# Application of verification techniques in inverse monoid theory 

Markus Lohrey and Nicole Ondrusch<br>University of Stuttgart, Germany<br>September 17, 2005

## Monoid presentations

Let $\Sigma$ be a finite alphabet and $P \subseteq \Sigma^{*} \times \Sigma^{*}$ be a presentation. Then $\Sigma^{*} / P:=\Sigma^{*} / \equiv_{P}$, where $\equiv_{P}$ be the smallest congruence relation on $\Sigma^{*}$ containing $P$.

## Monoid presentations

Let $\Sigma$ be a finite alphabet and $P \subseteq \Sigma^{*} \times \Sigma^{*}$ be a presentation. Then $\Sigma^{*} / P:=\Sigma^{*} / \equiv_{p}$, where $\equiv_{P}$ be the smallest congruence relation on $\Sigma^{*}$ containing $P$.

More precisely: $\equiv p=\stackrel{*}{\leftrightarrow} p$, where
$\leftrightarrow P=\left\{(s x t, s y t) \mid s, t \in \Sigma^{*},(x, y) \in P\right.$ or $\left.(y, x) \in P\right\}$.

## Monoid presentations

Let $\Sigma$ be a finite alphabet and $P \subseteq \Sigma^{*} \times \Sigma^{*}$ be a presentation. Then $\Sigma^{*} / P:=\Sigma^{*} / \equiv_{p}$, where $\equiv_{P}$ be the smallest congruence relation on $\Sigma^{*}$ containing $P$.

More precisely: $\equiv_{P}=\stackrel{*}{\leftrightarrow} p$, where
$\leftrightarrow_{P}=\left\{(s x t, s y t) \mid s, t \in \Sigma^{*},(x, y) \in P\right.$ or $\left.(y, x) \in P\right\}$.
The word problem for $\Sigma^{*} / P$ is the following problem:
INPUT: words $u, v \in \Sigma^{*}$
QUESTION: $u=v$ in $\Sigma^{*} / P$, i.e., $u \equiv p v$ ?

## Monoid presentations

Let $\Sigma$ be a finite alphabet and $P \subseteq \Sigma^{*} \times \Sigma^{*}$ be a presentation. Then $\Sigma^{*} / P:=\Sigma^{*} / \equiv_{p}$, where $\equiv_{P}$ be the smallest congruence relation on $\Sigma^{*}$ containing $P$.

More precisely: $\equiv P=\stackrel{*}{\leftrightarrow} p$, where
$\leftrightarrow_{P}=\left\{(s x t, s y t) \mid s, t \in \Sigma^{*},(x, y) \in P\right.$ or $\left.(y, x) \in P\right\}$.
The word problem for $\Sigma^{*} / P$ is the following problem:
INPUT: words $u, v \in \Sigma^{*}$
QUESTION: $u=v$ in $\Sigma^{*} / P$, i.e., $u \equiv_{P} v$ ?
Two milestones:

## Monoid presentations

Let $\Sigma$ be a finite alphabet and $P \subseteq \Sigma^{*} \times \Sigma^{*}$ be a presentation. Then $\Sigma^{*} / P:=\Sigma^{*} / \equiv_{p}$, where $\equiv_{P}$ be the smallest congruence relation on $\Sigma^{*}$ containing $P$.

More precisely: $\equiv p=\stackrel{*}{\leftrightarrow} p$, where
$\leftrightarrow_{P}=\left\{(s x t, s y t) \mid s, t \in \Sigma^{*},(x, y) \in P\right.$ or $\left.(y, x) \in P\right\}$.
The word problem for $\Sigma^{*} / P$ is the following problem:
INPUT: words $u, v \in \Sigma^{*}$
QUESTION: $u=v$ in $\Sigma^{*} / P$, i.e., $u \equiv p v$ ?
Two milestones:

- Markov (1947), Post (1947): There is a finite presentation $P$ such that $\Sigma^{*} / P$ has an undecidable word problem.


## Monoid presentations

Let $\Sigma$ be a finite alphabet and $P \subseteq \Sigma^{*} \times \Sigma^{*}$ be a presentation. Then $\Sigma^{*} / P:=\Sigma^{*} / \equiv_{p}$, where $\equiv_{P}$ be the smallest congruence relation on $\Sigma^{*}$ containing $P$.

