
Fixpoint logics on hierarchical structures

Stefan Göller and Markus Lohrey

FMI, Universität Stuttgart, Germany
goeller,lohrey@informatik.uni-stuttgart.de

Abstract. Hierarchical graph definitions allow a modular description of graphs
using modules for the specification of repeated substructures. Beside this modu-
larity, hierarchical graph definitions allow to specify graphs of exponential size
using polynomial size descriptions. In many cases, this succinctness increases
the computational complexity of decision problems. In this paper, the model-
checking problem for the modal µ-calculus and (monadic) least fixpoint logic
on hierarchically defined graphs is investigated. In order to analyze the modal
µ-calculus, parity games on hierarchically defined graphs are studied.

1 Introduction

Hierarchical graph definitions specify a graph via modules, where every module is a
graph that may refer to modules of a smaller hierarchical level. In this way, large struc-
tures can be represented in a modular and succinct way. Hierarchical graph definitions
were introduced in [14] in the context of VLSI design. Formally, hierarchical graph
definitions can be seen as hyperedge replacement graph grammars [6] that generate
precisely one graph. Specific algorithmic problems (e.g. reachability, planarity, circuit-
value, 3-colorability) on hierarchically defined graphs are studied in [12–14, 18].

In this paper we consider the complexity of the model-checking problem for least
fixpoint logic (LFP) and its fragments monadic least fixpoint logic (MLFP) and the
modal µ-calculus. LFP is the extension of classical first-order logic that allows the def-
inition of least fixpoints of arbitrary arity [15]. MLFP is the fragment of LFP where
only monadic fixpoints can be defined. The modal µ-calculus is the fragment of MLFP
that is obtained from classical modal logic extended by a monadic fixpoint operator.
The model-checking problem for a certain logic asks whether a given sentence from
that logic is true in a given finite structure (e.g. a graph). Usually, the structure is given
explicitly, for instance by listing all tuples in each of the relations of the structure. In
this paper, input structures will be given in a hierarchical form via straight-line pro-
grams. Straight-line programs are equivalent to hierarchical graph definitions [16] w.r.t.
succinctness, but are more convenient for our purpose.

LFP and its fragments MLFP and the modal µ-calculus found many applications in
data base theory, finite model theory, and verification, see e.g. [15]. It is therefore not
surprising that the model-checking problem for these logics on explicitly given input
structures is a very well-studied problem. Let us just mention a few references: [2, 4,
5, 9–11, 21, 22]. Concerning hierarchically defined graphs, in [1] the complexity of the
temporal logics LTL and CTL over hierarchical state machines was investigated. Hier-
archical state machines can be seen as a restricted form of hierarchical graph definitions

that are tailored towards the modular specification of large reactive systems. Since LTL
and CTL can be efficiently translated into the modal µ-calculus, our work is a natural
extension of [1]. Moreover, our work continues the previous paper [17] of the second
author, where the model-checking problem of first-order logic, monadic second-order
logic, and full second-order logic over hierarchically defined graphs was studied.

Our investigation of model-checking problems follows Vardi’s methodology from
[21]. For a logic L and a class of structures C, Vardi introduced three different ways of
measuring the complexity of the model-checking problem for L and C: (i) One may fix
a formula ϕ ∈ L and consider the complexity of verifying for a given structure A ∈ C
whether A |= ϕ; thus, only the structure belongs to the input (data complexity or struc-
ture complexity). (ii) One may fix a structure A ∈ C and consider the complexity of
verifying for a given formula ϕ ∈ L, whether A |= ϕ; thus, only the formula belongs to
the input (expression complexity). (iii) Finally, both the structure and the formula may
belong to the input (combined complexity). In the context of hierarchically defined
structures, expression complexity does not lead to new results. Having a fixed hierar-
chically defined structure is the same as having a fixed explicitly given structure. Thus,
we only consider data and combined complexity for hierarchically defined structures.

