Application of verification techniques in inverse monoid theory

Markus Lohrey and Nicole Ondrusch

University of Stuttgart, Germany

September 17, 2005

Let Σ be a finite alphabet and $P \subseteq \Sigma^* \times \Sigma^*$ be a presentation. Then $\Sigma^*/P := \Sigma^*/\equiv_P$, where \equiv_P be the smallest congruence relation on Σ^* containing P.

Let Σ be a finite alphabet and $P \subseteq \Sigma^* \times \Sigma^*$ be a presentation. Then $\Sigma^*/P := \Sigma^*/\equiv_P$, where \equiv_P be the smallest congruence relation on Σ^* containing P.

More precisely: $\equiv_P = \stackrel{*}{\leftrightarrow}_P$, where $\leftrightarrow_P = \{(sxt, syt) \mid s, t \in \Sigma^*, (x, y) \in P \text{ or } (y, x) \in P\}.$

Let Σ be a finite alphabet and $P \subseteq \Sigma^* \times \Sigma^*$ be a presentation. Then $\Sigma^*/P := \Sigma^*/\equiv_P$, where \equiv_P be the smallest congruence relation on Σ^* containing P.

$$\begin{array}{l} \text{More precisely: } \equiv_{P} = \stackrel{*}{\leftrightarrow}_{P}, \text{ where} \\ \leftrightarrow_{P} = \ \{(\textit{sxt},\textit{syt}) \mid \textit{s}, t \in \Sigma^{*}, (x,y) \in P \text{ or } (y,x) \in P\}. \end{array}$$

The word problem for Σ^*/P is the following problem: INPUT: words $u, v \in \Sigma^*$ QUESTION: u = v in Σ^*/P , i.e., $u \equiv_P v$?

Let Σ be a finite alphabet and $P \subseteq \Sigma^* \times \Sigma^*$ be a presentation. Then $\Sigma^*/P := \Sigma^*/\equiv_P$, where \equiv_P be the smallest congruence relation on Σ^* containing P.

$$\begin{array}{l} \text{More precisely: } \equiv_{P} = \stackrel{*}{\leftrightarrow}_{P}, \text{ where} \\ \leftrightarrow_{P} = \ \{(\textit{sxt},\textit{syt}) \mid \textit{s}, t \in \Sigma^{*}, (x,y) \in P \text{ or } (y,x) \in P\}. \end{array}$$

The word problem for Σ^*/P is the following problem: INPUT: words $u, v \in \Sigma^*$ QUESTION: u = v in Σ^*/P , i.e., $u \equiv_P v$?

Two milestones:

Let Σ be a finite alphabet and $P \subseteq \Sigma^* \times \Sigma^*$ be a presentation. Then $\Sigma^*/P := \Sigma^*/\equiv_P$, where \equiv_P be the smallest congruence relation on Σ^* containing P.

$$\begin{array}{l} \text{More precisely: } \equiv_{P} = \stackrel{*}{\leftrightarrow}_{P}, \text{ where} \\ \leftrightarrow_{P} = \ \{(\textit{sxt},\textit{syt}) \mid \textit{s}, t \in \Sigma^{*}, (x,y) \in P \text{ or } (y,x) \in P\}. \end{array}$$

The word problem for Σ^*/P is the following problem: INPUT: words $u, v \in \Sigma^*$ QUESTION: u = v in Σ^*/P , i.e., $u \equiv_P v$?

Two milestones:

 Markov (1947), Post (1947): There is a finite presentation P such that Σ*/P has an undecidable word problem.

Let Σ be a finite alphabet and $P \subseteq \Sigma^* \times \Sigma^*$ be a presentation. Then $\Sigma^*/P := \Sigma^*/\equiv_P$, where \equiv_P be the smallest congruence relation on Σ^* containing P.

$$\begin{array}{l} \text{More precisely: } \equiv_{P} = \stackrel{*}{\leftrightarrow}_{P}, \text{ where} \\ \leftrightarrow_{P} = \ \{(\textit{sxt},\textit{syt}) \mid \textit{s}, t \in \Sigma^{*}, (x,y) \in P \text{ or } (y,x) \in P\}. \end{array}$$

The word problem for Σ^*/P is the following problem: INPUT: words $u, v \in \Sigma^*$ QUESTION: u = v in Σ^*/P , i.e., $u \equiv_P v$?