More precisely: $\equiv P=\stackrel{*}{\leftrightarrow} p$, where
$\leftrightarrow P=\left\{(s x t, s y t) \mid s, t \in \Sigma^{*},(x, y) \in P\right.$ or $\left.(y, x) \in P\right\}$.
The word problem for $\Sigma^{*} / P$ is the following problem:
INPUT: words $u, v \in \Sigma^{*}$
QUESTION: $u=v$ in $\Sigma^{*} / P$, i.e., $u \equiv p v$ ?
Two milestones:

- Markov (1947), Post (1947): There is a finite presentation $P$ such that $\Sigma^{*} / P$ has an undecidable word problem.
- Novikov (1955), Boone (1957): There is a finite presentation $P$ such that $\Sigma^{*} / P$ is a group and has an undecidable word problem.


## Inverse monoids

A monoid $\mathcal{M}$ is inverse if for every $x \in \mathcal{M}$ there exists a unique $x^{-1} \in \mathcal{M}$ with $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$.

## Inverse monoids

A monoid $\mathcal{M}$ is inverse if for every $x \in \mathcal{M}$ there exists a unique $x^{-1} \in \mathcal{M}$ with $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$.

For a finite set $\Gamma$ let $\operatorname{FIM}(\Gamma)$ be the free inverse monoid generated by $\Gamma$ (exists, since inverse monoids form a variety).

## Inverse monoids

A monoid $\mathcal{M}$ is inverse if for every $x \in \mathcal{M}$ there exists a unique $x^{-1} \in \mathcal{M}$ with $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$.

For a finite set $\Gamma$ let $\operatorname{FIM}(\Gamma)$ be the free inverse monoid generated by $\Gamma$ (exists, since inverse monoids form a variety).

An explicite representation of $\operatorname{FIM}(\Gamma)$ : Let

- $\Gamma^{-1}=\left\{a^{-1} \mid a \in \Gamma\right\}$ be a disjoint copy of $\Gamma$,
- $\left(a^{-1}\right)^{-1}:=a$,
- $\left(b_{1} b_{2} \cdots b_{n}\right)^{-1}:=b_{n}^{-1} \cdots b_{2}^{-1} b_{1}^{-1}$ for $b_{i} \in \Gamma \cup \Gamma^{-1}$,
- $\mathcal{W}=\left\{\left(s, s s^{-1} s\right),\left(s s^{-1} t t^{-1}, t t^{-1} s s^{-1}\right) \mid s, t \in\left(\Gamma \cup \Gamma^{-1}\right)^{*}\right\}$ (Wagner equations)
Then $\operatorname{FIM}(\Gamma) \simeq\left(\Gamma \cup \Gamma^{-1}\right)^{*} / \mathcal{W}$.


## Finitely presented inverse monoids

For a presentation $P \subseteq\left(\Gamma \cup \Gamma^{-1}\right)^{*} \times\left(\Gamma \cup \Gamma^{-1}\right)^{*}$ let

$$
\operatorname{FIM}(\Gamma) / P:=\left(\Gamma \cup \Gamma^{-1}\right)^{*} /(P \cup \mathcal{W})
$$

## Finitely presented inverse monoids

For a presentation $P \subseteq\left(\Gamma \cup \Gamma^{-1}\right)^{*} \times\left(\Gamma \cup \Gamma^{-1}\right)^{*}$ let

$$
\operatorname{FIM}(\Gamma) / P:=\left(\Gamma \cup \Gamma^{-1}\right)^{*} /(P \cup \mathcal{W})
$$

A presentation $P \subseteq\left(\Gamma \cup \Gamma^{-1}\right)^{*} \times\left(\Gamma \cup \Gamma^{-1}\right)^{*}$ is idempotent if for every $(e, f) \in P, e$ and $f$ are idempotents of $\operatorname{FIM}(\Gamma)\left(e^{2}=e\right.$ and $f^{2}=f$ in $\left.\operatorname{FIM}(\Gamma)\right)$.

