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Abstract. It is shown that the existential theory of G with rational constraints,
over an HNN-extension G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉 is decidable, pro-
vided that the same problem is decidable in the base group H and that A is a finite
group. The positive theory of G is decidable, provided that the existential positive
theory of G is decidable and that A and ϕ(A) are proper subgroups of the base
group H with A ∩ ϕ(A) finite. Analogous results are also shown for amalga-
mated products. As a corollary, the positive theory and the existential theory with
rational constraints of any finitely generated virtually-free group is decidable.

1 Introduction

Theories of equations over groups are a classical research topic at the borderline be-
tween algebra, mathematical logic, and theoretical computer science. This line of re-
search was initiated by the work of Lyndon, Tarski, and others in the first half of the
20th century. A major driving force for the development of this field was a question that
was posed by Tarski around 1945: Is the first-order theory of a free group F of rank
two, i.e, the set of all statements of first-order logic with equations as atomic proposi-
tions that are true in F , decidable. Decidability results for fragments of this theory were
obtained by Makanin (for the existential theory of a free group) [15] and Merzlyakov
and Makanin (for the positive theory of a free group) [16, 17]. A complete (positive) so-
lution of Tarski’s problem was finally announced in [9]; the complete solution is spread
over a series of papers. The complexity of Makanin’s algorithm for deciding the exis-
tential theory of a free group was shown to be not primitive recursive in [10]. Based
on [19], a new PSPACE algorithm for the existential theory of a free group, which also
allows to include rational constraints for variables, was presented in [2].

Beside these results for free groups, also extensions to larger classes of groups were
obtained in the past: [4, 5, 8, 20]. In [3], a general transfer theorem for existential and
positive theories was shown: the decidability of the existential theory is preserved by
graph products over groups — a construction that generalizes both free and direct prod-
ucts, see e.g. [7]. Moreover, it is shown in [3] that for a large class of graph products,
the positive theory can be reduced to the existential theory. The aim of this paper is to
prove similar transfer theorems for HNN-extensions and amalgamated free products.
These two operations are of fundamental importance in combinatorial group theory
[14]; they are recalled in Section 2 by equations (1) and (3).

One of the first important applications of HNN-extensions was a more transparent
proof of the celebrated result of Novikov and Boone on the existence of a finitely pre-
sented group with an undecidable word problem, see e.g. [14]. Such a group can be



constructed by a series of HNN-extensions starting from a free group. This shows that
there is no hope to prove a transfer theorem for HNN-extensions, similar to the one for
graph products from [3]. Therefore we mainly consider HNN-extensions and amalga-
mated free products, where the subgroup A in (1) and (3), respectively, is finite. Those
groups which can be built up from finite groups using the operations of amalgamated
free products and HNN-extensions, both subject to the finiteness restrictions above, are
precisely the virtually-free groups [1] (i.e., those groups with a free subgroup of finite
index). Virtually-free groups have strong connections to formal language theory and
infinite graph theory [18].

In Section 3, we consider existential theories. For an HNN-extension G of the form
(1) where the subgroup A is finite, we prove that the existential theory of G with ra-
tional constraints is decidable if the existential theory of H with rational constraints is
decidable (Thm. 1). In Section 4, we consider positive theories. For an HNN-extension
G where the two isomorphic subgroups A and ϕ(A) have finite intersection, we prove
that the positive theory of G is decidable if the positive existential theory of G is decid-
able (Thm. 2). From Thm. 1 and 2 and their analogues for amalgamated free products
we deduce that every finitely generated virtually-free group has a decidable existential
theory with rational constraints as well as a decidable positive theory (Thm. 4). Our
exposition will put emphasis on the case of HNN-extensions and just mention the adap-
tations to amalgamated free products. Full proofs can be found in the three manuscripts
[11–13].

2 Preliminaries

The powerset of a set A is denoted by P(A). With RAT(M) (resp. B(RAT(M))) we
denote the class of all rational (resp. boolean combinations of rational) subsets of a
monoid M. The free product of two monoids M1 and M2 is denoted by M1 ∗ M2. For
a monoid M, a bijection h : M → M is an anti-automorphism if h(1M) = 1M and
h(a ·b) = h(b) ·h(a) for all a, b ∈ M. It is called involutive, if h2(a) = a for all a ∈ M.
For two groups A and B, PGI(A,B) denotes the set of all partial isomorphisms from
A to B, i.e., isomorphisms from some subgroup C ≤ A to some subgroup D ≤ B. Let
PGI{A,B} = PGI(A,B) ∪ PGI(B,A) ∪ PGI(A,A) ∪ PGI(B,B).