Two milestones:

- Markov (1947), Post (1947): There is a finite presentation P such that Σ*/P has an undecidable word problem.
- Novikov (1955), Boone (1957): There is a finite presentation P such that Σ^*/P is a group and has an undecidable word problem.

A monoid \mathcal{M} is inverse if for every $x \in \mathcal{M}$ there exists a unique $x^{-1} \in \mathcal{M}$ with $x x^{-1}x = x$ and $x^{-1}x x^{-1} = x^{-1}$.

A monoid \mathcal{M} is inverse if for every $x \in \mathcal{M}$ there exists a unique $x^{-1} \in \mathcal{M}$ with $x x^{-1}x = x$ and $x^{-1}x x^{-1} = x^{-1}$.

For a finite set Γ let $FIM(\Gamma)$ be the free inverse monoid generated by Γ (exists, since inverse monoids form a variety).

A monoid \mathcal{M} is inverse if for every $x \in \mathcal{M}$ there exists a unique $x^{-1} \in \mathcal{M}$ with $x x^{-1}x = x$ and $x^{-1}x x^{-1} = x^{-1}$.

For a finite set Γ let $FIM(\Gamma)$ be the free inverse monoid generated by Γ (exists, since inverse monoids form a variety).

An explicite representation of $FIM(\Gamma)$: Let

•
$$\Gamma^{-1} = \{a^{-1} \mid a \in \Gamma\}$$
 be a disjoint copy of Γ ,

•
$$(a^{-1})^{-1} := a$$
,

•
$$(b_1 b_2 \cdots b_n)^{-1} := b_n^{-1} \cdots b_2^{-1} b_1^{-1}$$
 for $b_i \in \Gamma \cup \Gamma^{-1}$,

• $\mathcal{W} = \{(s, s s^{-1}s), (s s^{-1}t t^{-1}, t t^{-1}s s^{-1}) \mid s, t \in (\Gamma \cup \Gamma^{-1})^*\}$ (Wagner equations)

Then $\operatorname{FIM}(\Gamma) \simeq (\Gamma \cup \Gamma^{-1})^* / \mathcal{W}$.

Finitely presented inverse monoids

For a presentation $P \subseteq (\Gamma \cup \Gamma^{-1})^* \times (\Gamma \cup \Gamma^{-1})^*$ let $\operatorname{FIM}(\Gamma)/P := (\Gamma \cup \Gamma^{-1})^*/(P \cup W).$ For a presentation $P \subseteq (\Gamma \cup \Gamma^{-1})^* \times (\Gamma \cup \Gamma^{-1})^*$ let $\operatorname{FIM}(\Gamma)/P := (\Gamma \cup \Gamma^{-1})^*/(P \cup \mathcal{W}).$

A presentation $P \subseteq (\Gamma \cup \Gamma^{-1})^* \times (\Gamma \cup \Gamma^{-1})^*$ is idempotent if for every $(e, f) \in P$, e and f are idempotents of $FIM(\Gamma)$ ($e^2 = e$ and $f^2 = f$ in $FIM(\Gamma)$). For a presentation $P \subseteq (\Gamma \cup \Gamma^{-1})^* \times (\Gamma \cup \Gamma^{-1})^*$ let $\operatorname{FIM}(\Gamma)/P := (\Gamma \cup \Gamma^{-1})^*/(P \cup \mathcal{W}).$

A presentation $P \subseteq (\Gamma \cup \Gamma^{-1})^* \times (\Gamma \cup \Gamma^{-1})^*$ is idempotent if for every $(e, f) \in P$, e and f are idempotents of $FIM(\Gamma)$ ($e^2 = e$ and $f^2 = f$ in $FIM(\Gamma)$).

Theorem (Margolis, Meakin)

The following problem is decidable: INPUT: Idempotent presentation P over alphabet $\Gamma \cup \Gamma^{-1}$, words $u, v \in (\Gamma \cup \Gamma^{-1})^*$. QUESTION: u = v in $FIM(\Gamma)/P$?

The free group $FG(\Gamma)$ generated by Γ : $FG(\Gamma) = (\Gamma \cup \Gamma^{-1})^* / \{(bb^{-1}, \varepsilon) \mid b \in \Gamma \cup \Gamma^{-1}\}$

The free group FG(Γ) generated by Γ : FG(Γ) = ($\Gamma \cup \Gamma^{-1}$)*/{(bb^{-1}, ε) | $b \in \Gamma \cup \Gamma^{-1}$ } Remark: Let $u \in (\Gamma \cup \Gamma^{-1})$ *. Then $u^2 = u$ in FIM(Γ) if and only if u = 1 in FG(Γ). The free group $FG(\Gamma)$ generated by Γ : $FG(\Gamma) = (\Gamma \cup \Gamma^{-1})^* / \{(bb^{-1}, \varepsilon) \mid b \in \Gamma \cup \Gamma^{-1}\}$

Remark: Let $u \in (\Gamma \cup \Gamma^{-1})^*$. Then $u^2 = u$ in FIM(Γ) if and only if u = 1 in FG(Γ).