## Finitely presented inverse monoids

For a presentation $P \subseteq\left(\Gamma \cup \Gamma^{-1}\right)^{*} \times\left(\Gamma \cup \Gamma^{-1}\right)^{*}$ let

$$
\operatorname{FIM}(\Gamma) / P:=\left(\Gamma \cup \Gamma^{-1}\right)^{*} /(P \cup \mathcal{W})
$$

A presentation $P \subseteq\left(\Gamma \cup \Gamma^{-1}\right)^{*} \times\left(\Gamma \cup \Gamma^{-1}\right)^{*}$ is idempotent if for every $(e, f) \in P, e$ and $f$ are idempotents of $\operatorname{FIM}(\Gamma)\left(e^{2}=e\right.$ and $f^{2}=f$ in $\left.\operatorname{FIM}(\Gamma)\right)$.

## Theorem (Margolis, Meakin)

The following problem is decidable:
INPUT: Idempotent presentation $P$ over alphabet $\Gamma \cup \Gamma^{-1}$, words $u, v \in\left(\Gamma \cup \Gamma^{-1}\right)^{*}$.
QUESTION: $u=v$ in $\operatorname{FIM}(\Gamma) / P$ ?

## Free groups

The free group $\mathrm{FG}(\Gamma)$ generated by $\Gamma$ :

$$
\mathrm{FG}(\Gamma)=\left(\Gamma \cup \Gamma^{-1}\right)^{*} /\left\{\left(b b^{-1}, \varepsilon\right) \mid b \in \Gamma \cup \Gamma^{-1}\right\}
$$

## Free groups

The free group $\mathrm{FG}(\Gamma)$ generated by $\Gamma$ :

$$
\mathrm{FG}(\Gamma)=\left(\Gamma \cup \Gamma^{-1}\right)^{*} /\left\{\left(b b^{-1}, \varepsilon\right) \mid b \in \Gamma \cup \Gamma^{-1}\right\}
$$

Remark: Let $u \in\left(\Gamma \cup \Gamma^{-1}\right)^{*}$. Then $u^{2}=u$ in $\operatorname{FIM}(\Gamma)$ if and only if $u=1$ in $\mathrm{FG}(\Gamma)$.

The free group $\mathrm{FG}(\Gamma)$ generated by $\Gamma$ :

$$
\mathrm{FG}(\Gamma)=\left(\Gamma \cup \Gamma^{-1}\right)^{*} /\left\{\left(b b^{-1}, \varepsilon\right) \mid b \in \Gamma \cup \Gamma^{-1}\right\}
$$

Remark: Let $u \in\left(\Gamma \cup \Gamma^{-1}\right)^{*}$. Then $u^{2}=u$ in $\operatorname{FIM}(\Gamma)$ if and only if $u=1$ in $\mathrm{FG}(\Gamma)$.

The Cayley graph of $\mathrm{FG}(\Gamma)$ is the following edge-labeled graph with node set $\mathrm{FG}(\Gamma)$ :

$$
\left(\mathrm{FG}(\Gamma),\left(E_{a}\right)_{a \in \Gamma \cup \Gamma^{-1}}\right),
$$

where $E_{a}=\{(u, v) \mid u, v \in \operatorname{FG}(\Gamma), v=u a$ in $\operatorname{FG}(\Gamma)\}$.

## Cayley graph of a free group:

The Cayley graph of the free group $\mathrm{FG}(\{a, b\})$ :


## Munn trees

Let $u=c_{1} c_{2} \cdots c_{n} \in\left(\Gamma \cup \Gamma^{-1}\right)^{*}$ be a word.
The Munn tree of $u$ is the finite subtree of the Cayley graph of $\mathrm{FG}(\Gamma)$, that are visited while traveling along the path $c_{1} c_{2} \cdots c_{n}$ in the Cayley graph of $\mathrm{FG}(\Gamma)$.

## Munn trees

Let $u=c_{1} c_{2} \cdots c_{n} \in\left(\Gamma \cup \Gamma^{-1}\right)^{*}$ be a word.
The Munn tree of $u$ is the finite subtree of the Cayley graph of $\mathrm{FG}(\Gamma)$, that are visited while traveling along the path $c_{1} c_{2} \cdots c_{n}$ in the Cayley graph of $\mathrm{FG}(\Gamma)$.

## Theorem (Munn)

Let $u, v \in\left(\Gamma \cup \Gamma^{-1}\right)^{*}$. Then $u=v$ in $\operatorname{FIM}(\Gamma)$ if and only if
(1) $u=v$ in the free group $\mathrm{FG}(\Gamma)$
(2) $u$ and $v$ have the same Munn trees.

