree satisfiability in ICPDL to TWAPTA-emptiness in-
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volves an exponential blow-up in automata size, we obtain an2EXP upper bound for
ω-regular tree satisfiability in ICPDL and also for standard satisfiability in ICPDL. The
reduction employs a technique from [8], where the first and second author proved that
the model-checking problem for IPDL over transition graphsof pushdown automata
is 2EXP-complete. In fact, this model-checking problem can be easily reduced toω-
regular tree satisfiability in ICPDL. This illustrates thatω-regular tree satisfiability in
ICPDL is of interest beyond its application in the current paper.

To obtain a more complete picture, we also investigate the option of extending
ICPDL with program negation. It turns out that in the presence of intersection, pro-
gram negation is problematic from a computational perspective. In particular, we prove
that already IPDL extended with negation restricted to atomic programs is undecidable.
This should be contrasted with the decidability result for PDL extended with atomic
negation mentioned above [12]. Missing proofs can be found in the appendix.

2 ICPDL

Let P be a set ofatomic propositionsandA a set ofatomic programs. Formulasϕ and
programsπ of the logic ICPDL are defined by the following grammar, wherep ranges
overP anda overA:

ϕ ::= p | ¬ϕ | 〈π〉 ϕ

π ::= a | π1 ∪ π2 | π1 ∩ π2 | π1 ◦ π2 | π∗ | π | ϕ?

We introduce the usual abbreviationsϕ1 ∧ ϕ2 = 〈ϕ1?〉ϕ2, ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2),
and [π]ϕ = ¬〈π〉¬ϕ. The fragment IPDL of ICPDL is obtained by dropping theπ
clause from the above grammar.

Thesemanticsof ICPDL is defined in terms of Kripke structures. AKripke structure
is a tupleK = (X, {→a | a ∈ A}, ρ), where (i)X is a set ofstates, (ii) →a ⊆ X ×X
is a transition relationfor eacha ∈ A, and (iii) ρ : X → 2P assigns to each state a set
of atomic propositions. Given a Kripke structureK = (X, {→a | a ∈ A}, ρ), we define
by mutual induction for each ICPDL programπ a binary relation[[π]]K ⊆ X ×X and
for each ICPDL formulaϕ a subset[[ϕ]]K ⊆ X as follows (◦ denotes the composition
operator for binary relations:R ◦ S = {(a, b) | ∃c : (a, c) ∈ R, (c, b) ∈ S):

[[p]]K = {x | p ∈ ρ(x)} for p ∈ P

[[¬ϕ]]K = X \ [[ϕ]]K

[[〈π〉ϕ]]K = {x | ∃y : (x, y) ∈ [[π]]K ∧ y ∈ [[ϕ]]K}

[[a]]K = →a for a ∈ A

[[ϕ?]]K = {(x, x) | x ∈ [[ϕ]]K}

[[π∗]]K = [[π]]∗K

[[π]]K = {(y, x) | (x, y) ∈ [[π]]K}

[[π1 opπ2]]K = [[π1]]K op [[π2]]K for op∈ {∪,∩, ◦}

Forx ∈ X we write(K,x) |= ϕ if x ∈ [[ϕ]]K . If (K,x) |= ϕ for somex ∈ X, thenK
is amodelof ϕ. The formulaϕ satisfiableif there exists some model forϕ.
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Since the converse operator can be pushed down to atomic programs, we assume
for the rest of this paper that converse is only applied to atomic programs. Let us set
A = {a | a ∈ A}. The size|ϕ| of an ICPDL formulaϕ and the size|π| of an ICPDL
programπ is defined as follows:|p| = |a| = 1 for all p ∈ P anda ∈ A ∪ A, |¬ϕ| =
|ϕ?| = |ϕ| + 1, |〈π〉ϕ| = |π| + |ϕ|, |π1 op π2| = |π1| + |π2| + 1 for op ∈ {∪,∩, ◦},
and|π∗| = |π| + 1.

The main result of this paper is the following.

Theorem 1. Satisfiability in ICPDL is2EXP-complete.

As discussed in the introduction, it suffices to give a 2EXP algorithm for satisfiability in
ICPDL because of the known 2EXP lower bound for IPDL [10]. The rest of the paper
is organized as follows. In Section 3, we show that every satisfiable ICPDL formula has
a model of tree width at most two. In Section 4, satisfiabilityof ICPDL formulas in a
model of tree width at most two is reduced toω-regular tree satisfiability in ICPDL. In
Section 6, the latter problem is shown to be in 2EXP. Finally, Section 7 contains the
undecidability proof for IPDL extended with negation of atomic programs.

3 Models of Tree-Width Two Suffice

We start with defining the tree-width of Kripke structures. For technical reasons, we
consider only countable structures in this context. As willbecome clear later, this can
be done w.l.o.g. LetK = (X, {→a | a ∈ A}, ρ) be a countable Kripke structure. A
tree decompositionof K is a tuple(T, (Xv)v∈V ), whereT = (V,E) is a countable
undirected tree,Xv is a subset ofX (also called abag) for all v ∈ V , and the following
conditions are satisfied:

–
⋃
v∈V Xv = X

– For every transitionx→a y of K there existsv ∈ V with x, y ∈ Xv.
– For everyx ∈ X, the set{v ∈ V | x ∈ Xv} is a connected subset of the treeT .

The width of this tree decomposition is the supremum of{|Xv| − 1 | v ∈ V }. Thetree
widthof a Kripke structureK is the minimalk such thatK has a tree decomposition of
width k. The purpose of this section is to prove the following theorem.

Theorem 2. Every satisfiable ICPDL formula has a countable model of treewidth at
most two.

As a preliminary to proving Theorem 2, we mutually define the set of subprograms
subp(α) and the set ofsubformulassubf(α), whereα is either an ICPDL formula or an
ICPDL program:

– subp(a) = {a}, subp(a) = {a, a}, subf(a) = supf(a) = ∅ for a ∈ A;
– subp(π) = {π} ∪ subp(π1) ∪ subp(π2) and subf(π) = subf(π1) ∪ subf(π2) if
π = π1 opπ2 for op∈ {∪,∩, ◦};

– subp(π∗) = {π∗} ∪ subp(π) andsubf(π∗) = subf(π);
– subp(ϕ?) = {ϕ?} ∪ subp(ϕ) andsubf(ϕ?) = subf(ϕ)
– subp(p) = ∅ andsubf(p) = {p} for p ∈ P;
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Fig. 1. Inductive definition of(T, (tv)v∈V ).

– subp(¬ϕ) = subp(ϕ) andsubf(¬ϕ) = {¬ϕ} ∪ subf(ϕ);
– subp(〈π〉ϕ) = subp(π)∪ subp(ϕ) andsubf(〈π〉ϕ) = {〈π〉ϕ}∪ subf(π)∪ subf(ϕ).

To prove Theorem 2, fix a satisfiable ICPDL formulaϕ0, a modelK = (X, {→a | a ∈
A}, ρ) of ϕ0, and a statex0 ∈ [[ϕ0]]K . Moreover, fix choice functionsW , U , C, andS
such that

– if ϕ = 〈π〉ψ ∈ subf(ϕ0) andx ∈ [[ϕ]]K , thenW (x, ϕ) = y ∈ X such that
y ∈ [[ψ]]K and(x, y) ∈ [[π]]K ;

– if π = χ ∪ σ ∈ subp(ϕ0) and(x, y) ∈ [[π]]K , thenU(x, π, y) = τ ∈ {χ, σ} such
that(x, y) ∈ [[τ ]]K .