HNN-extensions and amalgamated free products See [14] for background in com-
binatorial group theory. Let Γ be an alphabet and let Γ−1 = {a−1 | a ∈ Γ} be a
disjoint copy of Γ . A pair (Γ,R) with R ⊆ (Γ ∪ Γ−1)∗ is called a group presenta-
tion. Elements in R are also called relations. The group presented by (Γ,R) is usually
denoted by 〈Γ ;R〉, and is defined as the quotient monoid (Γ ∪ Γ−1)∗/ρ, where ρ is
the smallest congruence relation on the free monoid (Γ ∪ Γ−1)∗, which contains all
pairs in {(aa−1, ε), (a−1a, ε) | a ∈ Γ} ∪ {(r, ε) | r ∈ R}; note that this quotient is
indeed a group. Instead of 〈Γ ; {ri | i ∈ I}〉, we also write 〈Γ ; ri(i ∈ I)〉. Clearly, every
group is isomorphic to a group of the form 〈Γ ;R〉 (we do not assume Γ to be finite).
For a group G ' 〈Γ ;R〉, an alphabet Σ with Σ ∩ Γ = ∅ and a new set of relations
P ⊆ (Γ ∪Σ ∪ Γ−1 ∪Σ−1)∗ we denote with 〈G,Σ;P 〉 the group 〈Σ ∪ Γ ; P ∪R〉.



Let H be a group (the base group), together with two proper subgroupsA ≤ H, B ≤
H and an isomorphism ϕ : A→ B. Let t 6∈ H be a new generator. Then, the group

G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉 (1)

is called an HNN-extension of H by the stable letter t, where A and B are associated.
It is well known that H is a subgroup of G. Clearly, there is a natural projection πG :
H ∗ {t, t−1}∗ → G. An element s from the free product H ∗ {t, t−1}∗ can be written as

s = h0t
α1h1 · · · t

αnhn, (2)

where n ∈ IN, αi ∈ {1,−1}, and hi ∈ H. It is called a reduced sequence iff it has
neither a factor of the form t−1at with a ∈ A nor tbt−1 with b ∈ B. We denote by
Red(H, t) the set of all reduced t-sequences; one has G = πG(Red(H, t)). Reduced t-
sequences turned out to be the right representations for elements from G for the purpose
of deciding Th∃(G,RAT(G)). Let ∼ be the smallest congruence over H ∗ {t, t−1}∗

generated by the rules at ∼ tϕ(a) for all a ∈ A and bt−1 ∼ t−1ϕ−1(b) for all b ∈ B.
The congruence ≈ is the kernel of πG : H ∗ {t, t−1}∗ → G. Note that u ∼ v implies
u ≈ v. Moreover, if u, v ∈ Red(H, t), then u ≈ v iff u ∼ v. The fact u ∼ v for u, v ∈
Red(H, t) can be visualized by a Van Kampen diagram (see [14]) in the group G of the
following form, where u = h0t

α1h1t
α2h2t

α3h3t
α4h4, v = k0t

α1k1t
α2k2t

α3k3t
α4k4

with h0, k0, . . . , h4, k4 ∈ H and c1, . . . , c8 ∈ A ∪B. Light-shaded (resp. dark-shaded)
areas represent relation in H (resp. group identities of the form at = tϕ(a) (a ∈ A) and
bt−1 = t−1ϕ−1(b) (b ∈ B)).

(†)
h0

tα1
h1 tα2 h2 tα3 h3 tα4

h4

k0
tα1

k1 tα2 k2 tα3 k3
tα4

k4

c1 c2 c3 c4 c5 c6 c7 c8

Now assume that H and J are groups with proper subgroups A < H and B < J and let
ϕ : A→ B be an isomorphism. Then

G = 〈H ∗ J, a = ϕ(a)(a ∈ A)〉 (3)

is called an amalgamated free product of H and J, where A and B are associated.

Logical theories Let us fix a countable group G, let C ⊆ P(G) be a set of constraints,
and let Ω be an infinite set of variables ranging over G. Formulas of first-order logic
over G with constraints from C are built up from atomic formulas of the form x ∈ L
(L ∈ C, x ∈ Ω) and equations u = v (u, v ∈ (Ω ∪ {x−1 | x ∈ Ω} ∪ G)∗) using
boolean connectives and quantifications over variables. A formula θ is called positive if
there are no negations in ϕ, i.e., conjunction and disjunction are the only boolean oper-
ators in θ. A formula is called existential (resp. existential positive) if it is of the form
∃x1 · · · ∃xn : ψ(x1, . . . , xn), where ψ is a boolean (resp. a positive boolean) combi-
nation of atomic formulas. We denote with Th+(G, C) (resp. Th∃(G, C),Th∃+(G, C))
the set of all positive (resp. existential, existential positive) sentences that are true in G.
We briefly write ThX(G) for ThX(G, ∅) (X ∈ {∃,+,∃+}).



3 Existential theories

The following theorem is our main result concerning existential theories:

Theorem 1. Th∃(G,RAT(G)) is decidable in the following two cases:

(1) G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉 is an HNN-extension, where A and ϕ(A) are
proper subgroups of H with A finite, and Th∃(H,RAT(H)) is decidable.

