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Abstract

Those graph products of groups that are virtually-free are characterized.

1 Introduction

A finitely generated group G is called virtually-free if it has a free subgroup of finite
index. Finitely generated virtually-free groups can be characterized in many different
ways using notions from formal language theory [1, 13, 14], graph theory [3, 14], and
mathematical logic [10, 14]. This makes virtually-free groups to an important research
topic in combinatorial group theory. It is known that every virtually-free group is
hyperbolic and that the class of virtually-free groups is closed under the operations of
amalgamated free products and HNN extensions, when both operations are restricted
to finite associated subgroups.

In this paper we study the operation of graph product, which is defined as follows:
Let X = (V, I) be a finite undirected graph, i.e., V is a finite set of nodes and I is
an irreflexive and symmetric relation on I . For each node v ∈ V let Gv 6= 1 be a
nontrivial group. Then, the graph product GP(X, (Gv)v∈V ) is the free product of the
groups Gv subject to the relations xyx−1y−1 = 1 for all x ∈ Gu, y ∈ Gv such that
(u, v) ∈ I . This operation generalizes both free and direct products. Graph products
were first studied in [7]. Several nice closure properties are known for graph products.
For instance, the following classes are all closed under graph products: residually fi-
nite groups [7], semihyperbolic groups [9], automatic groups [9]. In [12], a complete
answer to the question under which conditions a graph product of hyperbolic groups
is again hyperbolic was given (see Section 2 for definitions concerning graph theory):
GP(X, (Gv)v∈V ) is hyperbolic if and only if
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(i) for every v ∈ V , Gv is hyperbolic,

(ii) if Gu and Gv are infinite groups and u 6= v, then (u, v) 6∈ I ,

(iii) if Gu is an infinite group, Gv and Gw are finite groups such that v 6= w, and
(u, v), (u,w) ∈ I , then also (v, w) ∈ I , and

(iv) the graph X does not contain an induced cycle of length 4.

The main result from this paper gives a similar characterization for virtually-free groups:

Theorem 1.1. Let G = GP(X, (Gv)v∈V ) be a graph product with X = (V, I). Then
G is virtually-free if and only if:

(1) for every v ∈ V , Gv is virtually-free,

(2) if Gu and Gv are infinite groups and u 6= v, then (u, v) 6∈ I ,

(3) if Gu is an infinite group, Gv and Gw are finite groups such that v 6= w, and
(u, v), (u,w) ∈ I , then also (v, w) ∈ I , and

(4) the graph X is chordal.

Note that condition (2) and (3) are identical to condition (ii) and (iii) in the cor-
responding characterization for hyperbolic groups and that condition (1) is just the
obvious counterpart of condition (i). But condition (4) is strictly stronger than con-
dition (iv) which only requires that X does not contain an induced cycle of length 4.
In particular we see that a graph product GP(X, (Gv)v∈V ), where every group Gv is
finite and X is a cycle on 5 nodes, is hyperbolic but not virtually-free.

2 Preliminaries

For background in combinatorial group theory (resp. graph theory) see [11] (resp. [5]).
In this paper we restrict to finitely generated groups. We will not mention this implicit
assumption in the following. Let G = GP(X, (Gv)v∈V ) be a graph product as defined
in Section 1, where X = (V, I) is a finite undirected graph. A clique of X = (V, I)
is a subset U ⊆ V such that (u, v) ∈ I for all u, v ∈ U with u 6= v. A cycle of
length n is a graph of the form ({v0, . . . , vn−1}, J) such that: (vi, vj) ∈ J if and only
if i = j + 1 mod n or j = i + 1 mod n. Let U ⊆ V . The subgraph of X induced
by U is X¹U = (U, I ∩ (U × U)). We say that X = (V, I) contains an induced
cycle of length n if there is U ⊆ V such that X¹U is a cycle of length n. The graph
X = (V, I) is chordal if X does not contain an induced cycle of length at least 4. For
U ⊆ V we define the graph product G¹U as GP(X¹U , (Gv)v∈U ); it is a subgroup of
G [7]. For groups G1, G2, and H , and injective homomorphisms h1 : H → G1 and
h2 : H → G2, the amalgamated free product G1 ∗H G2 is defined as the free product
of G1 and G2 subject to the relations h1(x) = h2(x) for every x ∈ H . W.l.o.g. we
may assume that G1 ∩ G2 = H and that hi is just the inclusion map. We need the
following result on graph products.
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Proposition 2.1 (p 48 of [7]). Let G = GP(X, (Gv)v∈V ) be a graph product, X =
(V, I), let u ∈ V , and let N(u) = {v ∈ V | (u, v) ∈ I} be the neighbors of u. Then