– if π = χ ◦ σ ∈ subp(ϕ0) and(x, y) ∈ [[π]]K , thenC(x, π, y) = z ∈ X such that
(x, z) ∈ [[χ]]K and(z, y) ∈ [[σ]]K ;

– if π = χ∗ ∈ subp(ϕ0) and(x, y) ∈ [[π]]K with x 6= y, thenS(x, π, y) = z ∈ X
such that there exists a sequencex0, . . . , xn ∈ X with
1. x0 = x andxn = y;
2. (xi, xi+1) ∈ [[χ]]K for all i < n;
3. x0, . . . , xn is a shortest sequence with Properties 1 and 2;
4. x1 = z.

5



Now we inductively define a node-labeled tree(T, (tv)v∈V ) with T = (V,E) and
tv ∈ X ∪ X2 ∪ X3 for all v ∈ V . During the construction, each node in the tree
is assigned a type, which may either be “singleton” orπ for π ∈ subp(ϕ0). Figure 1
illustrates the different cases, which are as follows:

1. Start the construction with a root nodev of type singleton and settv = x0;
2. if v ∈ V is of type singleton andtv = x, then for everyϕ = 〈π〉ψ ∈ subf(ϕ0) such

thatx ∈ [[ϕ]]K , add a successorw of typeπ and settw = (x,W (x, ϕ));
3. if v ∈ V is of typea or a, wherea ∈ A andtv = (x, y), then add a successorw of

type singleton and settw = y;
4. if v ∈ V is of typeπ = χ ∪ σ andtv = (x, y), then

– add a successorw of type singleton and settw = y;
– add a successorw′ of typeU(x, π, y) and settw′ = (x, y);

5. if v ∈ V is of typeπ = χ ∩ σ andtv = (x, y), then
– add a successorw of type singleton and settw = y;
– add successorsu, u′ of typeχ andσ, respectively, and settu = tu′ = (x, y);

6. if v ∈ V is of typeπ = χ ◦ σ andtv = (x, y), then
– add a successorw of type singleton and settw = y;
– add a successorw′ of typeπ and settw = (x,C(x, π, y), y);

7. if v ∈ V is of typeπ = χ ◦ σ andtv = (x, z, y), then add successorsu, u′ of type
χ andσ and settu = (x, z) andtu′ = (z, y);

8. if v ∈ V is of typeπ = χ∗ andtv = (x, y) with x 6= y, then
– add a successorw of type singleton and settw = y;
– add a successorw′ of typeπ and settw = (x, S(x, π, y), y);

9. if v ∈ V is of typeπ = χ∗ andtv = (x, z, y), then add successorsu, u′ of typeχ
andπ, respectively, and settu = (x, z) andtu′ = (z, y).

We assume that successors are added at most once to each node in the induction step and
that the construction proceeds in a breadth first manner. Note that nodes of typeψ? are
always leafs, and so are nodesv of typeχ∗ with tv = (x, x) for somex ∈ X. Another
important property, which illustrates the connection betweenK and the constructed
tree, is the following:

∀v ∈ V : if v is of typeπ andtv = (x, y), then(x, y) ∈ [[π]]K . (†)

A place is a pair(v, x) such thatx is a member oftv. We denote the set of all places
with P and let∼ be the smallest equivalence relation onP which contains all pairs
of the form((u, x), (v, x)), where(u, v) ∈ E is an edge of the treeT . We use[v, x]
to denote the equivalence class of(v, x) ∈ P w.r.t. the relation∼. Define a Kripke
structureK ′ = (X ′, {→′

a | a ∈ A}, ρ′) as follows:

– X ′ = {[v, x] | (v, x) ∈ P};
– [v, x] →′

a [v′, y] if and only if at least one of the following holds:
• there isu ∈ V of typea s.t.tu = (x, y), (u, x) ∼ (v, x), and(u, y) ∼ (v′, y);
• there isu ∈ V of typea s.t.tu = (y, x), (u, x) ∼ (v, x), and(u, y) ∼ (v′, y).

– ρ′([v, x]) = ρ(x).

SinceK ′ is clearly countable, to finish the proof it suffices to show the following:
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1. settingXv = {[v, x] | x occurs intv} for all v ∈ V , we obtain a tree decomposition
(T, (Xv)v∈V ) of K ′ of width two;

2. K ′ satisfiesϕ0.

Using the definitions ofK ′ and∼, it is readily checked that(T, (Xv)v∈V ) is a tree de-
composition ofK ′. Tree width two is then immediate by construction of(T, (tv)v∈V ).
Finally, we can prove the following, whose Point 3 yields that K ′ is a model ofϕ0.

Lemma 1. For all v, u ∈ V , x, y ∈ X, π ∈ subp(ϕ0), andϕ ∈ subf(ϕ0),

1. if tv = (x, y) andv is of typeπ, then([v, x], [v, y]) ∈ [[π]]K′ ;
2. if (v, x), (u, y) ∈ P and([v, x], [u, y]) ∈ [[π]]K′ , then(x, y) ∈ [[π]]K ;
3. if (v, x) ∈ P , then(K,x) |= ϕ if and only if(K ′, [v, x]) |= ϕ.

4 Reduction toω-Regular Tree Satisfiability

We exploit the model property established in the previous section to reduce satisfiability
in ICPDL toω-regular tree satisfiability in ICPDL. Since the latter is defined in terms
of alternating automata on infinite trees, we start with introducing these automata and
the trees on which they work.

Let Γ andΥ be finite sets. AΓ -labeled (directed)Υ -tree is a partial functionT :
Υ ∗ → Γ such thatdom(T ) (the set of nodes) is prefix-closed. Ifdom(T ) = Υ ∗, then
T is calledcomplete. If Υ is understood or not important, we simply talk ofΓ -labeled
trees. We deliberately work with two kinds of trees here: undirected trees as a basis for
tree decompositions in Section 3, and directed trees introduced here as the objects on
which alternating tree automata work.

Let P be a finite set of atomic propositions andA a finite set of atomic programs,
not necessarily identical to the setsP andA fixed in Section 2. A complete2P-labeled
A-treeT can be viewed as a Kripke structureKT = (A∗, {→a| a ∈ A}, T ) over the set
of atomic propositionsP and atomic programsA, where→a = {(u, ua) | u ∈ A∗} for
all a ∈ A. In the following, we identifyT and the associated Kripke structureKT .

We now define alternating automata on completeΓ -labeledΥ -trees. For a finite set
X we denote byB+(X) the set of allpositive boolean formulaswith elements ofX
used as variables. The constantstrue andfalse are admitted. A subsetY ⊆ X can
be seen as a valuation in the obvious way: itsatisfiesa formulaθ ∈ B+(X) if and only
if by assigningtrue to all elements inY the formulaθ is evaluated totrue. Define the
set ofΥ -movesasmov(Υ ) = Υ ⊎ Υ ⊎ {ε}, whereΥ = {a | a ∈ Υ}. Foru ∈ Υ ∗ and
a ∈ Υ , defineua = v if u = va for somev ∈ Υ ∗ andua = undefined ifu 6∈ Υ ∗a.
A two-way alternating parity tree automaton(TWAPTA for short) overΓ -labeledΥ -
trees is a tupleT = (S, δ, s0,Acc), where (i)S is a finite non-empty set of states, (ii)
δ : S×Γ → B+(S×mov(Υ )) is thetransition function, (iii) s0 ∈ S is theinitial state,
and (iv)Acc : S → {0, . . . ,m} is thepriority function (wherem ∈ N) which assigns
to each state an integer between0 andm. Define|Acc| = max{Acc(s) | s ∈ S}. Let
T a completeΓ -labeledΥ -tree,u ∈ Υ ∗ a node, ands ∈ S a state. An(s, u)T -run
of T is a (not necessarily complete)(S × Υ ∗)-labeledΩ-treeTR for some set finite
Ω such that the following two conditions are satisfied: (i)TR(ε) = (s, u), and (ii) if
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α ∈ dom(TR) with TR(α) = (q, v) andδ(q, T (v)) = θ, then there exists a subset
Y ⊆ S × mov(Υ ) that satisfies the formulaθ and for all(s′, e) ∈ Y : ve is defined
and there exists anω ∈ Ω with αω ∈ dom(TR) andTR(αω) = (s′, ve). We say that
an (s, u)T -run is successful, if for every infinite pathα1α2 · · · ∈ dom(TR)ω of TR
(α1 = ε, αi+1 = αiω for someω ∈ Ω) the numbermin{Acc(q) | q ∈ S, TR(αi) ∈
{q} × Υ ∗ for infinitely manyi} is even. Define