The Cayley graph of $FG(\Gamma)$ is the following edge-labeled graph with node set $FG(\Gamma)$:

$$(\mathrm{FG}(\Gamma), (E_a)_{a\in\Gamma\cup\Gamma^{-1}}),$$

where $E_a = \{(u, v) \mid u, v \in FG(\Gamma), v = ua \text{ in } FG(\Gamma)\}.$

Cayley graph of a free group:

The Cayley graph of the free group $FG(\{a, b\})$:

Let $u = c_1 c_2 \cdots c_n \in (\Gamma \cup \Gamma^{-1})^*$ be a word.

The Munn tree of u is the finite subtree of the Cayley graph of $FG(\Gamma)$, that are visited while traveling along the path $c_1c_2 \cdots c_n$ in the Cayley graph of $FG(\Gamma)$.

Let $u = c_1 c_2 \cdots c_n \in (\Gamma \cup \Gamma^{-1})^*$ be a word.

The Munn tree of u is the finite subtree of the Cayley graph of $FG(\Gamma)$, that are visited while traveling along the path $c_1c_2 \cdots c_n$ in the Cayley graph of $FG(\Gamma)$.

Theorem (Munn)

Let $u, v \in (\Gamma \cup \Gamma^{-1})^*$. Then u = v in $FIM(\Gamma)$ if and only if

1
$$u = v$$
 in the free group $FG(\Gamma)$

Let $u \in (\Gamma \cup \Gamma^{-1})^*$ be a word and $P \subseteq (\Gamma \cup \Gamma^{-1})^* \times (\Gamma \cup \Gamma^{-1})^*$ be an idempotent presentation.

W.l.o.g. Munn tree of $e \subseteq$ Munn tree of f for all $(e, f) \in P$.

Let $u \in (\Gamma \cup \Gamma^{-1})^*$ be a word and $P \subseteq (\Gamma \cup \Gamma^{-1})^* \times (\Gamma \cup \Gamma^{-1})^*$ be an idempotent presentation. W.I.o.g. Munn tree of $e \subseteq$ Munn tree of f for all $(e, f) \in P$.

The closure $cl_P(u)$ of u wrt. P for an example:

$$u = aa^{-1}bb^{-2}, \quad P = \{(aa^{-1}, a^2a^{-2}), (aa^{-1}bb^{-1}, aa^{-1}baa^{-1}b^{-1})\}$$

Let $u \in (\Gamma \cup \Gamma^{-1})^*$ be a word and $P \subseteq (\Gamma \cup \Gamma^{-1})^* \times (\Gamma \cup \Gamma^{-1})^*$ be an idempotent presentation. W.I.o.g. Munn tree of $e \subset$ Munn tree of f for all $(e, f) \in P$.

The closure $cl_P(u)$ of u wrt. P for an example:

 $u = aa^{-1}bb^{-2}, P = \{(aa^{-1}, a^2a^{-2}), (aa^{-1}bb^{-1}, aa^{-1}baa^{-1}b^{-1})\}$

The relations in P seen as identities between Munn trees:

$$a = a = a$$

1. Construct the Munn tree of $u = aa^{-1}bb^{-2}$.

1. Construct the Munn tree of $u = aa^{-1}bb^{-2}$.

1. Construct the Munn tree of $u = aa^{-1}bb^{-2}$.

1. Construct the Munn tree of $u = aa^{-1}bb^{-2}$.

1. Construct the Munn tree of $u = aa^{-1}bb^{-2}$.

1. Construct the Munn tree of $u = aa^{-1}bb^{-2}$.

2. Find Munn tree of a left-hand side of a relation (ℓ, r) in red part.

2. $(aa^{-1}bb^{-1}, aa^{-1}baa^{-1}b^{-1})$

3. Extend by Munn tree of right-hand side $aa^{-1}baa^{-1}b^{-1}$.

2. Find Munn tree of a left-hand side of a relation (ℓ, r) in red part.

2. (aa^{-1}, a^2a^{-2})

