
Application of verification techniques in inverse

monoid theory

Markus Lohrey and Nicole Ondrusch

University of Stuttgart, Germany

September 17, 2005

Markus Lohrey and Nicole Ondrusch Application of verification techniques in inverse monoid theory



Monoid presentations

Let Σ be a finite alphabet and P ⊆ Σ∗ × Σ∗ be a presentation.
Then Σ∗/P := Σ∗/ ≡P , where ≡P be the smallest congruence
relation on Σ∗ containing P.
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Monoid presentations

Let Σ be a finite alphabet and P ⊆ Σ∗ × Σ∗ be a presentation.
Then Σ∗/P := Σ∗/ ≡P , where ≡P be the smallest congruence
relation on Σ∗ containing P.

More precisely: ≡P =
∗
↔P , where

↔P = {(sxt, syt) | s, t ∈ Σ∗, (x , y) ∈ P or (y , x) ∈ P}.
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Monoid presentations

Let Σ be a finite alphabet and P ⊆ Σ∗ × Σ∗ be a presentation.
Then Σ∗/P := Σ∗/ ≡P , where ≡P be the smallest congruence
relation on Σ∗ containing P.

More precisely: ≡P =
∗
↔P , where

↔P = {(sxt, syt) | s, t ∈ Σ∗, (x , y) ∈ P or (y , x) ∈ P}.

The word problem for Σ∗/P is the following problem:
INPUT: words u, v ∈ Σ∗

QUESTION: u = v in Σ∗/P, i.e., u ≡P v?
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Monoid presentations

Let Σ be a finite alphabet and P ⊆ Σ∗ × Σ∗ be a presentation.
Then Σ∗/P := Σ∗/ ≡P , where ≡P be the smallest congruence
relation on Σ∗ containing P.

More precisely: ≡P =
∗
↔P , where

↔P = {(sxt, syt) | s, t ∈ Σ∗, (x , y) ∈ P or (y , x) ∈ P}.

The word problem for Σ∗/P is the following problem:
INPUT: words u, v ∈ Σ∗

QUESTION: u = v in Σ∗/P, i.e., u ≡P v?

Two milestones:

Markov (1947), Post (1947): There is a finite presentation P
such that Σ∗/P has an undecidable word problem.
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Monoid presentations

Let Σ be a finite alphabet and P ⊆ Σ∗ × Σ∗ be a presentation.
Then Σ∗/P := Σ∗/ ≡P , where ≡P be the smallest congruence
relation on Σ∗ containing P.

More precisely: ≡P =
∗
↔P , where

↔P = {(sxt, syt) | s, t ∈ Σ∗, (x , y) ∈ P or (y , x) ∈ P}.

The word problem for Σ∗/P is the following problem:
INPUT: words u, v ∈ Σ∗

QUESTION: u = v in Σ∗/P, i.e., u ≡P v?

Two milestones:

Markov (1947), Post (1947): There is a finite presentation P
such that Σ∗/P has an undecidable word problem.

Novikov (1955), Boone (1957): There is a finite presentation
P such that Σ∗/P is a group and has an undecidable word
problem.
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Inverse monoids

A monoid M is inverse if for every x ∈ M there exists a unique
x−1 ∈ M with x x−1x = x and x−1x x−1 = x−1.
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Inverse monoids

A monoid M is inverse if for every x ∈ M there exists a unique
x−1 ∈ M with x x−1x = x and x−1x x−1 = x−1.

For a finite set Γ let FIM(Γ) be the free inverse monoid generated
by Γ (exists, since inverse monoids form a variety).

Markus Lohrey and Nicole Ondrusch Application of verification techniques in inverse monoid theory



Inverse monoids

A monoid M is inverse if for every x ∈ M there exists a unique
x−1 ∈ M with x x−1x = x and x−1x x−1 = x−1.

For a finite set Γ let FIM(Γ) be the free inverse monoid generated
by Γ (exists, since inverse monoids form a variety).