[[T , s]]T = {u ∈ Υ ∗ | there exists a successful(s, u)T -run ofT }

L(T ) = {T | ε ∈ [[T , s0]]T }

The subscriptT is omitted if clear from the context. Anω-regular tree languageL is a
set of completeΓ -labeledΥ -trees such thatL(T ) = L for some TWAPTAT .

Our TWAPTA model differs slightly from other definitions in the literature: First,
we run TWAPTA only on complete trees; this will be convenientin Section 5 and 6.
Second, usually a TWAPTA has an operation↑ for moving to the parent node of the
current node. In our model,↑ is replaced by the operationsa ∈ Υ for all a ∈ Υ . The
operationa can only be executed if the current node is ana-successor of its parent node.
It is easy to see that these two models are equivalent.

In Section 6, we will make use of the following result of Vardi:

Theorem 3 ([19]). For a given TWAPTAT = (Q, δ, s0Acc) it can be checked in time
exponential in|Q| · |Acc| whetherL(T ) = ∅.

We are now in the position to formally defineω-regular tree satisfiability in ICPDL:
given a TWAPTAT over2P-labeledA-trees and an ICPDL formulaϕ over the set of
atomic propositionsP and set of atomic programsA (in the following we simply say
overP andA), decide whether there is aT ∈ L(T ) such that(T, ε) |= ϕ.

To reduce satisfiability in ICPDL toω-regular tree satisfiability in ICPDL, we trans-
late an ICPDL formulaϕ overP andA into a TWAPTAT and an ICPDL formulâϕ
over

A = {a, b, 0, 1, 2} and P = {t} ∪ prop(ϕ) ∪ ({0, 1, 2} × prog(ϕ) × {0, 1, 2}),

whereprop(ϕ) = subf(ϕ) ∩ P and prog(ϕ) = suba(ϕ) ∩ A. Intuitively, each2P-
labeledA-treeT accepted byT encodes a tree decomposition of a Kripke structure
K overP andA of tree width at most two (in a sense yet to be made precise), and T
is a model ofϕ̂ if and only if K is a model ofϕ. To achieve an elegant encoding of
tree decompositions, we work withgood tree decompositions. A tree decomposition
(T, (Xv)v∈V ) with T = (V,E) is called good if

– V = {a, b}∗, i.e.,T is a complete binary tree, and
– Xv ⊆ Xvc orXvc ⊆ Xv for all v ∈ V andc ∈ {a, b}.

It is easily seen how to convert a tree decomposition of a Kripke structureK of width
k into a good tree decomposition ofK of width k by introducing additional nodes.

Lemma 2. Every countable Kripke structure of tree widthk has a good tree decompo-
sition of widthk.
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In the following we assume thatk = 2, since this is the only interesting case in this pa-
per. To encode a Kripke structure together with a good tree decomposition(T, (Xv)v∈V )
of width at most two as a2P-labeledA-tree, we think of every tree nodev ∈ {a, b}∗

as being divided into three slots which can be empty or filled with a state of the Kripke
structure. When moving to a child, by the second condition of good tree decompositions
we either add nodes to empty slots or remove nodes from slots,but not both. The three
slots of the nodev are described by new leafsv0, v1, v2. This explains our choice of
A above. When slotvi is occupied by a state of the Kripke structure, thenvi receives
the special labelt ∈ P. Finally, information about the edges of the Kripke structure are
stored in tree nodes from{a, b}∗. We now formally define these encodings: a complete
2P-labeledA-treeT is calledvalid if the following holds for allv ∈ A∗:

– if v ∈ {a, b}∗ andi ∈ {0, 1, 2}, then eitherT (vi) = ∅ or {t} ⊆ T (vi) ⊆ {t} ∪ P;
setXv = {i | t ∈ T (vi)};

– if v ∈ {a, b}∗, thenT (v) ⊆ Xv × A ×Xv;
– if v ∈ {a, b}∗ andc ∈ {a, b}, thenXv ⊆ Xvc orXvc ⊆ Xv;
– if v /∈ {a, b}∗ ∪ {a, b}∗{0, 1, 2}, thenT (v) = ∅.

Let T be a valid2P-labeledA-tree. We now make precise the Kripke structureK(T )
overP andA whose good tree decomposition is described byT . The structureK(T )
should not be confused withT viewedas a Kripke structure overP andA (as discussed
at the beginning of this section): the original formulaϕ whose satisfiability is to be
decided is interpreted inK(T ) whereas the reduction formulâϕ is interpreted inT
viewed as a Kripke structure. Define a set ofplacesP = {u ∈ A∗ | t ∈ T (u)} and let
∼ be the smallest equivalence relation onP which contains all pairs(vi, vci) ∈ P ×P ,
wherev ∈ {a, b}∗, c ∈ {a, b}, and0 ≤ i ≤ 2. For u ∈ P , we use[u] to denote the
equivalence class ofu w.r.t.∼. Now setK(T ) = (X, {→a| a ∈ A}, ρ), where:

X = {[u] | u ∈ P}

→a = {([vi], [vj]) | v ∈ {a, b}∗, (i, a, j) ∈ T (v)}

ρ([u]) =
⋃

v∈[u]

T (v) ∩ P

The following two lemmas are easily proved.

Lemma 3. If T is a valid2P-labeledA-tree, then the Kripke structureK(T ) has tree
width at most two. Conversely, ifK is of tree width at most two, then there exists a valid
2P-labeledA-treeT such thatK is isomorphic toK(T ).

Lemma 4. The set of all valid2P-labeledA-trees is anω-regular tree language.

Now we show how to convert formulasψ and programsπ overprop(ϕ) andprog(ϕ)

into formulasψ̂ and programŝπ overP andA such that for every valid2P-labeledA-tree
T we have:

[[π̂]]T ⊆ P × P

∀u ∈ P : u ∈ [[ψ̂]]T ⇔ [u] ∈ [[ψ]]K(T )

∀u, v ∈ P : (u, v) ∈ [[π̂]]T ⇔ ([u], [v]) ∈ [[π]]K(T )

9



First we define the auxiliary program

π1
∼ =

2⋃

i=0

t? ◦ i ◦ (a ∪ b ∪ a ∪ b) ◦ i ◦ t?

and letπ∼ = (π1
∼)∗. Note that[[π∼]]T equals∼. Now, for all a ∈ prog(ϕ) andp ∈

prop(ϕ) we define

â =
⋃

i,j∈{0,1,2}

π∼ ◦ i ◦ (i, a, j)? ◦ j ◦ π∼ and p̂ = 〈π∼〉p.