## Munn trees

The Munn tree of $b b^{-1} a b b^{-1} a$ :


## Munn trees

The Munn tree of $b b^{-1} a b b^{-1} a$ :


## Munn trees

The Munn tree of $b b^{-1} a b b^{-1} a$ :


## Munn trees

The Munn tree of $b b^{-1} a b b^{-1} a$ :


## Munn trees

The Munn tree of $b b^{-1} a b b^{-1} a$ :


## Munn trees

The Munn tree of $b b^{-1} a b b^{-1} a$ :


## Munn trees

The Munn tree of $b b^{-1} a b b^{-1} a$ :


## Closure of a word

Let $u \in\left(\Gamma \cup \Gamma^{-1}\right)^{*}$ be a word and $P \subseteq\left(\Gamma \cup \Gamma^{-1}\right)^{*} \times\left(\Gamma \cup \Gamma^{-1}\right)^{*}$ be an idempotent presentation.
W.I.o.g. Munn tree of $e \subseteq$ Munn tree of $f$ for all $(e, f) \in P$.

## Closure of a word

Let $u \in\left(\Gamma \cup \Gamma^{-1}\right)^{*}$ be a word and $P \subseteq\left(\Gamma \cup \Gamma^{-1}\right)^{*} \times\left(\Gamma \cup \Gamma^{-1}\right)^{*}$ be an idempotent presentation.
W.I.o.g. Munn tree of $e \subseteq$ Munn tree of $f$ for all $(e, f) \in P$.

The closure $\operatorname{cl}_{p}(u)$ of $u$ wrt. $P$ for an example:
$u=a a^{-1} b b^{-2}, \quad P=\left\{\left(a a^{-1}, a^{2} a^{-2}\right),\left(a a^{-1} b b^{-1}, a a^{-1} b a a^{-1} b^{-1}\right)\right\}$

## Closure of a word

Let $u \in\left(\Gamma \cup \Gamma^{-1}\right)^{*}$ be a word and $P \subseteq\left(\Gamma \cup \Gamma^{-1}\right)^{*} \times\left(\Gamma \cup \Gamma^{-1}\right)^{*}$ be an idempotent presentation.
W.I.o.g. Munn tree of $e \subseteq$ Munn tree of $f$ for all $(e, f) \in P$.

The closure $\operatorname{cl}_{p}(u)$ of $u$ wrt. $P$ for an example:
$u=a a^{-1} b b^{-2}, \quad P=\left\{\left(a a^{-1}, a^{2} a^{-2}\right),\left(a a^{-1} b b^{-1}, a a^{-1} b a a^{-1} b^{-1}\right)\right\}$

The relations in $P$ seen as identities between Munn trees:

$$
\stackrel{a}{\longrightarrow}=\stackrel{a}{a} \stackrel{a}{\longrightarrow}
$$

$$
b \stackrel{i}{a} \stackrel{b^{\text {a }}}{\stackrel{a}{a}} \stackrel{\text { a }}{\square}
$$