Section 2 introduces the necessary concepts. In Section 3 we show that the win-
ner of a parity game on a hierarchically defined graph can be determined in PSPACE.
Since the classical reduction of the model-checking problem for the modal µ-calculus
to parity games [3, 4] can be extended to hierarchically defined graphs (Thm. 3), we ob-
tain PSPACE-completeness of the model-checking problem for the modal µ-calculus
on hierarchically defined graphs. The upper bound generalizes a corresponding result
for CTL/LTL from [1]. For a restricted class of hierarchically defined graphs we ob-
tain the better upper bound of NP ∩ coNP for parity games, which leads to the same
upper bound for the data complexity of the modal µ-calculus. In Section 5 we study
least fixpoint logic (LFP) and its fragment monadic least fixpoint logic (MLFP) over
hierarchically defined input structures. MLFP is still more expressive than the modal µ-
calculus. It turns out that in most cases the complexity of the model-checking problem
over hierarchically defined input structures becomes EXP. Our results are collected in
Table 1 in Section 2. Proofs that are omitted due to space restrictions can be found in
the full version [7].

2 Preliminaries

General notations Let ≡ be an equivalence relation on a set A. For a ∈ A, [a]≡ =
{b ∈ A | a ≡ b} is the equivalence class containing a. With [A]≡ we denote the set of all
equivalence classes. With π≡ : A → [A]≡ we denote the function with π≡(a) = [a]≡
for all a ∈ A. For a function f : A → B let ran(f) = {b ∈ B | ∃a ∈ A : f(a) = b}.
For C ⊆ A we define the restriction f¹C : C → B by f¹C(c) = f(c) for all c ∈ C.
For functions f : A → B and g : B → C we define the composition g ◦ f : A → C
by (g ◦ f)(a) = g(f(a)) for all a ∈ A. For n ∈ N we denote by id{1,...,n} the identity
function over {1, . . . , n}.

Complexity theory We assume some basic background in complexity theory [20]. In
particular, we assume that the reader is familiar with the classes P (deterministic poly-

nomial time), NP (nondeterministic polynomial time), coNP (complements of prob-
lems in NP), PH (the polynomial time hierarchy), PSPACE (polynomial space), and
EXP (deterministic exponential time). We will use alternating Turing-machines, see
[20] for more details. An alternating Turing-machine M is a nondeterministic Turing-
machine, where the set of states Q is partitioned into three sets: Q∃ (existential states),
Q∀ (universal states), and F (accepting states). A configuration C with current state q
is accepting, if (i) q ∈ F , or (ii) q ∈ Q∃ and there exists a successor configuration of C
that is accepting, or (iii) q ∈ Q∀ and every successor configuration of C is accepting.
An input word w is accepted by M if the corresponding initial configuration is accept-
ing. It is well known that PSPACE equals the class of all problems that can be solved
on an alternating Turing-machine in polynomial time.

Relational structures and straight-line programs A signature is a finite set R of
relational symbols, where each relational symbol r ∈ R has an associated arity nr.
A (relational) structure over the signature R is a tuple A = (A, (rA)r∈R), where
A is a set (the universe of A) and rA is a relation of arity nr over the set A, which
interprets the relational symbol r. Usually, we denote the relation rA with r as well.
The size |A| of A is |A| +

∑

r∈R nr · |rA|. For an equivalence relation relation ≡ on
A we define the quotient A/≡ = ([A]≡, ({(π≡(a1), . . . , π≡(anr

)) | (a1, . . . , anr
) ∈

rA})r∈R). For n ≥ 0, an n-pointed structure is a pair (A, τ), where A is a structure
with universe A and τ : {1, . . . , n} → A is injective. The elements in ran(τ) (resp.
A \ ran(τ)) are also called contact nodes (resp. internal nodes). Let Gi = (Ai, τi) be
an ni-pointed structure (i ∈ {1, 2}) over the signature R, where Ai is the universe of
Ai and A1 ∩ A2 = ∅. We define the disjoint union G1 ⊕ G2 as the (n1 + n2)-pointed
structure ((A1 ∪ A2, (r