To extend this translation to complex ICPDL formulas and programs, we can simply
replace all atomic programsa and formulasp with â and p̂, respectively. From the
construction of̂ϕ and Lemmas 2 and 3 we obtain the following.

Proposition 1. The formulaϕ has a model of tree width at most two if and only if there
is a valid2P-labeledA-treeT such that(T, ε) |= 〈(0 ∪ 1 ∪ 2) ◦ t?〉ϕ̂.

From Theorem 2, Lemma 4, and Proposition 1, we obtain:

Theorem 4. There is a polynomial time reduction from satisfiability in ICPDL toω-
regular tree satisfiability in ICPDL.

5 Programs as NFAs over TWAPTAs

Our ultimate goal is to show thatω-regular tree satisfiability in ICPDL can be solved in
doubly exponential time. This will be achieved by reducingω-regular tree satisfiability
in ICPDL to theEXP-complete emptiness problem for TWAPTAs. For this we trans-
late ICPDL formulas into TWAPTAs. ICPDL programs will be translated into another
special kind of automata, which navigate in a completeΥ -tree by reading symbols from
Υ ∪ Υ . Additionally, these automata can make conditionalε-transitions (so called test
transitions), which can only be executed if the current treenode is accepted by some
TWAPTA. A formal definition follows:

For the rest of this section fix some finite setsP, Γ = 2P, Υ , and a completeΓ -
labeledΥ -treeT . In the sequel, we do not require a TWAPTAT to contain an initial
state as a component. For two such TWAPTAsTi = (Si, δi,Acci) (i ∈ {1, 2}) let
T1 ⊎ T2 = (S1 ⊎ S2, δ1 ⊎ δ2,Acc1 ⊎ Acc2) be theirdisjoint union. Here⊎ denotes the
disjoint union, and e.g.(Acc1 ⊎ Acc2)(s) = Acci(s) for the uniquei with s ∈ Si.

A finite automatonA over a TWAPTAT = (S, δ,Acc) is a tuple(Q,→A), where
Q is a finite set ofstates, and→A is a set of transitions of the following kind:

– q
a
−→A q

′, wherea ∈ Υ ∪ Υ , or

– q
T ,s
−−→A q

′ (these transitions are calledtest transitions),

whereq, q′ ∈ Q, s ∈ S. LetA↑(A↓) be the automaton that results fromA by deleting

all
a
−→A-transitions (

a
−→A-transitions), wherea ∈ Υ (a ∈ Υ ). Define the relation⇒A⊆

(Υ ∗ ×Q) × (Υ ∗ ×Q) as the smallest relation such that:
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– (u, p) ⇒A (ua, q) if p
a
−→A q (a ∈ Υ )

– (ua, p) ⇒A (u, q) if p
a
−→A q (a ∈ Υ )

– (u, p) ⇒A (u, q) if u ∈ [[T , s]] andp
T ,s
−−→A q.

For a pair(p, q) ∈ Q×Q define[[A, p, q]]T = {(u, v) ∈ Υ ∗ × Υ ∗ | (u, p) ⇒∗
A (v, q)}.

For each ICPDL formulaϕ we will construct a TWAPTAT such that for some states
of T we have[[T , s]]T = [[ϕ]]T . For each ICPDL programπ, on the other hand, we will
construct a finite automatonA over some TWAPTAT , such that for some statesp and
q of A we have[[A, p, q]]T = [[π]]T . In the following, the indexT will be omitted.

The construction ofT andA above, will be done inductively over the structure
of ϕ and π, respectively. The difficult case is, whenπ is of the formπ1 ∩ π2. By
induction, we have already constructed finite automataA1 andA2 over TWAPTAsT1

andT2, respectively, such that[[A1, p1, q1]] = [[π1]] and[[A2, p2, q2]] = [[π2]]. In order to
recognize[[A1, p1, q1]]∩ [[A2, p2, q2]] we would like to make a product construction with
A1 andA2. But this fails, because a run inT of A1 and a run inT of A2, both starting
in the tree nodeu and ending in the tree nodev, may completely diverge. In order to
avoid this divergence, we next have to normalize finite automata over TWAPTAs, so that
loops within a run inT can be shortened by test-transitions. The following construction
simplifies the presentation in [8].

Let T = (S, δ,Acc) be a TWAPTA and letA = (Q,→A) be a finite automaton
overT . Define the relationloopA ⊆ Υ ∗ ×Q×Q as the smallest set such that:

(i) for all u ∈ Υ ∗ andq ∈ Q we have(u, q, q) ∈ loopA,

(ii) if (ua, p′, q′) ∈ loopA, p
a
−→A p

′ andq′
a
−→A q, then(u, p, q) ∈ loopA,

(iii) if (u, p′, q′) ∈ loopA, p
a
−→A p

′, andq′
a
−→A q, then(ua, p, q) ∈ loopA,

(iv) if (u, p, r) ∈ loopA and(u, r, q) ∈ loopA, then(u, p, q) ∈ loopA, and

(v) if u ∈ [[T , s]] andp
T ,s
−−→A q for s ∈ S, then(u, p, q) ∈ loopA.

The definition ofloopA allows to prove the following statement by induction overn.

Lemma 5. We have(u, p, q) ∈ loopA if and only if there existn ≥ 1, u1, . . . , un ∈ Υ ∗,
andq1, . . . , qn ∈ Q such that

– u1 = un = u,
– q1 = p, qn = q, and
– (u1, q1) ⇒A (u2, q2) ⇒A · · · ⇒A (un, qn).

Since the conditions (i)–(v) above can be easily translatedinto a TWAPTA, we obtain:

Lemma 6. There is a TWAPTAU = (S′, δ′,Acc′) with S′ = S ⊎ (Q×Q) such that

(i) [[U , s]] = [[T , s]] for all s ∈ S,
(ii) [[U , (p, q)]] = {u ∈ Υ ∗ | (u, p, q) ∈ loopA} for all (p, q) ∈ Q×Q, and

(iii) |Acc′| = |Acc|.

Now define a new automatonB = (Q,→B) over the TWAPTAU , that results

from A by adding for every pair(p, q) ∈ Q × Q the test transitionp
U,(p,q)
−−−−→B q. For

u, v ∈ Υ ∗ let inf(u, v) be the longest common prefix ofu andv, it corresponds in the
treeT to the lowest common ancestor ofu andv.
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Lemma 7. Let u, v ∈ Υ ∗ and letp, q ∈ Q. Then the following three statements are
equivalent:

(i) (u, v) ∈ [[A, p, q]]
(ii) (u, v) ∈ [[B, p, q]]
(iii) there existsr ∈ Q with (u, inf(u, v)) ∈ [[B↑, p, r]] and(inf(u, v), v) ∈ [[B↓, r, q]].

6 ω-regular tree model satisfiability in ICPDL is in 2EXP

In this section, we prove thatω-regular tree satisfiability is in2EXP. Let T0 be a
TWAPTA over 2P-labeledΥ -trees and letϕ be an ICPDL formula. We will translate
T0 andϕ into a TWAPTAT over2P-labeledΥ -trees such thatL(T ) 6= ∅ if and only if
there exists some treeT ∈ L(T0) with (T, ε) |= ϕ. First, we will construct a TWAPTA
T (ϕ) such that for some states of T (ϕ) the following equality will hold for all com-
plete 2P-labeledΥ -treesT : [[ϕ]]T = [[T , s]]T . The number of states ofT (ϕ) grows
exponentially in the size ofϕ. The size of the priority function will be linear in the
size ofϕ. Our final TWAPTAT will be the intersection ofT0 andT (ϕ) (whereT (ϕ)
gets the initial states). Since the time for checking emptiness ofT grows exponentially
with the product of the number of states ofT and the size of the priority function ofT
(Theorem 3), it follows that thatω-regular tree satisfiability indeed belongs to2EXP.
Together with Theorem 4, this finally proves our main result Theorem 1.