## Closure of $u=a a^{-1} b b^{-2}$ w.r.t. $P$

1. Construct the Munn tree of $u=a a^{-1} b b^{-2}$.


## Closure of $u=a a^{-1} b b^{-2}$ w.r.t. $P$

1. Construct the Munn tree of $u=a a^{-1} b b^{-2}$.


## Closure of $u=a a^{-1} b b^{-2}$ w.r.t. $P$

1. Construct the Munn tree of $u=a a^{-1} b b^{-2}$.


## Closure of $u=a a^{-1} b b^{-2}$ w.r.t. $P$

1. Construct the Munn tree of $u=a a^{-1} b b^{-2}$.


## Closure of $u=a a^{-1} b b^{-2}$ w.r.t. $P$

1. Construct the Munn tree of $u=a a^{-1} b b^{-2}$.


## Closure of $u=a a^{-1} b b^{-2}$ w.r.t. $P$

1. Construct the Munn tree of $u=a a^{-1} b b^{-2}$.


## Closure of $u=a a^{-1} b b^{-2}$ w.r.t. $P$

2. Find Munn tree of a left-hand side of a relation $(\ell, r)$ in red part.


## Closure of $u=a a^{-1} b b^{-2}$ w.r.t. $P$

2. $\left(a a^{-1} b b^{-1}, a a^{-1} b a a^{-1} b^{-1}\right)$


## Closure of $u=a a^{-1} b b^{-2}$ w.r.t. $P$

3. Extend by Munn tree of right-hand side $a a^{-1} b a a^{-1} b^{-1}$.


## Closure of $u=a a^{-1} b b^{-2}$ w.r.t. $P$

2. Find Munn tree of a left-hand side of a relation $(\ell, r)$ in red part.


## Closure of $u=a a^{-1} b b^{-2}$ w.r.t. $P$

2. $\left(a a^{-1}, a^{2} a^{-2}\right)$


## Closure of $u=a a^{-1} b b^{-2}$ w.r.t. $P$

3. Extend by Munn tree of right-hand side $a^{2} a^{-2}$.


## Closure of $u=a a^{-1} b b^{-2}$ w.r.t. $P$

2. Find Munn tree of a left-hand side of a relation $(\ell, r)$ in red part.


## Closure of $u=a a^{-1} b b^{-2}$ w.r.t. $P$

2. $\left(a a^{-1}, a^{2} a^{-2}\right)$


## Closure of $u=a a^{-1} b b^{-2}$ w.r.t. $P$

3. Extend by Munn tree of right-hand side $a^{2} a^{-2}$.


## Closure of $u=a a^{-1} b b^{-2}$ w.r.t. $P$

2. Find Munn tree of a left-hand side of a relation $(\ell, r)$ in red part.


## Closure of $u=a a^{-1} b b^{-2}$ w.r.t. $P$

$\left(a a^{-1}, a^{2} a^{-2}\right)$


## Closure of $u=a a^{-1} b b^{-2}$ w.r.t. $P$

3. Extend by Munn tree of right-hand side $a^{2} a^{-2}$.


## Closure of $u=a a^{-1} b b^{-2}$ w.r.t. $P$

In the limit, we obtain the closure:


## Closure of a word

## Theorem (Stephen/Margolis,Meakin)

Let $u, v \in\left(\Gamma \cup \Gamma^{-1}\right)^{*}$ and $P$ be an idempotent presentation. Then $u=v$ in $\operatorname{FIM}(\Gamma) / P$ if and only if:
(1) $u=v$ in the free group $\mathrm{FG}(\Gamma)$
(2) $c l_{p}(u)=c l_{p}(v)$

## Closure of a word

## Theorem (Stephen/Margolis,Meakin)

Let $u, v \in\left(\Gamma \cup \Gamma^{-1}\right)^{*}$ and $P$ be an idempotent presentation. Then $u=v$ in $\operatorname{FIM}(\Gamma) / P$ if and only if:
(1) $u=v$ in the free group $\mathrm{FG}(\Gamma)$
(2) $c l_{p}(u)=c l_{p}(v)$

This leads to a decision algorithm for " $u=v$ in $\operatorname{FIM}(\Gamma) / P^{\prime}$ ":

- " $u=v$ in the free group $\mathrm{FG}(\Gamma)$ " can be checked in linear time.
- "clp $l_{P}(u)=\mathrm{cl}_{P}(v)$ " can be expressed in monadic second-order logic over the Cayley graph of $\mathrm{FG}(\Gamma)$.
Muller, Schupp (based on Rabin): The Cayley graph of FG(Г) has a decidable monadic second-order theory.


## Closure of a word

## Theorem (Stephen/Margolis,Meakin)

Let $u, v \in\left(\Gamma \cup \Gamma^{-1}\right)^{*}$ and $P$ be an idempotent presentation. Then $u=v$ in $\operatorname{FIM}(\Gamma) / P$ if and only if:
(1) $u=v$ in the free group $\mathrm{FG}(\Gamma)$
(2) $c l_{p}(u)=c l_{p}(v)$

This leads to a decision algorithm for " $u=v$ in $\operatorname{FIM}(\Gamma) / P$ ":

- " $u=v$ in the free group $\mathrm{FG}(\Gamma)$ " can be checked in linear time.
- "clp $l_{p}(u)=\mathrm{cl}_{P}(v)$ " can be expressed in monadic second-order logic over the Cayley graph of $\mathrm{FG}(\Gamma)$.
Muller, Schupp (based on Rabin): The Cayley graph of FG(Г) has a decidable monadic second-order theory.