An explicite representation of FIM(Γ): Let

Γ−1 = {a−1 | a ∈ Γ} be a disjoint copy of Γ,

(a−1)−1 := a,

(b1b2 · · · bn)
−1 := b−1

n · · · b−1
2 b−1

1 for bi ∈ Γ ∪ Γ−1,

W = {(s, s s−1s), (s s−1t t−1, t t−1s s−1) | s, t ∈ (Γ ∪ Γ−1)∗}
(Wagner equations)

Then FIM(Γ) ' (Γ ∪ Γ−1)∗/W.
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Finitely presented inverse monoids

For a presentation P ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗ let

FIM(Γ)/P := (Γ ∪ Γ−1)∗/(P ∪W).
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Finitely presented inverse monoids

For a presentation P ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗ let

FIM(Γ)/P := (Γ ∪ Γ−1)∗/(P ∪W).

A presentation P ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗ is idempotent if for
every (e, f ) ∈ P, e and f are idempotents of FIM(Γ) (e2 = e and
f 2 = f in FIM(Γ) ).
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Finitely presented inverse monoids

For a presentation P ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗ let

FIM(Γ)/P := (Γ ∪ Γ−1)∗/(P ∪W).

A presentation P ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗ is idempotent if for
every (e, f ) ∈ P, e and f are idempotents of FIM(Γ) (e2 = e and
f 2 = f in FIM(Γ) ).

Theorem (Margolis, Meakin)

The following problem is decidable:
INPUT: Idempotent presentation P over alphabet Γ ∪ Γ−1, words

u, v ∈ (Γ ∪ Γ−1)∗.
QUESTION: u = v in FIM(Γ)/P?

Markus Lohrey and Nicole Ondrusch Application of verification techniques in inverse monoid theory



Free groups

The free group FG(Γ) generated by Γ:

FG(Γ) = (Γ ∪ Γ−1)∗/{(bb−1, ε) | b ∈ Γ ∪ Γ−1}

Markus Lohrey and Nicole Ondrusch Application of verification techniques in inverse monoid theory



Free groups

The free group FG(Γ) generated by Γ:

FG(Γ) = (Γ ∪ Γ−1)∗/{(bb−1, ε) | b ∈ Γ ∪ Γ−1}

Remark: Let u ∈ (Γ∪ Γ−1)∗. Then u2 = u in FIM(Γ) if and only if
u = 1 in FG(Γ).
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Free groups

The free group FG(Γ) generated by Γ:

FG(Γ) = (Γ ∪ Γ−1)∗/{(bb−1, ε) | b ∈ Γ ∪ Γ−1}

Remark: Let u ∈ (Γ∪ Γ−1)∗. Then u2 = u in FIM(Γ) if and only if
u = 1 in FG(Γ).

The Cayley graph of FG(Γ) is the following edge-labeled graph
with node set FG(Γ):

(FG(Γ), (Ea)a∈Γ∪Γ−1),

where Ea = {(u, v) | u, v ∈ FG(Γ), v = ua in FG(Γ)}.
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Cayley graph of a free group:

The Cayley graph of the free group FG({a, b}):
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Munn trees

Let u = c1c2 · · · cn ∈ (Γ ∪ Γ−1)∗ be a word.
The Munn tree of u is the finite subtree of the Cayley graph of
FG(Γ), that are visited while traveling along the path c1c2 · · · cn in
the Cayley graph of FG(Γ).
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Munn trees

Let u = c1c2 · · · cn ∈ (Γ ∪ Γ−1)∗ be a word.
The Munn tree of u is the finite subtree of the Cayley graph of
FG(Γ), that are visited while traveling along the path c1c2 · · · cn in
the Cayley graph of FG(Γ).

Theorem (Munn)

Let u, v ∈ (Γ ∪ Γ−1)∗. Then u = v in FIM(Γ) if and only if

1 u = v in the free group FG(Γ)

2 u and v have the same Munn trees.
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Munn trees

The Munn tree of bb−1abb−1a:
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Munn trees
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Closure of a word

Let u ∈ (Γ ∪ Γ−1)∗ be a word and P ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗ be
an idempotent presentation.
W.l.o.g. Munn tree of e ⊆ Munn tree of f for all (e, f ) ∈ P.
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Closure of a word

Let u ∈ (Γ ∪ Γ−1)∗ be a word and P ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗ be
an idempotent presentation.
W.l.o.g. Munn tree of e ⊆ Munn tree of f for all (e, f ) ∈ P.