(2) G = 〈H ∗ J, a = ϕ(a)(a ∈ A)〉 is an amalgamated free product, where A is finite,
and Th∃(H,RAT(H)) and Th∃(J,RAT(J)) are decidable.

The statements (1) and (2) in Thm. 1 are orthogonal to the corresponding result for
graph products from [3]: none of the three operations (HNN-extensions, amalgamated
free products, and graph products) is a special case of another one. At the end of Sec-
tion 3, we will mention several variants of Thm. 1, which can be obtained by similar
techniques. In the following we will sketch a proof of (1) from Thm. 1. Before we
go into the details, we will first present some material concerning rational subsets of
HNN-extensions, which is of independent interest.

3.1 Rational subsets of HNN-extensions

Let us fix throughout this section an HNN-extension G of a base group H as described
by (1), where A is finite. We now define a notion of finite automata which will be well-
suited for deciding Th∃(G,RAT(G)).

A finite t-automaton over H ∗ {t, t−1}∗ with labeling set F ⊆ P(H) is a 5-tuple

A = 〈L,Q,∆, I,T〉, (4)

where: (i) L is a finite subset of F∪P(A)∪P(B)∪{{t}, {t−1}}, (ii) Q is a finite set of
states, (iii) I ⊆ Q is the set of initial states, (iv) T ⊆ Q is the set of terminal states, and
(v)∆ ⊆ Q×L×Q is the set of transitions. Such an automaton induces a representation
map µA : H ∗ {t, t−1}∗ → P(Q×Q) defined as follows, where x ∈ H∪{t, t−1} \ {1}
and s ∈ H ∗ {t, t−1}∗ is of the form (2):

µA,0(1) = {(q, q) | q ∈ Q} ∪ {(q, r) ∈ Q×Q | ∃(q, L, r) ∈ ∆ : 1 ∈ L}

µA,0(x) = {(q, r) ∈ Q×Q | ∃(q, L, r) ∈ ∆ : x ∈ L}

µA(s) = µA,0(h0) ◦ µA,0(t
α1) ◦ µA,0(h1) · · ·µA,0(t

αn) ◦ µA,0(hn).

A recognizes the set L(A) = {s ∈ H ∗ {t, t−1}∗ | (I × T) ∩ µA(s) 6= ∅}. Let
G6 = (T6, E6) and R6 = (T6, E

′
6) be the following two graphs:
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Let Ê6 = {(p, `, q) | ∃(p, L, q) ∈ E6, ` ∈ L}. One can check that G6 (resp. R6)
endowed with the unique initial state (1, H) and the unique final state (1, 1) is a finite
t-automaton recognizing H ∗ {t, t−1}∗ (resp. Red(H, t)). Nodes of G6, i.e., elements
of T6, are called vertex-types. We define a finite partial semigroup 〈T , ·〉, where T =
T6 × B × T6 and B = 〈{0, 1},∨〉 is the monoid of booleans. The partial product on T
is defined by:

∀(p, b, q), (p′, b′, q′) ∈ T6×B×T6 : (p, b, q) · (p′, b′, q′) =

{
(p, b ∨ b′, q′) if q = p′

undefined otherwise

The structure 〈P(T ), ·〉 is thus a (total) monoid. Elements of T are also called path-
types. We define an involution IR : T6 → T6 by (A, T ) ↔ (A,H), (B, T ) ↔ (B,H),
and (1, H) ↔ (1, 1). It induces an involution IT : T → T defined by: IT (p, b, q) =
(IR(q), b, IR(p)). This map IT is an anti-automorphism of T and also induces an in-
volutive anti-automorphism of 〈P(T ), ·〉 that will be denoted by IT too. We associate
with every element (p, b, q) ∈ T its initial group Gi(p, b, q) = p1(p) ∈ {1, A,B} and
its end group Ge(p, b, q) = p1(q) ∈ {1, A,B}. Here p1 is the projection onto the first
component. For s ∈ H ∗ {t, t−1}∗ let b(s) = 1 if s contains at least one occurrence of
t or t−1, otherwise b(s) = 0. Define

γt(s) = {(p, b(s), q) ∈ T6 × B × T6 | (p, q) ∈ µR6
(s)} ∈ P(T ). (5)

Let TA = {(θ, b(x), θ′) ∈ T | (θ, x, θ′) ∈ Ê6} be the set of atomic path types. A normal
finite t-automaton over F is a 6-tuple A = 〈L,Q, τ,∆, I,T〉, where 〈L,Q,∆, I,T〉 is
as in (4) and τ : Q→ T6 maps each state to a vertex-type such that

τ(I) = {(1, H)}, τ(T) = {(1, 1)}, ∀(q, L, r) ∈ ∆ : {τ(q)} × L× {τ(r)} ⊆ Ê6,

[L(A)]≈ = [L(A) ∩ Red(H, t)]≈, (6)

∀s, s′ ∈ H ∗ {t, t−1}∗ : s ∼ s′ ⇒ µA(s) = µA(s′), (7)

∀θ̃ ∈ γt(s), θ̃′ ∈ γt(s
′) : θ̃ · θ̃′ defined in T ⇒

µA,1(θ̃ · θ̃′, s · s
′) = µA,1(θ̃, s) · µA,1(θ̃′, s

′),

∀θ ∈ T6 : µA,1((θ, 0, θ), 1) = idτ−1(θ).