But: The monadic second-order theory of the Cayley graph of $\mathrm{FG}(\Gamma)$ has no elementary decision algorithm.

## Complexity of the word problem

Our first observation: "cl $l_{P}(u)=\operatorname{cl}_{P}(v)$ " can be expressed in the modal $\mu$-calculus over the Cayley graph of $\mathrm{FG}(\Gamma)$.

## Complexity of the word problem

Our first observation: "cl $l_{P}(u)=\mathrm{cl}_{P}(v)$ " can be expressed in the modal $\mu$-calculus over the Cayley graph of $\mathrm{FG}(\Gamma)$.

Walukiewicz 96: It can be checked in exponential time, whether a formula of the modal $\mu$-calculus holds in a context-free graph (pushdown system).

## Complexity of the word problem

Our first observation: "cl $l_{p}(u)=\mathrm{cl}_{p}(v)$ " can be expressed in the modal $\mu$-calculus over the Cayley graph of $\mathrm{FG}(\Gamma)$.

Walukiewicz 96: It can be checked in exponential time, whether a formula of the modal $\mu$-calculus holds in a context-free graph (pushdown system).

## Theorem (L., Ondrusch)

The following problem is EXPTIME-complete:
INPUT: Idempotent presentation $P$ over alphabet $\Gamma \cup \Gamma^{-1}$, words $u, v \in\left(\Gamma \cup \Gamma^{-1}\right)^{*}$.
QUESTION: $u=v$ in $\operatorname{FIM}(\Gamma) / P$ ?
Moreover, EXPTIME-hardness already holds for a fixed alphabet $\Gamma$.

## Complexity of the word problem

Note that:

$$
\operatorname{cl}_{P}(u)=\operatorname{cl}_{P}(v) \quad \Leftrightarrow \quad \mathrm{MT}(u) \subseteq \operatorname{cl}_{P}(v) \wedge \mathrm{MT}(v) \subseteq \operatorname{cl}_{P}(u)
$$

## Complexity of the word problem

Note that:

$$
\operatorname{cl}_{P}(u)=\operatorname{cl}_{P}(v) \quad \Leftrightarrow \quad \mathrm{MT}(u) \subseteq \operatorname{cl}_{P}(v) \wedge \mathrm{MT}(v) \subseteq \operatorname{cl}_{P}(u)
$$

Let $G$ be the Cayley graph of $\mathrm{FG}(\Gamma)$ with the node 1 marked. Let $\varphi_{v, P}$ be the following sentence:

$$
\mu X .\left(\bigvee_{i=0}^{|v|}\left\langle v[1, i]^{-1}\right\rangle 1 \vee \bigvee_{(e, f) \in P} \bigvee_{j=0}^{|f|}\left\langle f[1, j]^{-1}\right\rangle\left(\bigwedge_{k=0}^{|e|}\langle e[1, k]\rangle X\right)\right)
$$

Then $(G, x) \models \varphi_{v, P}$ if and only if $x \in \mathrm{cl}_{P}(v)$.

## Complexity of the word problem

Note that:

$$
\mathrm{cl}_{P}(u)=\mathrm{cl}_{P}(v) \quad \Leftrightarrow \quad \mathrm{MT}(u) \subseteq \mathrm{cl}_{P}(v) \wedge \mathrm{MT}(v) \subseteq \mathrm{cl}_{P}(u)
$$

Let $G$ be the Cayley graph of $\mathrm{FG}(\Gamma)$ with the node 1 marked. Let $\varphi_{\mathrm{v}, P}$ be the following sentence:

$$
\mu X .\left(\bigvee_{i=0}^{|v|}\left\langle v[1, i]^{-1}\right\rangle 1 \vee \bigvee_{(e, f) \in P} \bigvee_{j=0}^{|f|}\left\langle f[1, j]^{-1}\right\rangle\left(\bigwedge_{k=0}^{|e|}\langle e[1, k]\rangle X\right)\right)
$$