3. Extend by Munn tree of right-hand side a^2a^{-2} .

2. Find Munn tree of a left-hand side of a relation (ℓ, r) in red part.

2. (aa^{-1}, a^2a^{-2})

3. Extend by Munn tree of right-hand side a^2a^{-2} .

2. Find Munn tree of a left-hand side of a relation (ℓ, r) in red part.

 (aa^{-1}, a^2a^{-2})

3. Extend by Munn tree of right-hand side a^2a^{-2} .

In the limit, we obtain the closure:

Theorem (Stephen/Margolis, Meakin)

Let $u, v \in (\Gamma \cup \Gamma^{-1})^*$ and P be an idempotent presentation. Then u = v in $FIM(\Gamma)/P$ if and only if:

1
$$u = v$$
 in the free group $FG(\Gamma)$

 $cl_P(u) = cl_P(v)$

Theorem (Stephen/Margolis, Meakin)

Let $u, v \in (\Gamma \cup \Gamma^{-1})^*$ and P be an idempotent presentation. Then u = v in $FIM(\Gamma)/P$ if and only if:

①
$$u = v$$
 in the free group $FG(\Gamma)$

 $cl_P(u) = cl_P(v)$

This leads to a decision algorithm for "u = v in FIM(Γ)/P":

- "u = v in the free group FG(Γ)" can be checked in linear time.
- "cl_P(u) = cl_P(v)" can be expressed in monadic second-order logic over the Cayley graph of FG(Γ).
 Muller, Schupp (based on Rabin): The Cayley graph of FG(Γ) has a decidable monadic second-order theory.

Theorem (Stephen/Margolis, Meakin)

Let $u, v \in (\Gamma \cup \Gamma^{-1})^*$ and P be an idempotent presentation. Then u = v in $FIM(\Gamma)/P$ if and only if:

1
$$u = v$$
 in the free group $FG(\Gamma)$

 $cl_P(u) = cl_P(v)$

This leads to a decision algorithm for "u = v in FIM(Γ)/P":

- "u = v in the free group FG(Γ)" can be checked in linear time.
- "cl_P(u) = cl_P(v)" can be expressed in monadic second-order logic over the Cayley graph of FG(Γ).
 Muller, Schupp (based on Rabin): The Cayley graph of FG(Γ) has a decidable monadic second-order theory.

But: The monadic second-order theory of the Cayley graph of $FG(\Gamma)$ has no elementary decision algorithm.

Our first observation: " $cl_P(u) = cl_P(v)$ " can be expressed in the modal μ -calculus over the Cayley graph of FG(Γ).

Our first observation: " $cl_P(u) = cl_P(v)$ " can be expressed in the modal μ -calculus over the Cayley graph of FG(Γ).

Walukiewicz 96: It can be checked in exponential time, whether a formula of the modal μ -calculus holds in a context-free graph (pushdown system).

Our first observation: " $cl_P(u) = cl_P(v)$ " can be expressed in the modal μ -calculus over the Cayley graph of FG(Γ).

Walukiewicz 96: It can be checked in exponential time, whether a formula of the modal μ -calculus holds in a context-free graph (pushdown system).

Theorem (L., Ondrusch)

The following problem is EXPTIME-complete: INPUT: Idempotent presentation P over alphabet $\Gamma \cup \Gamma^{-1}$, words $u, v \in (\Gamma \cup \Gamma^{-1})^*$. QUESTION: u = v in $FIM(\Gamma)/P$? Moreover, EXPTIME-hardness already holds for a fixed alphabet Γ .

Complexity of the word problem

Note that:

 $\mathsf{cl}_{P}(u) = \mathsf{cl}_{P}(v) \quad \Leftrightarrow \quad \mathrm{MT}(u) \subseteq \mathsf{cl}_{P}(v) \land \, \mathrm{MT}(v) \subseteq \mathsf{cl}_{P}(u)$

Complexity of the word problem

Note that:

 $\mathsf{cl}_P(u) = \mathsf{cl}_P(v) \quad \Leftrightarrow \quad \mathrm{MT}(u) \subseteq \mathsf{cl}_P(v) \land \, \mathrm{MT}(v) \subseteq \mathsf{cl}_P(u)$

Let G be the Cayley graph of $FG(\Gamma)$ with the node 1 marked. Let $\varphi_{v,P}$ be the following sentence:

$$\mu X.\left(\bigvee_{i=0}^{|v|} \langle v[1,i]^{-1} \rangle 1 \lor \bigvee_{(e,f) \in P} \bigvee_{j=0}^{|f|} \langle f[1,j]^{-1} \rangle (\bigwedge_{k=0}^{|e|} \langle e[1,k] \rangle X)\right)$$

Then $(G, x) \models \varphi_{v,P}$ if and only if $x \in cl_P(v)$.