For an ICPDL formulaψ we will inductively construct a TWAPTAT (ψ) together
with a states of T (ψ) such that[[ψ]] = [[T (ψ), s]]. For an ICPDL programπ, we will
inductively construct a TWAPTAT (π) and a finite automatonA(π) overT (π) such
that[[π]] = [[A(π), p, q]] for some statesp andq of A(π).

If ψ = p, wherep ∈ P, we putT (ψ) = ({s}, δ, s 7→ 1), where for allY ⊆ P we
haveδ(s, Y ) = true if p ∈ Y andδ(s, Y ) = false otherwise.

If ψ = ¬θ, thenT (ψ) is obtained fromT (θ) by applying the standard complemen-
tation procedure, see e.g. [14], where all positive booleanformulas in the right-hand side
of the transition function are dualized and the acceptance condition is complemented
by increasing the priority of every state by one.

Whenψ is of the form〈π〉θ for a programπ and a formulaθ, we have inductively
already constructedA = A(π) with state setQ over a TWAPTAT (π) = (S1, δ1,Acc1)
such that[[π]] = [[A, p0, r0]] for some statesp0, q0 ∈ Q. Too, we have inductively already
constructedT (θ) = (S2, δ2,Acc2) such that[[θ]] = [[T (θ), s2]] for some states2 ∈ S2.
We define the TWAPTAT (ψ) = (S, δ,Acc) with S = Q ⊎ S1 ⊎ S2. For states inS1

or in S2 the transitions ofT (ψ) are as forT (π) or T (θ), respectively. For statesq ∈ Q
and forY ⊆ P we define

δ(q,X) =
∨

{〈r, a〉 | r ∈ Q, a ∈ Υ, q
a
−→A r} ∨

∨
{〈r, a〉 | r ∈ Q, a ∈ Υ, q

a
−→A r} ∨

∨
{〈s, ε〉 ∧ 〈r, ε〉 | r ∈ Q, s ∈ S1, q

T ,s
−−→A r} ∨

((q = q0) ∧ 〈s2, ε〉)
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The priority functionAcc is defined byAcc(s) = 1 if s ∈ Q andAcc(s) = (Acc1 ⊎
Acc2)(s) for s ∈ S1⊎S2. We setAcc(s) = 1 for all s ∈ Q since we want to assure that
the automatonA(π) is simulated for finitely many steps only, asψ = 〈π〉θ is a diamond
formula. We obtain[[ψ]] = [[T (ψ), p0]].

Let us now describe the inductive construction ofA(π) andT (π) for an ICPDL
programπ.

Caseπ = a for somea ∈ Υ ∪ Υ . The automatonA(π) has two statesp andq with the
only transitionp

a
−→ q. Hence[[π]] = [[A(π), p, q]].

Caseπ = ψ? We can assume that there exists a TWAPTAT (ψ) and a stater of T (ψ)
such that[[ψ]] = [[T (ψ), r]]. The TWAPTAT (π) is T (ϕ). The automatonA(π) has two

statesp andq with the only transitionp
T (π),r
−−−−→ q. Hence, we have[[π]] = [[A(π), p, q]] =

{(u, u) | u ∈ [[T (ψ), r]]}.

Caseπ = π1 ∪ π2, π = π1 ◦ π2, or π = χ∗ In these cases we constructA(π) by using
the standard automata constructions for union, concatenation, and Kleene-star. In case
π = π1 ∪ π2 or π = π1 ◦ π2 we setT (π) = T (π1) ⊎ T (π2), whereas forπ = χ∗ we
setT (π) = T (χ).

It remains to constructA(π1∩π2) andT (π1∩π2). For this, we use the construction
of Section 5. Assume that the finite automataA(πi) = (Qi,→A(πi)) over the TWAPTA
T (πi) = (Si, δi,Acci) are already constructed (i ∈ {1, 2}). Thus,[[A(πi), pi, qi]] =
[[πi]] for some statespi, qi ∈ Qi. We first construct the finite automatonB(πi) over the
TWAPTA U(πi) = (S′

i, δ
′
i,Acc′i) as described in Section 5. Note that|S′

i| = |Si| +
|Qi|

2. We takeT (π1 ∩ π2) = U(π1) ⊎ U(π2). The finite automatonA(π1 ∩ π2) is the
product automaton ofB(π1) = (Q1,→B(π1)) andB(π2) = (Q2,→B(π2)), where test
transitions can be done asynchronously:

– The state set ofA(π1 ∩ π2) isQ1 ×Q2.
– For a ∈ Υ ∪ Υ we have(r1, r2)

a
→A(π1∩π2) (r′1, r

′
2) if and only if r1

a
→B(π1) r

′
1

andr2
a
→B(π2) r

′
2.

– For a states ∈ S′
1 ⊎ S

′
2 we have the test transition

(r1, r2)
T (π1∩π2),s
−−−−−−−→A(π1∩π2) (r′1, r

′
2)

if and only if either (s ∈ S′
1 andr2 = r′2 andr1

U(π1),s
−−−−−→B(π1) r

′
1) or (s ∈ S′

2 and

r1 = r′1 andr2
U(π2),s
−−−−−→B(π1) r

′
2).

Lemma 8. We have[[A(π1∩π2), (p1, p2), (q1, q2)]] = [[π1∩π2]]. Moreover, ifT (πi) =
(Si, δi,Acci), A(πi) = (Qi,→A(πi)), T (π1 ∩ π2) = (S, δ,Acc), andA(π1 ∩ π2) =
(Q,→A(π1∩π2)), then we have|Q| = |Q1| · |Q2|, |S| = |S1| + |S2| + |Q1|

2 + |Q2|
2,

and|Acc| = max{|Acc1|, |Acc2|}.

A careful analysis of the constructions outlined above, allows us to prove inductively:

Lemma 9. For every ICPDL formulaψ and every ICPDL programπ we have:

– If T (ψ) = (S, δ,Acc) then|S| ≤ 2|ψ|
2

and|Acc| ≤ |ψ|.
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– If A(π) = (Q,→A(π)) andT (π) = (S, δ,Acc) then|Q| ≤ 2|π|, |S| ≤ 2|π|
2

, and
|Acc| ≤ |π|.

This concludes the proof of our main Theorem 1.

7 Negation of Atomic Programs

We consider extensions of IPDL and ICPDL with negation of programs. It is well
known that adding full program negation renders PDL undecidable [9], whereas PDL
with program negation restricted to atomic programs remains decidable andEXP -
complete [12]. In this section, we show that IPDL and hence also ICPDL become un-
decidable already when extended with atomic program negation. Since intersection of
programs can be defined in terms of program union and (full) program negation, this
also yields an alternative proof of the undecidability of PDL with full program negation.

Our proof proceeds by reduction from the undecidable tilingproblem of the first
quadrant of the plane [3]. Atiling systemT = (T,H, V ) consists of a finite set oftile
typesT and horizontal and vertical matching relationsH,V ⊆ T × T . A solutionto T
is a mappingτ : N × N → T such that, for all(x, y) ∈ N × N, we have

– if τ(x, y) = t andτ(x+ 1, y) = t′, then(t, t′) ∈ H, and
– if τ(x, y) = t andτ(x, y + 1) = t′, then(t, t′) ∈ V .