Then $(G, x) \models \varphi_{v, P}$ if and only if $x \in \operatorname{cl}_{P}(v)$.
Thus,

$$
\operatorname{MT}(u) \subseteq \operatorname{cl}_{P}(v) \quad \Leftrightarrow \quad(G, 1) \models \bigwedge_{i=0}^{|u|}\langle u[1, i]\rangle \varphi_{v, P}
$$

## Application to model-checking of pushdown systems

## Application to model-checking of pushdown systems

## Theorem (L., Ondrusch)

There exists a fixed alphabet $\Gamma$ such that the following problem UWP-IP $(\Gamma)$ is EXPTIME-complete: INPUT: Idempotent presentation $P$ over alphabet $\Gamma \cup \Gamma^{-1}$, words $u, v \in\left(\Gamma \cup \Gamma^{-1}\right)^{*}$.
QUESTION: $u=v$ in $\operatorname{FIM}(\Gamma) / P$ ?

## Application to model-checking of pushdown systems

## Theorem (L., Ondrusch)

There exists a fixed alphabet $\Gamma$ such that the following problem UWP-IP(Г) is EXPTIME-complete:
INPUT: Idempotent presentation $P$ over alphabet $\Gamma \cup \Gamma^{-1}$, words $u, v \in\left(\Gamma \cup \Gamma^{-1}\right)^{*}$.
QUESTION: $u=v$ in $\operatorname{FIM}(\Gamma) / P$ ?
The reduction
UWP-IP $(\Gamma) \quad \rightarrow \quad$ model-checking problem for modal $\mu$-calculus over the Cayley graph of $\mathrm{FG}(\Gamma)$
shows:

## Application to model-checking of pushdown systems

## Theorem (L., Ondrusch)

There exists a fixed alphabet $\Gamma$ such that the following problem UWP-IP $(\Gamma)$ is EXPTIME-complete:
INPUT: Idempotent presentation $P$ over alphabet $\Gamma \cup \Gamma^{-1}$, words $u, v \in\left(\Gamma \cup \Gamma^{-1}\right)^{*}$.
QUESTION: $u=v$ in $\operatorname{FIM}(\Gamma) / P$ ?
The reduction
UWP-IP $(\Gamma) \quad \rightarrow \quad$ model-checking problem for modal $\mu$-calculus over the Cayley graph of $\mathrm{FG}(\Gamma)$
shows:

## Corollary

There exists a fixed pushdown system $G$ such that the following problem is EXPTIME-complete:
INPUT: Formula $\varphi$ of the modal $\mu$-calculus (of nesting depth 1) QUESTION: $G \models \varphi$ ?

## Complexity of the word problem for a fixed presentation

## Theorem

For every fixed idempotent presentation $P$ over a fixed alphabet $\Gamma \cup \Gamma^{-1}$, the following problem can be solved in polynomial time (even in deterministic logspace):
INPUT: Words $u, v \in\left(\Gamma \cup \Gamma^{-1}\right)^{*}$.
QUESTION: $u=v$ in $\operatorname{FIM}(\Gamma) / P$ ?

## Complexity of the word problem for a fixed presentation

> Theorem
> For every fixed idempotent presentation $P$ over a fixed alphabet $\Gamma \cup \Gamma^{-1}$, the following problem can be solved in polynomial time (even in deterministic logspace):
> INPUT: Words $u, v \in\left(\Gamma \cup \Gamma^{-1}\right)^{*}$.
> QUESTION: $u=v$ in $\operatorname{FIM}(\Gamma) / P$ ?

Proof idea: Reduction to membership problem for a fixed tree automaton, which only depends on the presentation $P$.

## More general decision problems

Let $\mathcal{M}=(M, \circ, 1)$ be a monoid with a finite generating set $\Sigma$. Let $\mathbb{C}_{\mathcal{M}}^{\mathrm{reg}}$ be the following structure:

$$
\begin{aligned}
\mathbb{C}_{\mathcal{M}}^{\mathrm{reg}} & =\left(M, 1,\left(E_{L}\right)_{L \subseteq \Sigma^{*} \text { is regular }}\right), \text { where } \\
E_{L} & =\{(u, v) \in M \times M \mid \exists w \in L: u \circ w=v\}
\end{aligned}
$$