A1 ∪ rA2)r∈R), τ), where τ : {1, . . . , n1 + n2} → A1 ∪ A2

with τ(i) = τ1(i) for all 1 ≤ i ≤ n1 and τ(i + n1) = τ2(i) for all 1 ≤ i ≤ n2.
Now let G = (A, τ) be an n-pointed structure, where A is the universe of A. For
a permutation f : {1, . . . , n} → {1, . . . , n} define renamef (G) = (A, τ ◦ f). If
n ≥ 1, then forget(G) = (A, τ ¹ {1, . . . , n − 1}). Finally, if n ≥ 2, then glue(G) =
(A/≡, (π≡ ◦ τ) ¹ {1, . . . , n − 1}), where ≡ is the smallest equivalence relation on A
which contains the pair (τ(n), τ(n − 1)). Note that the combination of renamef and
glue (resp. forget) allows to glue (resp. forget) arbitrary contact nodes.

Straight-line programs offer a succinct representation of large structures. A straight-
line program (SLP) S = (Xi := ti)1≤i≤l is a sequence of definitions, where every
right hand side ti is either an n-pointed finite structure (for some n) or an expres-
sion of the form Xj ⊕ Xk, renamef (Xj), forget(Xj), or glue(Xj) with j, k < i and
f : {1, . . . , n} → {1, . . . , n} a permutation. Here, Xi is a formal variable. For every
variable Xi, type(Xi) is inductively defined as follows: (i) if ti is an n-pointed struc-
ture, then type(Xi) = n, (ii) if ti = Xj⊕Xk, then type(Xi) = type(Xj)+type(Xk),
(iii) if ti = renamef (Xj), then type(Xi) = type(Xj), and (iv) if ti = op(Xj) for
op ∈ {forget, glue}, then type(Xi) = type(Xj) − 1. The type(Xi)-pointed finite
structure eval(Xi) is inductively defined by: (i) if ti is an n-pointed structure, then
eval(Xi) = ti, (ii) if ti = Xj ⊕Xk, then eval(Xi) = eval(Xj) ⊕ eval(Xk), and (iii)
if ti = op(Xj) for op ∈ {renamef , forget, glue}, then eval(Xi) = op(eval(Xj)). We
define eval(S) = eval(Xl). The SLP S is c-bounded (c ∈ N) if type(Xi) ≤ c for all
1 ≤ i ≤ l. Finally, the size |S| of S is l plus the size of all explicit n-pointed structures

that appear as a right-hand side ti. In [17] we used hierarchical graph definitions for
the specification of large structures. A hierarchical graph definition can be translated in
polynomial time into an SLP defining the same structure [7, 16].

Fixpoint logics Fix a signature R. First-order (FO) formulas over the signature R
are built from atomic formulas of the form x = y and r(x1, . . . , xnr

) (where r ∈ R
and x, y, x1, . . . , xnr

are first-order variables ranging over elements of the universe)
using boolean connectives and (first-order) quantifications over elements of the uni-
verse. Least fixpoint logic (LFP) extends FO by the definition of least fixpoints. For
this, let us take a countably infinite set of fixpoint variables. Each fixpoint variable R
has an associated arity n and ranges over n-ary relations over the universe. Fixpoint
variables will be denoted by capital letters. Syntactically, LFP extends FO by the fol-
lowing formula building rule: Let ϕ(x̄, R, P̄ , ȳ) be a formula of LFP. Here, x̄ and ȳ
are repetition-free tuples of first-order variables,P̄ is a repetition-free tuple of fixpoint
variables, the arity of the fixpoint variable R is |x̄| (the length of the tuple x̄), and
R only occurs positively in ϕ (i.e., within an even number of negations). Then also
lfpx̄,R ϕ(x̄, R, P̄ , ȳ) is a formula of LFP. The semantics of the lfp-operator is the fol-
lowing: Let b̄ ∈ A|ȳ| and let S̄ be a tuple of relations that is interpreting the tuple P̄
of fixpoint variables. Since R only occurs positively in ϕ(x̄, R,P̄ , ȳ), the function Fϕ

that maps T ⊆ A|x̄| to {ā ∈ A|x̄| | A |= ϕ(ā, T, S̄, b̄)} is monotonic. Hence, by the
Knaster-Tarski fixpoint theorem, the smallest fixpoint fix(Fϕ) exists. Now for ā ∈ A|x̄|

we have A |= [lfpx̄,R ϕ(x̄, R, S̄, b̄)](ā) if and only if ā ∈ fix(Fϕ). The greatest fix-
point operator can be defined as gfp̄x,R ϕ(x̄, R, P̄ , ȳ) = ¬lfpx̄,R ¬ϕ(x̄,¬R/R, P̄ , ȳ),
it defines the greatest fixpoint of Fϕ.