The tiling problem is to decide, given a tiling systemT , whetherT has a solution.

We use IPDL(¬) to denote the extension of IPDL with negation of atomic programs,
which we write as¬a (a ∈ A). The semantics of the new constructor is defined in the
obvious way, i.e.,[[¬a]]K = (X×X)\[[a]]K . To reduce the tiling problem to satisfiability
in IPDL(¬), we give a translation of tiling systemsT = (T,H, V ) into formulasϕT of
IPDL(¬) such thatT has a solution if and only ifϕT is satisfiable. In the formulaϕT ,
we use two atomic programsax anday for representing the gridN × N and we use the
elements ofT as atomic propositions for representing tile types. More precisely,ϕT is
a conjunction consisting of the following conjuncts:

(a) every element of a model ofϕT represents an element ofN × N and is labelled
with a unique tile type:

[(ax ∪ ay)
∗]

( ∨

t∈T

t ∧
∧

t,t′∈T,t6=t′

¬(t ∧ t′)
)

(b) every element has anax-successor and anay-successor:

[(ax ∪ ay)
∗]

(
〈ax〉true ∧ 〈ay〉true

)

(c) the programsax anday are confluent:

[(ax ∪ ay)
∗] [(ax; ay) ∩ (ay;¬ax)]false
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(d) the horizontal and vertical matching conditions are respected:

[(ax ∪ ay)
∗]

( ∧

t∈T

t ⇒
(
[ax]

∨

(t,t′)∈H

t′ ∧ [ay]
∨

(t,t′)∈V

t′
))
.

Lemma 10. T has a solution if and only ifϕT is satisfiable.

We have thus established the following result.

Theorem 5. Satisfiability in IPDL(¬) is undecidable.
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A Proof of Lemma 1

Lemma 1.For allv, u ∈ V , x, y ∈ X, π ∈ subp(ϕ0), andϕ ∈ subf(ϕ0),

1. if tv = (x, y) andv is of typeπ, then([v, x], [v, y]) ∈ [[π]]K′ ;
2. if (v, x), (u, y) ∈ P and([v, x], [u, y]) ∈ [[π]]K′ , then(x, y) ∈ [[π]]K ;
3. if (v, x) ∈ P , then(K,x) |= ϕ if and only if (K ′, [v, x]) |= ϕ.

Proof. We prove the three points in the lemma simultaneously by induction on the
structure ofπ andϕ. For Point 1, we make a case distinction according to the form
of π:

– π ∈ A. Easy by definition ofK ′.
– π = a for somea ∈ A. Easy by definition ofK ′ and the semantics.
– π = ϕ?. By (†) from Section 3, we have(x, y) ∈ [[ϕ?]]K and thusx = y and

(K,x) |= ϕ. By Point 3 of IH, we get(K ′, [v, x]) |= ϕ. By the semantics and since
x = y, we obtain([v, x], [v, y]) ∈ [[ϕ?]]K′ as required.

– π = π1 ∩ π2. By construction ofT , v has successorsu1 and u2 of type π1

and π2, respectively, such thattu1
= tu2

= (x, y). By Point 1 of IH, we get
([ui, x], [ui, y]) ∈ [[πi]]K′ for i ∈ {1, 2}. By the semantics and since(ui, x) ∼
(v, x) and(ui, y) ∼ (v, y) for i ∈ {1, 2}, we obtain([v, x], [v, y]) ∈ [[π]]K′ .

– π = π1 ∪ π2. Similar to the previous case.
– π = π1 ◦ π2. By construction ofT , v has a successorw of typeπ and such that
tw = (x, z, y) andw has successorsu1 andu2 of typesπ1 andπ2, respectively,
such thattu1

= (x, z) and tu2
= (z, y) wherez = C(x, π, y). By Point 1 of

IH, we get([u1, x], [u1, z]) ∈ [[π1]]K′ and ([u2, z], [u2, y]) ∈ [[π2]]K′ . It remains
to apply the semantics and the fact that(v, x) ∼ (u1, x), (v, y) ∼ (u2, y), and
(u1, z) ∼ (w, z) ∼ (u2, z).

– π = χ∗. If x = y, then ([v, x], [v, y]) ∈ [[π]]K′ . Now assume thatx 6= y. By
construction ofT , v has a successorw of type π such thattw = (x, z, y), and
the nodew has successorsu1 andu2 of typesχ andπ, respectively, such that
tu1

= (x, z) andtu2
= (z, y). Here,z = S(x, π, y), which means that there exist

n > 0 and a sequencex0, . . . , xn ∈ X with
1. x0 = x andxn = y;
2. (xi, xi+1) ∈ [[χ]]K for all i < n;
3. x0, . . . , xn is a shortest sequence with Properties 1 and 2;
4. x1 = z.

By induction onn, we can conclude that([u2, z], [u2, y]) ∈ [[π]]K′ . Moreover, by
Point 1 of IH, we get([u1, x], [u1, z]) ∈ [[χ]]K′ . It remains to apply the semantics
and the fact that(v, x) ∼ (u1, x), (v, y) ∼ (u2, y), and(u1, z) ∼ (w, z) ∼ (u2, z).

For Point 2, we also make a case distinction according to the form ofα:

– π = a ∈ A. If ([v, x], [u, y]) ∈ [[a]]K′ , then at least one of the following holds:
1. there isw ∈ V of typea such thattw = (x, y), (w, x) ∈ [v, x], and(w, y) ∈

[u, y];
2. there isw ∈ V of typea such thattw = (y, x), (w, x) ∈ [v, x], and(w, y) ∈

[u, y].
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In Case 1, (†) yields(x, y) ∈ [[a]]K . Case 2 is analogous.
– π = a. Symmetric to the previous case.
– π = ϕ?. If ([v, x], [u, y]) ∈ [[ϕ?]]K′ , then we have[v, x] = [u, y] and(K ′, [v, x]) |=
ϕ. By Point 3 of IH,(K,x) |= ϕ. By the semantics and since[v, x] = [u, y] implies
x = y, we get(x, y) ∈ [[ϕ?]]K .

– The remaining cases are easy using Point 2 of IH and the semantics.

For Point 3, we make a case distinction according to the form of ϕ.

– If ϕ ∈ P, then we are done by definition ofK ′;
– The caseϕ = ¬ψ is easy using the semantics and induction hypothesis.
– Let ϕ = 〈π〉ψ. First for the “if” direction. Let(K ′, [v, x]) |= ϕ. Then there is a

(u, y) ∈ P such that([v, x], [u, y]) ∈ [[π]]K′ and(K ′, [u, y]) |= ψ. By Point 2 of
IH, we get(x, y) ∈ [[π]]K . By Point 3 of IH, we get(K, y) |= ψ and are done by
the semantics.
Now for the “only if” direction. Let(K,x) |= ϕ. By construction ofT , there is a
pathv0, . . . , vn in T such thatv = v0, vn is of type singleton, andx belongs to
tvi

for all i ≤ n. Also by construction ofT and since(K,x) |= 〈π〉ψ, vn has a
successoru of typeπ such thattu = (x, y) for somey ∈ X such thaty ∈ [[ψ]]K .
By Point 1 of IH, u being of typeπ yields ([u, x], [u, y]) ∈ [[π]]K′ . Moreover,
(vi, x) ∼ (u, x) for all i ≤ n and thus([v, x], [u, y]) ∈ [[π]]K′ . By Point 3 of IH,
y ∈ [[ψ]]K yields[u, y] ∈ [[ψ]]K′ and we are done. ⊓⊔

B Proofs for Section 2

Lemma 2.Every countable Kripke structure of tree widthk has a good tree decompo-
sition of widthk.