## More general decision problems

Let $\mathcal{M}=(M, \circ, 1)$ be a monoid with a finite generating set $\Sigma$.
Let $\mathbb{C}_{\mathcal{M}}^{\text {reg }}$ be the following structure:

$$
\begin{aligned}
\mathbb{C}_{\mathcal{M}}^{\mathrm{reg}} & =\left(M, 1,\left(E_{L}\right)_{L \subseteq \Sigma^{*} \text { is regular }}\right), \text { where } \\
E_{L} & =\{(u, v) \in M \times M \mid \exists w \in L: u \circ w=v\}
\end{aligned}
$$

## Theorem (L., Ondrusch)

Let $P$ be an idempotent presentation $P$ over alphabet $\Gamma \cup \Gamma^{-1}$. Then the first-order theory of $\mathbb{C}_{\mathrm{FIM}(\Gamma) / P}^{\mathrm{reg}}$ is decidable.

## More general decision problems

Let $\mathcal{M}=(M, \circ, 1)$ be a monoid with a finite generating set $\Sigma$.
Let $\mathbb{C}_{\mathcal{M}}^{\text {reg }}$ be the following structure:

$$
\begin{aligned}
\mathbb{C}_{\mathcal{M}}^{\mathrm{reg}} & =\left(M, 1,\left(E_{L}\right)_{L \subseteq \Sigma^{*} \text { is regular }}\right), \text { where } \\
E_{L} & =\{(u, v) \in M \times M \mid \exists w \in L: u \circ w=v\}
\end{aligned}
$$

## Theorem (L., Ondrusch)

Let $P$ be an idempotent presentation $P$ over alphabet $\Gamma \cup \Gamma^{-1}$. Then the first-order theory of $\mathbb{C}_{\mathrm{FIM}(\Gamma) / P}^{\mathrm{reg}}$ is decidable.

Proof idea: Reduction to the monadic second-order theory of the Cayley graph of the free group $\mathrm{FG}(\Gamma)$.

## More general decision problems

## More general decision problems

## Corollary

Let $P$ be an idempotent presentation $P$ over alphabet $\Gamma \cup \Gamma^{-1}$.

- For two rational subsets $L, K \subseteq \operatorname{FIM}(\Gamma) / P$ we can decide, whether $L \cap K=\emptyset$.
- The generalized word problem of $\operatorname{FIM}(\Gamma) / P$ (Does $u$ belongs to the submonoid generated by $v_{1}, \ldots, v_{n}$ ?) is decidable.


## More general decision problems

## Corollary

Let $P$ be an idempotent presentation $P$ over alphabet $\Gamma \cup \Gamma^{-1}$.

- For two rational subsets $L, K \subseteq \operatorname{FIM}(\Gamma) / P$ we can decide, whether $L \cap K=\emptyset$.
- The generalized word problem of $\operatorname{FIM}(\Gamma) / P$ (Does u belongs to the submonoid generated by $v_{1}, \ldots, v_{n}$ ?) is decidable.


## Theorem

The monadic second-order theory of the Cayley graph of FIM(Г), i.e., the graph
$\left(\operatorname{FIM}(\Gamma),\left(E_{a}\right)_{a \in \Gamma \cup \Gamma^{-1}}\right)$ with $E_{a}=\{(u, v) \mid v=u a$ in $\operatorname{FIM}(\Gamma)\}$ is undecidable for $|\Gamma|>1$.

## More general decision problems

## Corollary

Let $P$ be an idempotent presentation $P$ over alphabet $\Gamma \cup \Gamma^{-1}$.

- For two rational subsets $L, K \subseteq \operatorname{FIM}(\Gamma) / P$ we can decide, whether $L \cap K=\emptyset$.
- The generalized word problem of $\operatorname{FIM}(\Gamma) / P$ (Does u belongs to the submonoid generated by $v_{1}, \ldots, v_{n}$ ?) is decidable.


## Theorem

The monadic second-order theory of the Cayley graph of FIM(Г), i.e., the graph
$\left(\operatorname{FIM}(\Gamma),\left(E_{a}\right)_{a \in \Gamma \cup \Gamma^{-1}}\right)$ with $E_{a}=\{(u, v) \mid v=u a$ in $\operatorname{FIM}(\Gamma)\}$ is undecidable for $|\Gamma|>1$.

Proof idea: Find large grid-structures as minors in the Cayley graph of FIM $(\Gamma)$.