Monadic least fixpoint logic (MLFP) is the fragment of LFP that only contains unary
(i.e., monadic) fixpoint variables. The modal µ-calculus can be defined as a fragment
of MLFP that is defined as follows. Formulas of the modal µ-calculus are interpreted
over special relational structures that are called transition systems. Let P be a finite
set of atomic propositions. A transition system (over P) is a tuple T = (Q,R, λ),
where Q is a finite set of states, R ⊆ Q×Q, and λ : Q→ 2P . Note that a state may be
labeled with several atomic propositions. Clearly, T can be identified with the relational
structure AT = (Q,R, ({q ∈ Q | p ∈ λ(q)})p∈P). This allows us to use SLPs in order
to construct large transition systems. The set of formulas Fµ(P) over P of the modal
µ-calculus is defined by the following EBNF, where p ∈ P and X is a unary fixpoint
variable: ϕ ::= p | ¬p | X | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ♦ϕ | ¤ϕ | µX.ϕ | νX.ϕ We define
the semantics of a formula ϕ ∈ Fµ(P) by translating it to an MLFP-formula ||ϕ||(x)
over the signature {R} ∪ P , where R has rank 2, every p ∈ P has rank 1, and x is a
first-order variable. The translation is done inductively:

||(¬)p||(x) = (¬)p(x) ||X||(x) = X(x)

||ϕ ∧ ψ||(x) = ||ϕ||(x) ∧ ||ψ||(x) ||ϕ ∨ ψ||(x) = ||ϕ||(x) ∨ ||ψ||(x)

||¤ϕ||(x) = ∀y : R(x, y) ⇒ ||ϕ||(y) ||♦ϕ||(x) = ∃y : R(x, y) ∧ ||ϕ||(y)

||µX.ϕ||(x) = [lfpx,X ||ϕ||(x)](x) ||νX.ϕ||(x) = [gfpx,X ||ϕ||(x)](x)

For a transition system T = (Q,R, λ), a state q ∈ Q, and a formula ϕ ∈ Fµ(P), we
write (T, q) |= ϕ if AT |= ||ϕ||(q).

Table 1. Data and combined complexity for fixpoint logics

explicit [4, 9, 21] c-bounded SLP unrestricted SLP

data P P · · ·NP ∩ coNP
µ-calc.

combined P · · ·NP ∩ coNP PSPACE

data P P · · ·PH
MLFP

combined EXP

data P
LFP

combined
EXP

The model checking problem for a logic L asks whether for a structure A and a
sentence ϕ ∈ L we have A |= ϕ. As already explained in the introduction, we will
be interested in combined complexity (both, the formula and the structure belong to
the input) and data complexity (the formula is fixed and only the structure belongs to
the input), where the structure is represented via an SLP. Table 1 collects the known
results as well as our new results concerning the (data and combined) complexity of
the model-checking problem for the logics LFP, MLFP, and the modal µ-calculus. Only
for the data complexity of MLFP and the modal µ-calculus on structures defined by
c-bounded SLPs (for some fixed c ∈ N) we do not obtain matching lower and upper
bounds.