G ' (G¹V \{u}) ∗G¹N(u)
(G¹N(u) × Gu).

We will also need some standard results from Basse-Serre theory of groups acting
on trees, see [4] for more details. For this, we have to define another notion of graph,
which differs from the one for undirected graphs that was used for graph products. For
the rest of this section, a graph is a tuple Y = (V,E, s, t, )̄, where V 6= ∅ is the set of
vertices, E is the set of edges (V ∩E = ∅), s : E → V maps every edge e to its source
vertex s(e), t : E → V maps every edge e to its target vertex t(e), and ¯: E → E is
an involution without fixpoints such that: s(e) = t(ē) for all e ∈ E. A path in Y is a
sequence of edges p = (e1, · · · , en) (n ≥ 1) such that t(ei) = s(ei+1) for 1 ≤ i < n.
We also say that the path p connects the vertices s(e1) and t(en). We say that Y is
connected if every two different nodes u, v ∈ V are connected by a path. We say that
Y is a tree if it is connected and for every path p = (e1, · · · , en) with s(e1) = t(en)
there exists 1 ≤ i < n such that ei = ei+1. A group G acts on the graph Y without
inversion of edges, if there exists a morphism f : G → Aut(Y ) such that f(e) 6= ē for
every edge e ∈ E. We write xg for f(g)(x) (x ∈ V ∪ E, g ∈ G). For a node v ∈ V ,
the vertex stabilizer of v is {g ∈ G | vg = v}.

Proposition 2.2 (p. 104, Corollary 1.9, in [4]). A group G is virtually-free if and only
if G acts on a tree without inversion of edges and such that all vertex stabilizers are
finite.

We will also use the following well-known facts about virtually-free groups:

• A direct product of two infinite groups is not virtually-free.

• Every finitely generated subgroup of a virtually-free group is virtually-free.

• If G = G1 ∗A G2, where G1 and G2 are virtually free and A is a finite, then also
G is virtually-free.

• If G is virtually-free and A is finite, then also G × A is virtually-free.

3 Proof of Theorem 1.1

Let us first prove the sufficiency of condition (1)–(4) in Theorem 1.1. We first consider
the case of a graph product of finite groups.

Lemma 3.1. If G = GP(X, (Gv)v∈V ) is a graph product such that X is chordal and
every group Gv is finite, then GP(X, (Gv)v∈V ) is virtually-free.

Proof. Let X = (V, I) be chordal. We prove by induction on the number of vertices
of X that G is virtually-free. By [6] there exists a simplical vertex in X , i.e., a vertex
u ∈ V such that the neighborhood Nu = {v ∈ V | (u, v) ∈ I} of u is a clique
of X . Thus, F = G¹N(u) =

∏
v∈N(u) Gv and F × Gu are both finite (and hence

virtually-free). By induction, H = G¹V \{u} is virtually-free. By Proposition 2.1 we
have G ' H ∗F (F × Gu), so G is virtually-free.
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Now assume that condition (1)–(4) in Theorem 1.1 are true for the graph product
G = GP(X, (Gv)v∈V ). Let n be the number of vertices u ∈ V such that Gu is
infinite. We show by induction on n that G is virtually-free. The case n = 0 is dealt
in Lemma 3.1. Now assume that n > 0 and let u ∈ V such that Gu is infinite. Since
for the graph product H = G¹V \{u} again the conditions (1)–(4) from the theorem
are satisfied, it follows by induction that H is virtually free. Let Nu = {v ∈ V |
(u, v) ∈ I} be the neighborhood of u. By (2) from Theorem 1.1, Gv has to be finite
for every v ∈ Nu, and by (3), Nu is a clique of X . Thus, F = G¹N(u) =

∏
v∈N(u) Gv

is finite and hence, F × Gu is still virtually-free. We can conclude as in the proof of
Lemma 3.1.