Here, µA,1((θ, b, θ
′), s) = µA(s)∩τ−1(θ)×τ−1(θ′); it does not depend on b ∈ {0, 1}.

A is said to be strict if, instead of (6), it fulfills the condition L(A) ⊆ Red(H, t).

Lemma 1. We have:

– R ∈ RAT(G) iff R = πG(L(A)) for some normal finite t-automaton A with
labeling set RAT(H).

– If R ∈ B(RAT(G)) then R = πG(L(A)) for some strict normal finite t-automaton
A with labeling set B(RAT(H)).

3.2 Deciding Th∃(G, RAT(G))

AB-algebras and AB-homomorphisms In this section, we introduce an algebraic
structure which is devised for handling equations with rational constraints in an HNN-
extension. Let A,B be two groups (later, these will be the two subgroups A and B =



ϕ(A) from (1)) and Q be some finite set (it will be the state set of a t-automaton). Let
B(Q) = (P(Q × Q), ·) be the monoid of binary relations over Q and let B2(Q) be the
direct product B(Q) × B(Q). For m ∈ B(Q) let m−1 = {(p, q) ∈ Q × Q | (q, p) ∈
m} ∈ B(Q). Let IQ : B2(Q) → B2(Q) be the involutive anti-automorphism defined by
IQ(m,m′) = (m′−1,m−1). An AB-algebra is a structure 〈M, ·, 1M, I, ιA, ιB , γ, µ, δ〉,
where 〈M, ·, 1M〉 is a monoid, ιA : A → M, ιB : B → M are injective monoid ho-
momorphisms, I : M → M is an involutive anti-automorphism, and γ : M → P(T ),
µ : T × M → B2(Q), and δ : T × M → PGI{A,B} are total mappings fulfilling the
axioms (8)–(13) below.

For all m,m′ ∈ M and all θ̃ ∈ γ(m), θ̃′ ∈ γ(m′):

γ(m) · γ(m′) ⊆ γ(m ·m′) (8)

θ̃ · θ̃′ defined ⇒ µ(̃θ · θ̃′,m ·m′) = µ(θ̃,m) · µ(θ̃′,m′) (9)

dom(δ(θ̃,m)) ⊆ Gi(θ̃), im(δ(θ̃,m)) ⊆ Ge(θ̃) (10)

θ̃ · θ̃′ defined ⇒ δ(̃θ · θ̃′,m ·m′) = δ(θ̃,m) ◦ δ(θ̃′,m′) (11)

For all a ∈ A, b ∈ B, m ∈ M, and θ̃ ∈ γ(m):

I(ιA(a)) = ιA(a−1), I(ιB(b)) = ιB(b−1), (12)

γ(I(m)) = IT (γ(m)), µ(IT (θ̃), I(m)) = IQ(µ(θ̃,m)), δ(IT (θ̃), I(m)) = δ(θ̃,m)−1

(13)

Let Mi = 〈Mi, ·, 1Mi
, ιA,i, ιB,i, Ii, γi, µi, δi〉 (i ∈ {1, 2}) be twoAB-algebras with the

same underlying groups A,B and set Q. An AB-homomorphism from M1 to M2 is a
monoid homomorphism ψ : M1 → M2 fulfilling the five properties (14)–(18) below:

∀a ∈ A∀b ∈ B : ψ(ιA,1(a)) = ιA,2(a) ∧ ψ(ιB,1(b)) = ιB,2(b) (14)

∀m ∈ M1 : I2(ψ(m)) = ψ(I1(m)) (15)

∀m ∈ M1 : γ2(ψ(m)) ⊇ γ1(m) (16)

∀m ∈ M1 ∀θ̃ ∈ γ1(m) : µ2(θ̃, ψ(m)) = µ1(θ̃,m) (17)

∀m ∈ M1 ∀θ̃ ∈ γ1(m) : δ2(θ̃, ψ(m)) = δ1(θ̃,m) (18)

In the following we will introduce two particular AB-algebras.