Parity games The modal µ-calculus has a close relationship to parity games, which
are played between two players, called Adam and Eve, on a particular kind of rela-
tional structure, called a game graph. Let C = {0, . . . , k} (k ∈ N) be a finite set of
priorities. A game graph G over C is a tuple G = (V,E, ρ) s.t. V is a finite set of
nodes, E ⊆ V × C × V is the set of labeled edges, and ρ : V → {Eve,Adam} as-
signs to every node v a player ρ(v). Its size is defined by |G| = |V | + |E|. We define
Eve = Adam and Adam = Eve. The set of successor nodes of a given node v ∈ V is
vE = {u ∈ V | ∃c ∈ C : (v, c, u) ∈ E}. Note that we diverge from common conven-
tions as in [4, 8, 19] since priorities are assigned to edges instead to nodes. This is no re-
striction when considering parity games. A sequence π = v0, c0, v1, c1, . . . ∈ V (CV)ω

(resp. π = v0, c0, v1, . . . , cn−1, vn ∈ V (CV)∗) is an infinite path (resp. finite path) in
G if for all i ≥ 0 (resp. 0 ≤ i ≤ n − 1) we have (vi, ci, vi+1) ∈ E. A finite path
π is called empty if π = v for some v ∈ V . The set of priorities occurring in π is
denoted by Occ(π). For an infinite path π we denote with Inf(π) ⊆ Occ(π) the set of
those priorities that occur infinitely many times in the path π. Clearly, the game graph
G = (V,E, ρ) can be identified with the relational structure (V, ({(u, v) | (u, c, v) ∈
E})c∈C , ρ

−1(Eve), ρ−1(Adam)). This allows us to generate large game graphs using
SLPs. Here we have to be careful with the glue-operation. If (G, τ) is an n-pointed
relational structure, where G is the game graph G = (V,E, ρ) — we call such a struc-
ture an n-game graph — then glue(G, τ) is an (n − 1)-game graph only if n ≥ 2 and
ρ(τ(n − 1)) = ρ(τ(n)), i.e., the two nodes that are glued belong to the same player.
Thus, glue is only a partial operation on n-game graphs.

Let G = (V,E, ρ) be a game graph over the priorities C = {0, . . . , k} (k ∈ N).
A play is either an infinite path in G or a finite path in G that ends in a node v
with vE = ∅ (i.e., a dead end). Eve (resp. Adam) wins an infinite play π if and
only if max(Inf(π)) ≡ 0 mod 2 (resp. max(Inf(π)) ≡ 1 mod 2). Player σ ∈
{Eve,Adam} wins a finite play π if and only if ρ(v) = σ for the last node v of π, i.e.,
the dead end, where π ends, belongs to player σ. It is an important question whether
Eve/Adam has the possibility to force the game to a play which she/he can win, i.e., if
she/he has a winning-strategy. For parity games, so called memoryless strategies suf-
fice. A memoryless strategy for player σ ∈ {Eve,Adam} is a map Sσ : {v | ρ(v) =
σ, vE 6= ∅} → V s.t. Sσ(v) ∈ vE for all v ∈ {v | ρ(v) = σ, vE 6= ∅}. We say that a
finite play π = v0, c0, v1, . . . cn−1, vn (resp. an infinite play π = v0, c0, v1, . . .) is Sσ-
confirm w.r.t. a memoryless strategy Sσ if for all 0 ≤ i ≤ n− 1 (resp. for all i ≥ 0) we
have Sσ(vi) = vi+1 whenever ρ(vi) = σ. For v ∈ V we call the memoryless strategy
Sσ a memoryless winning strategy for player σ from the node v if player σ wins every
Sσ-confirm play which starts in v. The question whether a memoryless strategy Sσ for
player σ is a winning strategy can be answered in deterministic polynomial time. With
PARITY we denote the set of all triples (G, v, σ), whereG is a game graph, v is a node
of G, σ ∈ {Eve,Adam}, and there exists a memoryless winning strategy for player σ
from v. The determinacy theorem for parity games [4] states that (G, v, σ) ∈ PARITY
if and only if (G, v, σ) /∈ PARITY. It implies that PARITY belongs to NP∩coNP. By
a result of [3, 4], the model-checking problem for the modal µ-calculus can be reduced
to PARITY.

3 Parity games over SLP-defined graphs

In this section we will prove a PSPACE upper bound for parity games over game graphs
that are given via SLPs. Our construction is inspired by [19], where parity games on
graphs of bounded tree width are examined. For the following considerations, let us fix
a set C = {0, . . . , k} (k ∈ N) of priorities and let G = (H, τ) be an n-game graph over
C with H = (V,E, ρ).