Proof. Let (T, (Xv)v∈V ) be a tree decomposition forK of width k. In a first step, for
every edge(u, v) of T such that neitherXu ⊆ Xv norXv ⊆ Xu, we add a new node
w to the treeT together with the edges(u,w) and(w, v). Of course, the edge(u, v)
is deleted. The bagXw is Xu ∩ Xv. Now we makeT to a rooted tree by choosing an
arbitrary root. If a nodeu of T hasℓ > 2 many children (possiblyℓ = ℵ0), then we can
replace this situation by a chain of lengthℓ in the usual way (all tree nodes along this
chain receive the same bag asu). Finally, we can transformT into a complete binary
tree, by just copying bags. ⊓⊔

C Proofs for Section 5

Lemma 5.We have(u, p, q) ∈ loopA if and only if there existn ≥ 1, u1, . . . , un ∈ Υ ∗,
andq1, . . . , qn ∈ Q such that

– u1 = un = u,
– q1 = p, qn = q, and
– (u1, q1) ⇒A (u2, q2) ⇒A · · · ⇒A (un, qn).
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Proof. Only-if: Assume(u, p, q) ∈ loopA. An induction over the shortest proof tree
for the fact(u, p, q) ∈ loopA shows that there existn ≥ 1, u1, . . . , un ∈ Υ ∗, and
q1, . . . , qn ∈ Q such thatu1 = un = u, q1 = p, qn = q and(u1, q1) ⇒A (u2, q2) ⇒A

· · · ⇒A (un, qn).
If: Now assume that for somen ≥ 1, u1, . . . , un ∈ Υ ∗ and someq1, . . . , qn ∈ Q we
haveu1 = un = u, q1 = p, qn = q, and(u1, q1) ⇒A (u2, q2) ⇒A · · · ⇒A (un, qn).
We prove by induction overn, that (u, p, q) ∈ loopA holds. If n = 1, thenp = q
and by rule (i) from the definition ofloopA we have(u, p, q) ∈ loopA. If n = 2, then

there exists a test transitionp
T ,s
−−→A q such thatu ∈ [[T , s]], hence by rule (v) from

the definition ofloopA we have(u, p, q) ∈ loopA. Now assume thatn ≥ 3 holds. We
distinguish the following cases:

Case 1.There exists1 < i < n such thatui = u. Then, by induction hypothesis, we
get(u, p, qi), (u, qi, q) ∈ loopA. By rule (iv) we get(u, p, q) ∈ loopA.

Case 2.There does not exist1 < i < n such thatui = u. Then we distinguish the
following cases:

Case 2A.There existsa ∈ Υ such thatp
a
−→A q2, qn−1

a
−→ q, andu2 = ua = un−1. By

induction we get(ua, q2, qn−1) ∈ loopA. Thus, by rule (ii) we get(u, p, q) ∈ loopA.

Case 2B.There existsa ∈ Υ such thatu = va, p
a
−→A q2, qn−1

a
−→ q, andu2 = v =

un−1 for somev ∈ Υ ∗. By induction we get(v, q2, qn−1) ∈ loopA. Thus, by rule (iii)
we get(u, p, q) ∈ loopA. ⊓⊔

Lemma 6.There exists a TWAPTAU = (S′, δ′,Acc′) with state setS′ = S⊎ (Q×Q)
such that

(i) for everys ∈ S we have[[U , s]] = [[T , s]],
(ii) for every (p, q) ∈ Q × Q we have[[U , (p, q)]] = {u ∈ Υ ∗ | (u, p, q) ∈ loopA},

and
(iii) |Acc′| = |Acc|.

Proof. For states inS the transitions ofU are the same as forT . Forq ∈ Q andγ ∈ Γ
we introduce the transitionδ′((q, q), γ) = true. If p 6= q andγ ∈ Γ , then we introduce
the transition (we write

∨
{ψi | i ∈ I} instead of

∨
i∈I ψi)

δ′((p, q), γ) =
∨

{〈(p′, q′), a〉 | p′, q′ ∈ Q, a ∈ Υ, p
a
−→A p

′, q′
a
−→A q} ∨

∨
{〈(p′, q′), a〉 | p′, q′ ∈ Q, a ∈ Υ, p

a
−→A p

′, q′
a
−→A q} ∨

∨
{〈(p, r), ε〉 ∧ 〈(r, q), ε〉 | r ∈ Q} ∨

∨
{〈s, ε〉 | s ∈ S, p

T ,s
−−→A q}.

We define the priority functionAcc′ as follows:

Acc′(s′) =

{
Acc(s) if s′ ∈ S

1 if s′ ∈ Q×Q
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Trivially (iii) holds. We putAcc′(p, q) = 1 for all p, q ∈ Q sinceU should spend only a
finite number of steps for verifying whether(u, p, q) ∈ loopA. From the definition ofδ′

it is clear that (i) holds. From the definition ofloopA, the construction ofδ′ andAcc′,
and by Lemma 5 it follows that[[U , (p, q)]] = {u ∈ Υ ∗ | (u, p, q) ∈ loopA}, hence (ii)
holds. ⊓⊔

Lemma 7. Let u, v ∈ Υ ∗ and letp, q ∈ Q. Then the following three statements are
equivalent:

(i) (u, v) ∈ [[A, p, q]]
(ii) (u, v) ∈ [[B, p, q]]
(iii) there existsr ∈ Q with (u, inf(u, v)) ∈ [[B↑, p, r]] and(inf(u, v), v) ∈ [[B↓, r, q]].

Proof. Trivially (iii) implies (ii). For (ii) implies (i), note that for every test-transition

p′
U,(p,q)
−−−−→B q′ of B and everyw ∈ [[U , (p′, q′)]] we have(w, p′, q′) ∈ loopA, hence

(w, p′) ⇒∗
A (w, q′). Finally, it remains to prove (i) implies (iii). Assume(u, v) ∈

[[A, p, q]]. Then there exist nodesw0, . . . , wn ∈ Υ ∗ and statesq0, . . . , qn ∈ Q such
that

(u, p) = (w0, q0) ⇒A (w1, q1) · · · ⇒A (wn, qn) = (v, q). (1)

Let y1, . . . , yk ∈ Υ ∗ be the unique nodes such that (a)y1 = u, yk = v, (b) for some
1 ≤ j ≤ k we haveyj = inf(u, v), (c) for all 1 ≤ i < j we haveyi = yi+1ai for
someai ∈ Υ , and (d) for allj < i ≤ k we haveyi = yi−1ai for someai ∈ Υ .
Define the mappingφ : {1, . . . , k} → {1, . . . , n} such that for all1 ≤ i ≤ k we have
φ(i) = max{j | yi = wj}. There exist statesq′1, . . . q

′
k ∈ Q such that the run from

equation (1) can be factorized as follows:

(u, p) = (y1, q
′
1) ⇒

∗
B (y1, qφ(1)) ⇒B↑ (y2, q

′
2) ⇒

∗
B (y2, qφ(2))

· · · ⇒∗
B (yj−1, qφ(j−1)) ⇒B↑ (inf(u, v), q′j) ⇒

∗
B (inf(u, v), qφ(j)) ⇒B↓

· · · ⇒∗
B (yk−1, qφ(k−1)) ⇒B↓ (yk, q

′
k) ⇒

∗
B (yk, qφ(k)) = (v, q)

By the construction ofB, every loop(yi, q′i) ⇒∗
B (yi, qφ(i)) can be replaced by a test

transition inB (and hence inB↑ andB↓). Hence, we have(u, inf(u, v)) ∈ [[B↑, p, q′j ]]

and(inf(u, v), v) ∈ [[B↓, q′j , q]]. ⊓⊔

D Proofs for Section 6

Lemma 8.We have[[A(π1∩π2), (p1, p2), (q1, q2)]] = [[π1∩π2]]. Moreover, ifT (πi) =
(Si, δi,Acci), A(πi) = (Qi,→A(πi)), T (π1 ∩ π2) = (S, δ,Acc), andA(π1 ∩ π2) =
(Q,→A(π1∩π2)), then we have|Q| = |Q1| · |Q2|, |S| = |S1| + |S2| + |Q1|

2 + |Q2|
2,

and|Acc| = max{|Acc1|, |Acc2|}.