The AB-algebra Ht From now on, we fix an HNN-extension (1) withA andB = ϕ(A)
finite and a strict normal finite t-automaton A = 〈L,Q, τ,∆, I,T〉 with labeling set
B(RAT(H)). We define an AB-algebra

〈H ∗ {t, t−1}∗, ·, 1H, ιA, ιB , It, γt, µt, δt〉

with underlying monoid H ∗ {t, t−1}∗ and set of states Q as follows: ιA (resp. ιB) is
the natural injection from A (resp. B) into H ∗ {t, t−1}∗, and It is the unique involutive
anti-automorphism H ∗ {t, t−1}∗ → H ∗ {t, t−1}∗ such that It(h) = h−1 for h ∈ H,
It(t) = t−1, and It(t

−1) = t. The map γt was already defined in (5). The maps µt :



T × H ∗ {t, t−1}∗ → B2(Q) and δt : T × H ∗ {t, t−1}∗ → PGI{A,B} are defined as
follows, where s ∈ H ∗ {t, t−1}∗ and θ̃ ∈ T :

µt(θ̃, s) = (µA,1(θ̃, s), (µA,1(IT (θ̃), It(s)))
−1)

δt(θ̃, s) = {(c, d) ∈ Gi(θ̃) × Ge(θ̃) | cs ∼ sd}.

s
s

c d (‡)Note that (c, d) ∈ δ(θ̃, s) implies that in the group G there
is a Van Kampen diagram as shown on the right, which
(for s ∈ Red(H, t)) is a diagram of the form (†); note that c, d ∈ A ∪ B. E.g., if
α2 = α3 = 1 and h2 = k2 in (†), then (c3, c6) ∈ δt(((A, T ), 1, (B,H)), th2t).

One can check that the monoid congruence ∼ is compatible with It, ιA, ιB , γt, µt,
and δt (here, (7) is important) so that the quotient Ht = H ∗ {t, t−1}∗/ ∼ is naturally
endowed with the structure of an AB-algebra (which we denote again with Ht)

Ht = 〈Ht, ·, 1H, ιA, ιB , I∼, γ∼, µ∼, δ∼〉. (19)

Intuitively, the values γ∼(s), µ∼(θ̃, s), and δ∼(θ̃, s) (for θ̃ ∈ γ∼(s)) store all informa-
tion about a sequence s that is relevant when s appears in a solution of a system of
equations. Since A, B, and Q are finite, this is only a finite amount of information.

Normal systems of equations A normal system of (dis)equations with constraints from
B(RAT(G)) is a tuple

SG = ((ui = u′i)1≤i≤n, (ui 6= u′i)n<i≤2n, µA, µU ), (20)

where ui, u
′
i are words over an alphabet of unknowns U , |ui| = 1, |u′i| = 2 for 1 ≤

i ≤ n, |ui| = 1 = |u′i| for n < i ≤ 2n, µA is the representation map associated with
the strict normal t-automaton A from the previous paragraph, and µU : U → B(Q). A
solution of the system (20) is any monoid homomorphism σG : U∗ → G such that for
all 1 ≤ i ≤ n, n < j ≤ 2n, and U ∈ U :

σG(ui) = σG(u′i), σG(uj) 6= σG(u′j), µA,1(((1, H), b, (1, 1)), σG(U)) = µU (U),

where b ∈ {0, 1} (µA,1 does not depend on the concrete value of b). Since A is strict
normal, µA,1(θ̃, g) for g ∈ G can be defined as µA,1(θ̃, s) for any s ∈ Red(H, t) with
πG(s) = g. Using Lemma 1, one can reduce Th∃(G,RAT(G)) to the question whether
a system of the form (20) has a solution. Thus, we may assume to have a system of the
form (20) and we aim to decide whether it has a solution.

The AB-algebra Wt Whereas our first AB-algebra Ht from (19) depends on the “con-
crete” base group H, we now introduce a second “generic” AB-algebra Wt, which
depends on our input system (20), but it depends only superficially on H. The idea is
to factorize the G-values of a concrete solution of our given system (20) into “generic”
symbols, which generate our new AB-algebra Wt. Every generic symbol can be instan-
tiated in G so that the original solution in G is recovered.

In order to carry out the above factorization, we introduce for every atomic type
θ̃ ∈ TA, every α ∈ B2(Q), and every β ∈ PGI(Gi(θ̃),Ge(θ̃)), 54 · n (n is from



(20)) many different new “generic” symbols W1, . . . ,W54n and define: γ(Wi) = {θ̃},
µ(θ̃,Wi) = α, and δ(θ̃,Wi) = β. Let W be the new alphabet obtained in this way.
By adding for every W ∈ W a new copy to W , we can define on W an involution I

without fixpoints (i.e., I(W ) 6= W ) such that (13) holds for every m = W ∈ W . Let
us now consider the free product W∗ ∗ A ∗ B. We denote by ιA : A → W∗ ∗ A ∗ B
(resp. ιB : B → W∗ ∗ A ∗ B) the natural embedding of A (resp. B) into W∗ ∗ A ∗ B.
We define the AB-algebra

〈W∗ ∗A ∗B, ·, 1, ιA, ιB , I, µ, γ, δ〉

with underlying monoid W∗ ∗ A ∗ B and set of states Q as follows: I is extended
as the unique involutive anti-automorphism W∗ ∗ A ∗ B → W∗ ∗ A ∗ B such that
I(ιA(a)) = ιA(a−1) for a ∈ A and I(ιB(b)) = ιB(b−1) for b ∈ B. The mapping
γ : W → P(TA) is extended to ιA(A) ∪ ιB(B) by

∀a ∈ A \ {1} : γ(ιA(a)) = {((A, T ), 0, (A, T )), ((A,H), 0, (A,H))},

∀b ∈ B \ {1} : γ(ιB(b)) = {((B, T ), 0, (B, T )), ((B,H), 0, (B,H))},

γ(1) = {(θ, 0, θ) | θ ∈ T6},

and finally to the full free product W∗ ∗A ∗B by

∀g1, . . . , gk ∈ W ∪ ιA(A) ∪ ιB(B) : γ(g1 · · · gk) = γ(g1) · · · γ(gk).