Let us now prove the other direction in Theorem 1.1. The necessity of the condi-
tions (1)–(3) is easy to see: For (1), just recall that every finitely generated subgroup
of a virtually-free group is again virtually-free. Condition (2) has to be true, because
the direct product of two infinite groups is not virtually-free. Similarly, if condition (3)
would be false, then G would contain a subgroup of the form Gu × (Gv ∗ Gw) with
Gu infinite, and hence again a direct product of two infinite groups.

It remains to show that if X = (V, I) is not chordal then GP(X, (Gv)v∈V ) is not
virtually-free. Thus, assume that (V, I) is not chordal, i.e., it contains an induced cycle
of length at least 4. Since we may assume that condition (2) and (3) are satisfied, it
follows, that already the subgraph of X that is induced by those v ∈ V with Gv finite
is non-chordal. Hence, since finitely generated subgroups of virtually-free groups are
again virtually-free, it suffices to show the following lemma:

Lemma 3.2. A graph product G = GP(X, (Av)v∈V ), where X = (V, I) is a cycle of
length n ≥ 4 and every Av is finite, is not virtually-free.

We will present two proofs of Lemma 3.2: a very short proof using two difficult
results concerning virtual cohomology dimension and a second proof based on Bass-
Serre theory.

First proof of Lemma 3.2. It is known that a group is virtually-free if and only if it
has virtual cohomology dimension 1, see e.g. [2]. On the other hand, Harlander and
Meinert calculated the virtual cohomology dimension of graph products of finite groups
[8]. In particular, if G is a graph product as described in Lemma 3.2, then its virtual
cohomology dimension is 2 by [8, Thm. 6.6]. Hence, G cannot be virtually-free.

Second proof of Lemma 3.2. Suppose that G is virtually-free. Let V = {0, . . . , n − 1}
and I = {(i, i + 1) | 0 ≤ i ≤ n − 1}, where here and in the following addition is
modulo n. Let Ai be the finite group associated to the vertex i. By Proposition 2.2,
G acts on a tree T without inversion of edges and such that all vertex stabilizers are
finite. Let Ti be the maximal subtree of T fixed by Ai pointwise, 0 ≤ i < n. Since Ai

commutes with Ai+1, Ai × Ai+1 ≤ G is a finite group acting on the tree T . By [4, p.
18, Corollary 4.9] Ai × Ai+1 must stabilize a vertex v. Thus, v is stabilized by both
Ai and Ai+1. Hence, Ti ∩ Ti+1 6= ∅. Let us suppose that

∀i ∈ {0, . . . , n − 1} : Ti ∩ Ti+1 ∩ Ti+2 = ∅. (1)

By induction over k ∈ {0, . . . , n − 1}, (1) implies that there exists a length-minimal
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path of the form
v0

∗
→ v1

∗
→ · · ·

∗
→ vi

∗
→ · · ·

∗
→ vk

where vi ∈ Ti ∩ Ti+1, vi−1 6= vi, and the subpath vi−1
∗
→ vi lies in Ti. Let us

take k = n − 1. The length-minimal path from v0 to vn−1 , also lies entirely in T0

(because v0, vn−1 ∈ T0). This shows that v1 ∈ T0 ∩ T1 ∩ T2, violating hypothesis (1).
Hence, there must exist i ∈ {0, . . . , n − 1} such that Ti ∩ Ti+1 ∩ Ti+2 6= ∅. Thus,
B = 〈Ai, Ai+1, Ai+2〉 stabilizes a vertex of T . Hence, B is a finite group. But the
groups Ai and Ai+2 do not commute and therefore generate an infinite group. This is
a contradiction.

Acknowledgments We would like to thank two anonymous referees for providing sim-
pler proofs for Lemma 3.2.
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