The closure clP(u) of u wrt. P for an example:

u = aa−1bb−2, P = {(aa−1, a2a−2), (aa−1bb−1, aa−1baa−1b−1)}
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Closure of a word

Let u ∈ (Γ ∪ Γ−1)∗ be a word and P ⊆ (Γ ∪ Γ−1)∗ × (Γ ∪ Γ−1)∗ be
an idempotent presentation.
W.l.o.g. Munn tree of e ⊆ Munn tree of f for all (e, f ) ∈ P.

The closure clP(u) of u wrt. P for an example:

u = aa−1bb−2, P = {(aa−1, a2a−2), (aa−1bb−1, aa−1baa−1b−1)}

The relations in P seen as identities between Munn trees:

a = a a a
b

= a
b

a
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Closure of u = aa
−1

bb
−2 w.r.t. P

1. Construct the Munn tree of u = aa−1bb−2.
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Closure of u = aa
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Closure of u = aa
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Closure of u = aa
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1. Construct the Munn tree of u = aa−1bb−2.
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Closure of u = aa
−1

bb
−2 w.r.t. P

2. Find Munn tree of a left-hand side of a relation (`, r) in red part.
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Closure of u = aa
−1

bb
−2 w.r.t. P

2. (aa−1bb−1, aa−1baa−1b−1)
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Closure of u = aa
−1

bb
−2 w.r.t. P

3. Extend by Munn tree of right-hand side aa−1baa−1b−1.
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Closure of u = aa
−1

bb
−2 w.r.t. P

2. Find Munn tree of a left-hand side of a relation (`, r) in red part.
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Closure of u = aa
−1

bb
−2 w.r.t. P

2. (aa−1, a2a−2)
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Closure of u = aa
−1

bb
−2 w.r.t. P

3. Extend by Munn tree of right-hand side a2a−2.

. . .
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...
. . .
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b
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b
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Closure of u = aa
−1

bb
−2 w.r.t. P

2. Find Munn tree of a left-hand side of a relation (`, r) in red part.

. . .
...

...
. . .
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Closure of u = aa
−1

bb
−2 w.r.t. P

2. (aa−1, a2a−2)
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Closure of u = aa
−1

bb
−2 w.r.t. P

3. Extend by Munn tree of right-hand side a2a−2.
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Closure of u = aa
−1

bb
−2 w.r.t. P

2. Find Munn tree of a left-hand side of a relation (`, r) in red part.
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Closure of u = aa
−1

bb
−2 w.r.t. P

(aa−1, a2a−2)
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Closure of u = aa
−1

bb
−2 w.r.t. P

3. Extend by Munn tree of right-hand side a2a−2.
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Closure of u = aa
−1

bb
−2 w.r.t. P

In the limit, we obtain the closure:
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Closure of a word

Theorem (Stephen/Margolis,Meakin)

Let u, v ∈ (Γ ∪ Γ−1)∗ and P be an idempotent presentation. Then
u = v in FIM(Γ)/P if and only if:

1 u = v in the free group FG(Γ)

2 clP(u) = clP(v)
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Closure of a word

Theorem (Stephen/Margolis,Meakin)

Let u, v ∈ (Γ ∪ Γ−1)∗ and P be an idempotent presentation. Then
u = v in FIM(Γ)/P if and only if:

1 u = v in the free group FG(Γ)

2 clP(u) = clP(v)

This leads to a decision algorithm for “u = v in FIM(Γ)/P”:

“u = v in the free group FG(Γ)” can be checked in linear
time.
“clP(u) = clP(v)” can be expressed in monadic second-order
logic over the Cayley graph of FG(Γ).
Muller, Schupp (based on Rabin): The Cayley graph of FG(Γ)
has a decidable monadic second-order theory.
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Closure of a word

Theorem (Stephen/Margolis,Meakin)

Let u, v ∈ (Γ ∪ Γ−1)∗ and P be an idempotent presentation. Then
u = v in FIM(Γ)/P if and only if:

1 u = v in the free group FG(Γ)

2 clP(u) = clP(v)

This leads to a decision algorithm for “u = v in FIM(Γ)/P”:

“u = v in the free group FG(Γ)” can be checked in linear
time.
“clP(u) = clP(v)” can be expressed in monadic second-order
logic over the Cayley graph of FG(Γ).
Muller, Schupp (based on Rabin): The Cayley graph of FG(Γ)
has a decidable monadic second-order theory.