The mappings µ : T × W → B2(Q) and δ : T × W → PGI{A,B} are extended as
follows:

∀a ∈ A ∀θ̃ ∈ γ(ιA(a)) : δ(θ̃, ιA(a)) = δt(θ̃, a), µ(θ̃, ιA(a)) = µt(θ̃, a)

∀b ∈ B ∀θ̃ ∈ γ(ιB(b)) : δ(θ̃, ιB(b)) = δt(θ̃, b), µ(θ̃, ιB(b)) = µt(θ̃, b)

Finally, the maps µ and δ are extended to W∗ ∗ A ∗B in the only way such that for all
m ∈ ιA(A) ∪ ιB(B) ∪W, θ̃ ∈ T \ γ(m): µ(θ̃,m) = ∅, δ(θ̃,m) = {(1, 1)} (the trivial
partial isomorphism), and axioms (9) and (11) are respected. Let ≡ be the smallest
monoid congruence on W∗ ∗ A ∗ B which contains all pairs (cW,Wd) with W ∈ W
and (c, d) ∈ δ(θ̃,W ) for the unique θ̃ ∈ γ(W ). Let W := W∗∗A∗B/ ≡ be the quotient
monoid, i.e., we enforce for every W ∈ W diagrams of the form (‡) (with s = W ).
One can check that ≡ is compatible with I, ιA, ιB , γ, µ, and δ, so that W inherits from
W∗ ∗ A ∗ B the structure of an AB-algebra. Let Wt be the set of all W ∈ W such
that for some s ∈ H ∗ {t, t−1}∗: (i) γ(W ) ⊆ γt(s) and (ii) the unique θ̃ ∈ γ(W )
fulfills µ(̃θ,W ) = µt(θ̃, s) and δ(θ̃,W ) = δt(θ̃, s). Thus, Wt is the set of all generic
symbols that can be realized by a concrete sequence s ∈ H∗{t, t−1}∗. With WH ⊆ Wt

we denote the set of those W ∈ Wt such that moreover γ(W ) = {(θ, 0, θ′)}, where
(θ,H, θ′) ∈ E6. Let Wt (resp. WH) be the substructure of W generated by the subset of
monoid generators ιA(A)∪ ιB(B)∪Wt (resp. ιA(A)∪ ιB(B)∪WH). It is easy to see
that ψ(WH) ⊆ H for every AB-homomorphism ψ : Wt → Ht.

The algorithm Recall that we have to check, whether the normal system of (dis)equa-
tions (20) has a solution.



Step 1 Consider an equation ui = u′i from (20), where w.l.o.g. ui = U1 and u′i = U2U3

for U1, U2, U3 ∈ U ; disequations can be treated similarly. Let σG be a solution for (20).
We can choose reduced t-sequences s1, s2, and s3 such that σG(Uj) = πG(sj). Then
there exists factorizations sj = sj,1 · · · sj,9 and elements e1,2, e2,3, e3,1 ∈ A ∪ B such
that the Van-Kampen diagram describing the group relation πG(s1) = πG(s2s3) (i.e.,
s1 ≈ s2s3) decomposes into four pieces, represented by the four relations

s1,1 s1,2 s1,3 s1,4 e1,2 ∼ s2,1 s2,2 s2,3 s2,4 (21)

s2,6 s2,7 s2,8 s2,9 ∼ e2,3 It(s3,4) It(s3,3) It(s3,2) It(s3,1) (22)

e3,1 s1,6 s1,7 s1,8 s1,9 ∼ s3,6 s3,7 s3,8 s3,9 (23)

s1,5 = e1,2 s2,5 e2,3 s3,5 e3,1 in the base group H, (24)

s1

s1,5

e3,1

s3,5e2,3s2,5

e1,2

s1,1 · · · s1,4 s1,6 · · · s1,9

s2,1
· · · s2,4 s3,6 · · · s3,9

s 2
,6

· ·
·
s 2

,9

s
3
,1

· · ·
s
3
,4

s2 s3

see the diagram on the right, where the
light-shaded area represents a relation in
the group H. Dark-shaded areas are di-
agrams of the form (†) from Section 2.
The sj,k (k 6= 5) belong to H∗{t, t−1}∗,
while the sj,5 ∈ H. Decomposing e.g.
the sequence s1,1s1,2s1,3s1,4 into 4 parts
allows us to choose all the s1,k (1 ≤
k ≤ 4) either trivial or of some (guessed)
atomic type in TA. We now replace every
sj,k by a new generic symbol Wi,j,k ∈
Wt (or possibly 1); the additional index i refers to the equation ui = u′i, where Wi,j,k