Proof. The estimations on the size ofQ, S, andAcc are clear by the construction of
T (π1 ∩ π2) andA(π1 ∩ π2).
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For the identity[[A(π1 ∩π2), (p1, p2), (q1, q2)]] = [[π1 ∩π2]] note that since(u, v) ∈
[[π1∩π2]] if and only if (u, v) ∈ [[π1]] and(u, v) ∈ [[π2]], we know by induction that it suf-
fices to prove:(u, v) ∈ [[A(πi), pi, qi]] for all i ∈ {1, 2} if and only if (u, v) ∈ [[A(π1 ∩
π2), (p1, p2), (q1, q2)]]. So let(u, v) ∈ [[A(πi), pi, qi]] for all i ∈ {1, 2}. Then Lemma
7 implies the existence of a stateri ∈ Qi such that(u, inf(u, v)) ∈ [[B(πi)

↑, pi, ri]]
and(inf(u, v), v) ∈ [[B(πi)

↓, ri, qi]] for all i ∈ {1, 2}. This implies(u, inf(u, v)) ∈
[[A(π1 ∩ π2)

↑, (p1, p2), (r1, r2)]] and(inf(u, v), v) ∈ [[A(π1 ∩ π2)
↓, (r1, r2), (q1, q2)]].

Thus, we have(u, v) ∈ [[A(π1∩π2), (p1, p2), (q1, q2)]]. On the other hand, any run wit-
nessing(u, v) ∈ [[A(π1∩π2), (p1, p2), (q1, q2)]] is a witness for(u, v) ∈ [[B(πi), pi, qi]]
for all i ∈ {1, 2}. By Lemma 7 we obtain(u, v) ∈ [[A(πi), pi, qi]] for all i ∈ {1, 2}. ⊓⊔

Lemma 9.For every ICPDL formulaψ and every ICPDL programπ we have:

– If T (ψ) = (S, δ,Acc) then|S| ≤ 2|ψ|
2

and|Acc| ≤ |ψ|.
– If A(π) = (Q,→A(π)) andT (π) = (S, δ,Acc) then|Q| ≤ 2|π|, |S| ≤ 2|π|

2

, and
|Acc| ≤ |π|.

Proof. We prove the lemma via mutual induction over the structure ofψ andπ.

Base.If ψ = p ∈ P, thenT (ψ) has1 ≤ 2|ψ| states and the size of the priority function
of T (ψ) is 1 = |ψ|.

Assumeπ = a ∈ Υ ∪ Υ . By construction, the automatonA(π) = (Q,→A(π)) does
not have any transitions over some TWAPTA. Moreover, we have|Q| = 2 = 2|π|.

Inductive step.In caseψ = ¬θ andT (θ) = (S′, δ′,Acc′), then by the standard com-
plementation ofT (θ) yieldingT (ψ) we haveS = S′. Moreover, by induction we have
|Acc′| ≤ |θ|, hence|Acc| = |Acc′| + 1 ≤ |θ| + 1 = |ψ|.

Now assumeψ = 〈π〉θ. Let A(π) = (Q,→A(π)), T (π) = (S1, δ1,Acc1), and
T (θ) = (S2, δ2,Acc2). Then by construction we have:

|S| = |Q| + |S1| + |S2|
induction

≤ 2|π| + 2|π|
2

+ 2|θ|

≤ 2|π|+|π|2+|θ|

≤ 2|π|
2+2·|π|·|θ|+|θ|2

= 2(|π|+|θ|)2

= 2|ψ|
2

The casesπ = χ∗ andπ = ψ? are easy to analyze. Next, assumeπ = π1 ∪ π2 or
π = π1◦π2 and letQi be the state set ofA(πi) andT (πi) = (Si, δi,Acci) (i ∈ {1, 2}).
By the standard construction we get:

|Q| = |Q1| + |Q2|
induction

≤ 2|π1| + 2|π2|

≤ 2|π1|+|π2|

= 2|π|
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The estimation of|S| and|Acc| is straightforward again.
Now assume thatπ = π1 ∩ π2. Let Qi be the state set ofA(πi) andT (πi) =

(Si, δi,Acci) (i ∈ {1, 2}). By Lemma 8 we have|Q| = |Q1| · |Q2| and|S| = |S1| +
|S2| + |Q1|

2 + |Q2|
2. Hence, we get:

|Q| = |Q1| · |Q2|
induction

≤ 2|π1| · 2|π2|

= 2|π1|+|π2|

= 2|π|

|S| = |S1| + |S2| + |Q1|
2 + |Q2|

2

induction

≤ 2|π1|
2

+ 2|π2|
2

+ 22·|π1| + 22·|π2|

≤ 2(|π1|+|π2|)
2

= 2|π|
2

By induction we get|Acci| ≤ |πi| for i ∈ {1, 2}. Thus,Acc = max{|Acc1|, |Acc2|} ≤
|Acc1| + |Acc2| ≤ |π1| + |π2| = |π|. ⊓⊔

E Proof of Lemma 10

Lemma 10.T has a solution if and only ifϕT is satisfiable.

Proof. Since the “⇒” direction is simple, we only prove the “⇐” direction. Thus, let
ϕT be satisfiable andK = (X, {→ax

,→ay
}, ρ) a model ofϕT . We have to construct

a solutionτ to T . To prepare for this, we first define a mappingπ : N×N → X, which
is done in two steps. In the first step, we pickx ∈ [[ϕT ]]K and setπ(i, j) = x. Next, we
defineπ(i, 0) for all i > 0 as follows: Assume thatπ(i − 1, 0) is already defined. By
(b) from Section 7, we can choosex ∈ X such that(π(i − 1, 0), x) ∈ [[ax]]K and set
π(i, 0) = x. Finally, we defineπ(i, j) for all j > 0: Assume thatπ(i, j − 1) is already
defined. By (b) from Section 7, we can choosey ∈ X such that(π(i, j−1), y) ∈ [[ay]]K
and setπ(i, j) = y. By construction, we have(π(i, j − 1), π(i, j)) ∈ [[ay]]K for every
i ≥ 0 andj > 0. Moreover, the confluence property (c) from Section 7 implies that also
(π(i− 1, j), π(i, j)) ∈ [[ax]]K for everyi > 0 andj ≥ 0.

The resulting mappingπ gives rise to a mappingτ : N × N → T in the obvious
way: by (a), we can defineτ(i, j) as the uniquet ∈ T with π(i, j) ∈ [[t]]K . Finally, by
(d), τ is a solution toT . ⊓⊔
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