But: The monadic second-order theory of the Cayley graph of
FG(Γ) has no elementary decision algorithm.
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Complexity of the word problem

Our first observation: “clP(u) = clP(v)” can be expressed in the
modal µ-calculus over the Cayley graph of FG(Γ).
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Complexity of the word problem

Our first observation: “clP(u) = clP(v)” can be expressed in the
modal µ-calculus over the Cayley graph of FG(Γ).

Walukiewicz 96: It can be checked in exponential time, whether a
formula of the modal µ-calculus holds in a context-free graph
(pushdown system).
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Complexity of the word problem

Our first observation: “clP(u) = clP(v)” can be expressed in the
modal µ-calculus over the Cayley graph of FG(Γ).

Walukiewicz 96: It can be checked in exponential time, whether a
formula of the modal µ-calculus holds in a context-free graph
(pushdown system).

Theorem (L., Ondrusch)

The following problem is EXPTIME-complete:
INPUT: Idempotent presentation P over alphabet Γ ∪ Γ−1, words

u, v ∈ (Γ ∪ Γ−1)∗.
QUESTION: u = v in FIM(Γ)/P?
Moreover, EXPTIME-hardness already holds for a fixed alphabet Γ.
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Complexity of the word problem

Note that:

clP(u) = clP(v) ⇔ MT(u) ⊆ clP(v) ∧ MT(v) ⊆ clP(u)
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Complexity of the word problem

Note that:

clP(u) = clP(v) ⇔ MT(u) ⊆ clP(v) ∧ MT(v) ⊆ clP(u)

Let G be the Cayley graph of FG(Γ) with the node 1 marked.
Let ϕv ,P be the following sentence:

µX .





|v |
∨

i=0

〈v [1, i ]−1〉1 ∨
∨

(e,f )∈P

|f |
∨

j=0

〈f [1, j ]−1〉(

|e|
∧

k=0

〈e[1, k]〉X )





Then (G , x) |= ϕv ,P if and only if x ∈ clP(v).
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Complexity of the word problem

Note that:

clP(u) = clP(v) ⇔ MT(u) ⊆ clP(v) ∧ MT(v) ⊆ clP(u)

Let G be the Cayley graph of FG(Γ) with the node 1 marked.
Let ϕv ,P be the following sentence:

µX .





|v |
∨

i=0

〈v [1, i ]−1〉1 ∨
∨

(e,f )∈P

|f |
∨

j=0

〈f [1, j ]−1〉(

|e|
∧

k=0

〈e[1, k]〉X )





Then (G , x) |= ϕv ,P if and only if x ∈ clP(v).

Thus,

MT(u) ⊆ clP(v) ⇔ (G , 1) |=

|u|
∧

i=0

〈u[1, i ]〉ϕv ,P .
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Application to model-checking of pushdown systems
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Application to model-checking of pushdown systems

Theorem (L., Ondrusch)

There exists a fixed alphabet Γ such that the following problem
UWP-IP(Γ) is EXPTIME-complete:
INPUT: Idempotent presentation P over alphabet Γ ∪ Γ−1, words

u, v ∈ (Γ ∪ Γ−1)∗.
QUESTION: u = v in FIM(Γ)/P?
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Application to model-checking of pushdown systems

Theorem (L., Ondrusch)

There exists a fixed alphabet Γ such that the following problem
UWP-IP(Γ) is EXPTIME-complete:
INPUT: Idempotent presentation P over alphabet Γ ∪ Γ−1, words

u, v ∈ (Γ ∪ Γ−1)∗.
QUESTION: u = v in FIM(Γ)/P?

The reduction

UWP-IP(Γ) → model-checking problem for modal µ-calculus
over the Cayley graph of FG(Γ)

shows:
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Application to model-checking of pushdown systems

Theorem (L., Ondrusch)

There exists a fixed alphabet Γ such that the following problem
UWP-IP(Γ) is EXPTIME-complete:
INPUT: Idempotent presentation P over alphabet Γ ∪ Γ−1, words

u, v ∈ (Γ ∪ Γ−1)∗.
QUESTION: u = v in FIM(Γ)/P?