comes from. Note that for every i we need 27 symbols Wi,j,k, this explains the factor
54 = 2 · 27 in the definition of the alphabet W . The values of the mappings I, γ, µ,
and δ on Wi,j,k have to be chosen such that the generic symbol Wi,j,k captures all the
relevant data about the concrete sequence sj,k. For instance, γ(Wi,j,k) only contains
the guessed type for sj,k. In this way, we can translate system (20) into a new system of
equations over Wt (corresponding essentially to (21)–(23)) and another system over H

(corresponding to (24)). Thus, we reduce the problem, whether (20) has a solution, to a
finite disjunction of problems of the following form:
INPUT: Finitely many pairs (vj , v

′
j) ∈ Wt × Wt (j ∈ J), with γ(vj) = γ(v′j) 6= ∅,

and a (ordinary) system SH of equations and disequations in the base group H and with
constraints from RAT(H); the set of unknowns of SH is included in WH.
QUESTION: Does there exist an AB-homomorphism σt : Wt → Ht such that

∀j ∈ J : σt(vj) = σt(v
′
j) and simultaneously (25)

σt solves the system SH? (26)

Step 2 We reduce the question, whether (25) and (26) holds for some σt to the problem,
where the input is the same as above, but the question is:
QUESTION: Do there exist AB-homomorphisms σW : Wt → Wt, ψt : Wt → Ht with

∀j ∈ J : σW(vj) = σW(v′j) and simultaneously (27)

σW ◦ ψt solves the system SH? (28)



This reduction is a direct corollary of a factorization property for the solutions σt

of (25): σt is a solution iff it can be factorized as σW ◦ ψt for AB-homomorphisms
σW : Wt → Wt and ψt : Wt → Ht. The proof consists in decomposing σt into a
sort of elementary AB-homomorphisms of the form W 7→ cW1dW2eW3f (c, d, e, f ∈
A ∪ B,Wi ∈ Wt), followed by some ψt : Wt → Ht: we start with the trivial de-
composition σW = idW, ψt = σt and then reason by induction over the multiset
{{d(σW(vj), σW(v′j)) | j ∈ J}}, where d is a kind of distance on W.

Step 3 We introduce the group U = 〈W; W · I(W ) = 1 (W ∈ W)〉. This group
turns out to be obtained from a base group K, which is a semi-direct product of the
finite groupA by a free group of finite rank, by a finite number of HNN-extensions with
associated subgroups strictly smaller thanA. Using the main result of [2], one can show
that Th∃(K,RAT(K)) is decidable. Moreover, by induction on the cardinality of A,
also Th∃(U,RAT(U)) is decidable. One can show that for every AB-homomorphism
σW : Wt → Wt and every generatorW ∈ WH one has σW(W ) ∈ (A∪B)WH(A∪B).
This implies that for the restriction σH = σW¹WH

of σW in (27) there are only finitely
many possibilities. By enumerating all these mappings σH and substituting them into
(27) and (28), we reduce the simultaneous satisfiability of (27) and (28) to: (i) on one
hand solving finitely many specialized instances of (27), which reduce to the theory
Th∃(U,RAT(U)), and (ii) on the other hand, for every specialized instance from the
previous point, solving a corresponding system of the form σH(SH), which reduces to
Th∃(H,RAT(H)). Following this strategy we prove Thm. 1.

Using the embedding of an amalgamated free product (3) into the HNN-extension
〈H ∗ J′, t; t−1at = ϕ(a)(a ∈ A)〉 by the map defined by h ∈ H 7→ t−1ht, j ∈ J 7→ j′

(where J′ = {j′ | j ∈ J} is a copy of J, disjoint from H, and ϕ maps every element of
A to its copy in J′, see [14, Thm. 2.6. p. 187]), we obtain statement (2) of Thm. 1. Let
us finally discuss some variations of Thm. 1.

Remark 1. Thm. 1(1) remains true when Th∃(X,RAT(X)) (X ∈ {H,G}) is replaced
by: Th∃+(X) (variant 1), Th∃(X) (variant 2), or Th∃+(X,RAT(X)) (variant 3). If
Th∃+(H, {A1, . . . , An}) is decidable, where every Ai is a finitely generated subgroup
of H containing A, then also Th∃+(G, {Ai, 〈Ai, t〉 | 1 ≤ i ≤ n}) is decidable (variant
4), where 〈Ai, t〉 is the subgroup of G generated by Ai ∪ {t}. These variants can be
also shown if H is a cancellative monoid instead of a group (only A and B have to be
groups). Finally, variant 2 still holds for amalgamated products of cancellative monoids.