Complexity of the word problem

Note that:

 $\mathsf{cl}_P(u) = \mathsf{cl}_P(v) \quad \Leftrightarrow \quad \mathrm{MT}(u) \subseteq \mathsf{cl}_P(v) \land \, \mathrm{MT}(v) \subseteq \mathsf{cl}_P(u)$

Let G be the Cayley graph of $FG(\Gamma)$ with the node 1 marked. Let $\varphi_{v,P}$ be the following sentence:

$$\mu X. \left(\bigvee_{i=0}^{|v|} \langle v[1,i]^{-1} \rangle 1 \lor \bigvee_{(e,f) \in P} \bigvee_{j=0}^{|f|} \langle f[1,j]^{-1} \rangle (\bigwedge_{k=0}^{|e|} \langle e[1,k] \rangle X) \right)$$

Then $(G, x) \models \varphi_{v,P}$ if and only if $x \in cl_P(v)$.

Thus,

$$\operatorname{MT}(u) \subseteq \operatorname{cl}_{\mathcal{P}}(v) \quad \Leftrightarrow \quad (G,1) \models \bigwedge_{i=0}^{|u|} \langle u[1,i] \rangle \varphi_{v,\mathcal{P}}.$$

Theorem (L., Ondrusch)

There exists a fixed alphabet Γ such that the following problem UWP- $IP(\Gamma)$ is EXPTIME-complete: INPUT: Idempotent presentation P over alphabet $\Gamma \cup \Gamma^{-1}$, words $u, v \in (\Gamma \cup \Gamma^{-1})^*$. QUESTION: u = v in $FIM(\Gamma)/P$?

Theorem (L., Ondrusch)

There exists a fixed alphabet Γ such that the following problem UWP- $IP(\Gamma)$ is EXPTIME-complete: INPUT: Idempotent presentation P over alphabet $\Gamma \cup \Gamma^{-1}$, words $u, v \in (\Gamma \cup \Gamma^{-1})^*$. QUESTION: u = v in $FIM(\Gamma)/P$?

The reduction

 $\begin{array}{rcl} \mathsf{UWP}\text{-}\mathsf{IP}(\Gamma) & \to & \mathsf{model-checking \ problem \ for \ modal \ } \mu\text{-calculus} \\ & & \mathsf{over \ the \ Cayley \ graph \ of \ } \mathrm{FG}(\Gamma) \end{array}$

shows:

Theorem (L., Ondrusch)

There exists a fixed alphabet Γ such that the following problem UWP- $IP(\Gamma)$ is EXPTIME-complete: INPUT: Idempotent presentation P over alphabet $\Gamma \cup \Gamma^{-1}$, words $u, v \in (\Gamma \cup \Gamma^{-1})^*$. QUESTION: u = v in $FIM(\Gamma)/P$?

The reduction

 $\begin{array}{rcl} \mathsf{UWP}\text{-}\mathsf{IP}(\Gamma) & \to & \mathsf{model-checking \ problem \ for \ modal \ } \mu\text{-calculus} \\ & & \mathsf{over \ the \ Cayley \ graph \ of \ } \mathrm{FG}(\Gamma) \end{array}$

shows:

Corollary

There exists a fixed pushdown system G such that the following problem is EXPTIME-complete: INPUT: Formula φ of the modal μ -calculus (of nesting depth 1) QUESTION: G $\models \varphi$?

Theorem

For every fixed idempotent presentation P over a fixed alphabet $\Gamma \cup \Gamma^{-1}$, the following problem can be solved in polynomial time (even in deterministic logspace): INPUT: Words $u, v \in (\Gamma \cup \Gamma^{-1})^*$. QUESTION: u = v in FIM $(\Gamma)/P$?

Theorem

For every fixed idempotent presentation P over a fixed alphabet $\Gamma \cup \Gamma^{-1}$, the following problem can be solved in polynomial time (even in deterministic logspace): INPUT: Words $u, v \in (\Gamma \cup \Gamma^{-1})^*$. QUESTION: u = v in $FIM(\Gamma)/P$?