The reduction

UWP-IP(Γ) → model-checking problem for modal µ-calculus
over the Cayley graph of FG(Γ)

shows:

Corollary

There exists a fixed pushdown system G such that the following
problem is EXPTIME-complete:
INPUT: Formula ϕ of the modal µ-calculus (of nesting depth 1)
QUESTION: G |= ϕ?
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Complexity of the word problem for a fixed presentation

Theorem

For every fixed idempotent presentation P over a fixed alphabet
Γ ∪ Γ−1, the following problem can be solved in polynomial time
(even in deterministic logspace):
INPUT: Words u, v ∈ (Γ ∪ Γ−1)∗.
QUESTION: u = v in FIM(Γ)/P?
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Complexity of the word problem for a fixed presentation

Theorem

For every fixed idempotent presentation P over a fixed alphabet
Γ ∪ Γ−1, the following problem can be solved in polynomial time
(even in deterministic logspace):
INPUT: Words u, v ∈ (Γ ∪ Γ−1)∗.
QUESTION: u = v in FIM(Γ)/P?

Proof idea: Reduction to membership problem for a fixed tree
automaton, which only depends on the presentation P.
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More general decision problems

Let M = (M, ◦, 1) be a monoid with a finite generating set Σ.
Let C

reg
M be the following structure:

C
reg
M = (M, 1, (EL)L⊆Σ∗is regular), where

EL = {(u, v) ∈ M × M | ∃w ∈ L : u ◦ w = v}.
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More general decision problems

Let M = (M, ◦, 1) be a monoid with a finite generating set Σ.
Let C

reg
M be the following structure:

C
reg
M = (M, 1, (EL)L⊆Σ∗is regular), where

EL = {(u, v) ∈ M × M | ∃w ∈ L : u ◦ w = v}.

Theorem (L., Ondrusch)

Let P be an idempotent presentation P over alphabet Γ ∪ Γ−1.
Then the first-order theory of C

reg

FIM(Γ)/P
is decidable.
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More general decision problems

Let M = (M, ◦, 1) be a monoid with a finite generating set Σ.
Let C

reg
M be the following structure:

C
reg
M = (M, 1, (EL)L⊆Σ∗is regular), where

EL = {(u, v) ∈ M × M | ∃w ∈ L : u ◦ w = v}.

Theorem (L., Ondrusch)

Let P be an idempotent presentation P over alphabet Γ ∪ Γ−1.
Then the first-order theory of C

reg

FIM(Γ)/P
is decidable.

Proof idea: Reduction to the monadic second-order theory of the
Cayley graph of the free group FG(Γ).
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More general decision problems
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More general decision problems

Corollary

Let P be an idempotent presentation P over alphabet Γ ∪ Γ−1.

For two rational subsets L, K ⊆ FIM(Γ)/P we can decide,
whether L ∩ K = ∅.

The generalized word problem of FIM(Γ)/P (Does u belongs
to the submonoid generated by v1, . . . , vn?) is decidable.
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More general decision problems

Corollary

Let P be an idempotent presentation P over alphabet Γ ∪ Γ−1.

For two rational subsets L, K ⊆ FIM(Γ)/P we can decide,
whether L ∩ K = ∅.

The generalized word problem of FIM(Γ)/P (Does u belongs
to the submonoid generated by v1, . . . , vn?) is decidable.

Theorem

The monadic second-order theory of the Cayley graph of FIM(Γ),
i.e., the graph

(FIM(Γ), (Ea)a∈Γ∪Γ−1) with Ea = {(u, v) | v = ua in FIM(Γ)}

is undecidable for |Γ| > 1.
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More general decision problems

Corollary

Let P be an idempotent presentation P over alphabet Γ ∪ Γ−1.

For two rational subsets L, K ⊆ FIM(Γ)/P we can decide,
whether L ∩ K = ∅.

The generalized word problem of FIM(Γ)/P (Does u belongs
to the submonoid generated by v1, . . . , vn?) is decidable.

Theorem

The monadic second-order theory of the Cayley graph of FIM(Γ),
i.e., the graph

(FIM(Γ), (Ea)a∈Γ∪Γ−1) with Ea = {(u, v) | v = ua in FIM(Γ)}

is undecidable for |Γ| > 1.

Proof idea: Find large grid-structures as minors in the Cayley
graph of FIM(Γ).
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