Strategy reducts Let W ⊆ ρ−1(Eve) ∩ ran(τ) be a set of contact nodes that belong
to Eve. An n-game graph G′ is a strategy reduct of G w.r.t. W if G′ can be obtained
from G by (i) removing all outgoing edges for all w ∈W , and (ii) keeping exactly one
outgoing edge for all w ∈ ρ−1(Eve) \ (W ∪ {v | vE = ∅}). Thus, a strategy reduct of
G is the remainder of G by restricting G to a given strategy and making certain Eve-
nodes to dead ends. Note that a strategy reduct is always defined w.r.t. a subset W of
Eve-nodes and is not unique in general. The reason for making an Eve-node u to a dead
end in G is the fact that u is a contact node which will be glued with another contact
node u′ from another n′-game graph G′ in an SLP, and for u′ an outgoing edge (as a
part of the strategy for Eve on G′) has already been guessed.

The reward function For a guessed strategy reduct G′ of the potentially exponentially
large n-game graphGwe only store a polynomial amount of relevant information. More
precisely for each pair of contact nodes τ(i) and τ(j) we only store the maximal priority

along an optimal path for Adam from τ(i) to τ(j). In order to define this formally, we
introduce the function reward : 2C \ {∅} → C, see also [19]. Let B ⊆ C, B 6= ∅:

reward(B) =







max(B ∩ {2n+ 1 | n ∈ N}) if B ∩ {2n+ 1 | n ∈ N} 6= ∅

min(B) else

Intuitively, reward(B) is the best priority amongB for Adam: if there is an odd priority
in B, then the largest odd priority is the best for Adam. If there are only even priorities
in B, then the smallest priority in B causes the smallest harm for Adam. For a set
Π 6= ∅ of finite paths in G let reward(Π) = reward({ max(Occ(π)) | π ∈ Π}). The
intuition behind this definition is the following: If G′ is a strategy reduct of G, then it is
only Adam who can freely choose the next outgoing edge in G′. Hence, if Π is the set
of all paths in G′ between two contact nodes τ(i) and τ(j), then, if Adam is smart, he
will choose a path π ∈ Π with max(Occ(π)) = reward(Π) when going from τ(i) to
τ(j). Hence, we can replace the set of paths Π by a single edge from τ(i) to τ(j) with
priority reward(Π). For technical reasons we only put paths into Π that do not visit
any contact nodes except its start and end node. We call such paths ττ -internal paths.

(τ)τ -internal paths For two contact nodes v0, vn ∈ ran(τ) we call a non-empty finite
path π = v0, c0, v1, . . . , cn−1, vn a ττ -internal path from v0 to vn if v1, . . . , vn−1 6∈
ran(τ). Note that v0 = vn is allowed. We call a non-empty play π (i.e., either π is an
infinite path or it ends in a dead end but is non-empty) a τ -internal path if its first node
is a contact node but it never visits a contact node again. We will be only interested in τ -
internal paths, which player Adam wins. For 1 ≤ i, j ≤ n we denote with Πτ

i,j(G) the
set of all ττ -internal paths in G from τ(i) to τ(j). Note that an arbitrary path between
two contact nodes can be split up into consecutive ττ -internal paths. Similarly an arbi-
trary maximal path that begins in a contact node consists of a sequence of ττ -internal
paths possibly followed by a τ -internal path. Hence, we do not lose any information by
only considering (τ)τ -internal paths.

The reduce operation Assume that G′ is a strategy reduct of the n-game graph G.
Then it is only player Adam who can choose any path in G′. Of course, there is no
reason for player Adam to move from contact node τ(i) to contact node τ(j) along
a path which is not optimal for him. Hence we can replace the set Πτ

i,j(G) of all ττ -
internal paths from τ(i) to τ(j) by a single edge with priority reward(Πτ

i,j(G)). The
operation reduce is doing this for every pair of contact nodes. We define the reduce-
operation on arbitrary n-game graphs, but later we will only apply it to strategy reducts:
reduce(G) is the game graph ({1, . . . , n}, F, %), where %(i) = ρ(τ(i)) for all 1 ≤ i ≤
n and (i, p, j) ∈ F if and only if Πτ

i,j(G) 6= ∅ and reward(Πτ
i,j(G)) = p. We identify

reduce(G) with the n-game graph (({1, . . . , n}, F, %), id{1,...,n}).