Proof idea: Reduction to membership problem for a fixed tree automaton, which only depends on the presentation P.

Let $\mathcal{M} = (M, \circ, 1)$ be a monoid with a finite generating set Σ . Let $\mathbb{C}_{\mathcal{M}}^{\mathrm{reg}}$ be the following structure:

$$\begin{split} \mathbb{C}_{\mathcal{M}}^{\mathrm{reg}} &= (M, 1, (E_L)_{L \subseteq \Sigma^* \mathrm{is \ regular}}), \text{ where} \\ E_L &= \{(u, v) \in M \times M \mid \exists w \in L : u \circ w = v\}. \end{split}$$

Let $\mathcal{M} = (M, \circ, 1)$ be a monoid with a finite generating set Σ . Let $\mathbb{C}_{\mathcal{M}}^{\mathrm{reg}}$ be the following structure:

$$\begin{array}{lll} \mathbb{C}^{\mathrm{reg}}_{\mathcal{M}} &=& (M, 1, (E_L)_{L \subseteq \Sigma^* \mathrm{is \ regular}}), \ \mathrm{where} \\ E_L &=& \{(u, v) \in M \times M \mid \exists w \in L : u \circ w = v\}. \end{array}$$

Theorem (L., Ondrusch)

Let P be an idempotent presentation P over alphabet $\Gamma \cup \Gamma^{-1}$. Then the first-order theory of $\mathbb{C}^{\mathrm{reg}}_{\mathrm{FIM}(\Gamma)/P}$ is decidable. Let $\mathcal{M} = (M, \circ, 1)$ be a monoid with a finite generating set Σ . Let $\mathbb{C}_{\mathcal{M}}^{\mathrm{reg}}$ be the following structure:

$$\begin{array}{lll} \mathbb{C}^{\mathrm{reg}}_{\mathcal{M}} &=& (M, 1, (E_L)_{L \subseteq \Sigma^* \mathrm{is \ regular}}), \ \mathrm{where} \\ E_L &=& \{(u, v) \in M \times M \mid \exists w \in L : u \circ w = v\}. \end{array}$$

Theorem (L., Ondrusch)

Let P be an idempotent presentation P over alphabet $\Gamma \cup \Gamma^{-1}$. Then the first-order theory of $\mathbb{C}^{\mathrm{reg}}_{\mathrm{FIM}(\Gamma)/P}$ is decidable.

Proof idea: Reduction to the monadic second-order theory of the Cayley graph of the free group ${\rm FG}(\Gamma).$

Corollary

Let P be an idempotent presentation P over alphabet $\Gamma \cup \Gamma^{-1}$.

- For two rational subsets L, K ⊆ FIM(Γ)/P we can decide, whether L ∩ K = Ø.
- The generalized word problem of FIM(Γ)/P (Does u belongs to the submonoid generated by v₁,..., v_n?) is decidable.

Corollary

Let P be an idempotent presentation P over alphabet $\Gamma \cup \Gamma^{-1}$.

- For two rational subsets L, K ⊆ FIM(Γ)/P we can decide, whether L ∩ K = Ø.
- The generalized word problem of FIM(Γ)/P (Does u belongs to the submonoid generated by v₁,..., v_n?) is decidable.

Theorem

The monadic second-order theory of the Cayley graph of FIM(Γ), *i.e.*, the graph (FIM(Γ), (E_a)_{$a \in \Gamma \cup \Gamma^{-1}$}) with $E_a = \{(u, v) \mid v = ua \text{ in FIM}(\Gamma)\}$ is undecidable for $|\Gamma| > 1$.

Corollary

Let P be an idempotent presentation P over alphabet $\Gamma \cup \Gamma^{-1}$.

- For two rational subsets L, K ⊆ FIM(Γ)/P we can decide, whether L ∩ K = Ø.
- The generalized word problem of FIM(Γ)/P (Does u belongs to the submonoid generated by v₁,..., v_n?) is decidable.

Theorem

The monadic second-order theory of the Cayley graph of $\text{FIM}(\Gamma)$, *i.e.*, the graph (FIM(Γ), (E_a)_{$a \in \Gamma \cup \Gamma^{-1}$}) with $E_a = \{(u, v) \mid v = ua \text{ in } \text{FIM}(\Gamma)\}$ is undecidable for $|\Gamma| > 1$.

Proof idea: Find large grid-structures as minors in the Cayley graph of $\mathrm{FIM}(\Gamma).$

Markus Lohrey and Nicole Ondrusch