4 Positive theories

The following two theorems are our main results concerning positive theories:

Theorem 2. Th+(G) is decidable in the following two cases:

(1) G = 〈H, t; t−1at = ϕ(a)(a ∈ A)〉 is an HNN-extension, where A and ϕ(A) are
proper subgroups of H with A ∩ ϕ(A) finite, and Th∃+(G) is decidable.

(2) G = 〈H ∗ J, a = ϕ(a)(a ∈ A)〉 is an amalgamated free product with A finite and
Th∃+(G) is decidable.



In Thm. 2 we cannot allow a cancellative monoid for H, because the positive theory of
{a, b}∗ ' N ∗ N is undecidable [6]. For the same reason, we cannot include rational
constraints: {a, b}∗ is a rational subset of the free group of rank 2.

Let us sketch a proof of (1) from Thm. 2. Our strategy for reducing Th+(G) to
Th∃+(G) is similar to [16, 17]: From a positive sentence ψ, which is interpreted over
G, we construct an existential positive sentence ψ′ with subgroup constraints of a very
special form, which is interpreted over a multiple HNN-extension G′ of G, where only
finite subgroups of G are associated. Roughly speaking, ψ′ results from ψ by replacing
the universally quantified variables by the stable letters of the HNN-extension G′. Let G

be an HNN-extension as in Thm. 2. LetX ≤ A∩ϕ(A) be a (necessarily finite) subgroup
of H. With In(X) we denote the group of all automorphisms f of X such that for some
g ∈ G we have: f(c) = g−1cg for all c ∈ X . For new constants k1, . . . , km 6∈ G and
f1, . . . , fm ∈ In(X) we define the multiple HNN-extension

G
f1,...,fm

k1,...,km
= 〈G, k1, . . . , km; k−1

i cki = fi(c) (c ∈ X, 1 ≤ i ≤ m)〉. (29)

The following theorem yields the reduction from Th+(G) to Th∃+(G).

Theorem 3. There is a subgroup X ≤ A ∩ B ≤ H ≤ G such that for every formula
ψ(z1, . . . , zm) ≡ ∀x1∃y1 · · · ∀xn∃yn φ(x1, . . . , xn, y1, . . . , yn, z1, . . . , zm), where φ
is a positive boolean combination of equations (with constants) over the group G, and
for all u1, . . . , um ∈ G we have: ψ(u1, . . . , um) in G iff

∧

f1∈In(X)

∃y1 · · ·
∧

fn∈In(X)

∃yn





∧

1≤i≤n

yi ∈ G
f1,...,fi

k1,...,ki
∧

φ(k1, . . . , kn, y1, . . . , yn, u1, . . . , um) in G
f1,...,fn

k1,...,kn





(30)

In [3], a result analogous to Theorem 3 for the case that G is a free product was shown.
In this case, the new generators k1, . . . , kn do not interact with the group G, i.e., the
HNN-extension G

f1,...,fn

k1,...,kn
is replaced by the free product G ∗ Fn, where Fn is the free

group generated by k1, . . . , kn. For the more general case that G is an HNN-extension,
we cannot avoid some nontrivial interaction between ki and Gi. This interaction is ex-
pressed by the identities k−1

i cki = fi(c) (c ∈ X) in the HNN-extension G
f1,...,fn

k1,...,kn
. Note

that the sentence in (30) is not interpreted in a single HNN-extension of G. But it is not
difficult to construct an HNN-extension G′ of G such that each of the groups G

f1,...,fn

k1,...,kn

can be embedded into G′. Moreover, each single HNN-extension that leads from G to
G′ associates X with itself as in (29). In this way, we can construct from (30) an ex-
istential positive sentence Ψ = (∃yσ ∈ Gσ)σ∈J χ((kσ)σ∈J , (yσ)σ∈J , u1, . . . , um) (for
some index set J larger than n in (30)) such that (30) iff Ψ is true in G′. Moreover,
all constraint-groups Gσ in Ψ are generated by G and some of the stable letters kσ . To
complete the proof of (1) in Thm. 2, notice that an iterated application of variant 4 from
Remark 1 (recall that X is finite) enables us to reduce Th∃+(G′, {Gσ | σ ∈ J}) to
Th∃+(G). A proof of (2) in Thm. 2 follows a similar strategy.

We conclude this paper with an application to virtually-free groups. A finitely gen-
erated group G is virtually-free, if it has a free subgroup of finite index. Since these
groups have finite decompositions over finite groups by means of the operations (1) and
(3) with A finite [1], we obtain from Thm. 1 and 2:



Theorem 4. If G is virtually-free, then Th∃(G,RAT(G)) and Th+(G) are decidable.

Thm. 4 immediately leads to the question, whether also the full first-order theory of a
virtually-free group is decidable. This is certainly a difficult question. The full proof of
Kharlampovich and Myasnikov for the decidability of the theory of a free group (see [9]
for an overview) takes several hundred pages. Moreover, there seems to be no obvious
reduction from the theory of a virtually-free group to the theory of a free group.
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