Lemma 1. The operation reduce is polynomial time computable.

Interfaces and realizability For a given variable Xi of an SLP S, the type(Xi)-game
graph eval(Xi) may have exponential size in |S|, and the same is true for some strategy
reduct G′ of eval(Xi). We will store all the relevant information about G′ in a so called

n-interface of G′, which can be stored in polynomial space. An n-interface S over the
priorities C is a tuple S = ({1, . . . , n}, F, %, I, U) s.t. (i) ({1, . . . , n}, F, %) is a game
graph over the priorities C, (ii) I ⊆ {1, . . . , n}, and (iii) U ⊆ %−1(Eve) is a subset
of the nodes which belong to Eve. The notion of an interface is inspired by the notion
of a border from [19]. The n-interface S is realized by the n-game graph G = (H, τ)
if there is a strategy reduct G′ = (H ′, τ) of G w.r.t. τ(U) s.t. (i) ({1, . . . , n}, F, %) =
reduce(G′), and (ii) i ∈ I if and only if there is a τ -internal path π in G′ which begins
at τ(i) and which player Adam wins (recall that π has to be non-empty). We also say
that G′ is a witness that S is realized by G. By first guessing a strategy reduct and then
applying Lemma 1, we obtain:

Lemma 2. The problem of checking, whether a given n-interface is realized by a given
n-game graph, belongs to NP.

Example 1. The following figure shows a 3-game graph G together with a strategy
reductG′ w.r.t. {τ(2)} (node τ(i) is labeled with i and ¨-labeled (resp. ¥-labeled) nodes
belong to Eve (resp. Adam). The interface S = ({1, 2, 3}, F, %, I, U) with I = {1} and
U = {2} is realized by G, and G′ is a witness for this.

G G′ S

¥1

¨2

¨
3

¥
u

¨v

1 0
3

24

3 4

2

1

2

¥1

¨2

¨
3

¥
u

¨v

3

24

4

2

1

2

¥
1 ∈ I

¨2 ∈ U

¨
3

3

4

2

4

We have 1 ∈ I , because the infinite τ -internal path τ(1), 2, (u, 1)ω starts in node τ(1)
in G′ and Adam wins this path. The loop with priority 4 at node 1 in S exists due to the
ττ -internal path τ(1), 2, u, 4, v, 2, τ(1) in G′.

Operations on interfaces Our PSPACE-algorithm will only manipulate n-interfaces
instead of whole n-game graphs. In order to do this, we have to extend the operations ⊕,
renamef , forget, and glue on interfaces. The crucial correctness property is formalized
in this section for arbitrary operations. In the following we restrict to n-game graphs
G = (H, τ) such that every contact node τ(i) has at least one outgoing edge. This can
be ensured by adding for a contact node τ(i) without outgoing edges an outgoing edge
to a new internal node v, which is a dead end and which belongs to the same player as
τ(i). This new edge has no influence on the winner of a parity game.

Let op be a partial operation, mapping a k-tuple (G1, . . . , Gk), where Gi is an
ni-game graph, to an n-game graph op(G1, . . . , Gk). We say that op has a faithful
polynomial implementation (briefly FPI) on interfaces, if there exists a partial poly-
nomial time computable operation ops, mapping a k-tuple (S1, . . . , Sk), where Si is
an ni-interface, to an n-interface op(S1, . . . , Sk) s.t. the following is true: Whenever
G = op(G1, . . . , Gk), where Gi is an ni-game graph and G is an n-game graph, and S
is an n-interface, thenG realizes S if and only if there exist ni-interfaces Si (1 ≤ i ≤ k)
s.t. S = op(S1, . . . , Sk) and Gi realizes Si.

Lemma 3. The operations ⊕, renamef , forget, and glue have FPIs on interfaces.

Proof. The operations ⊕s and renames
f are straight-forward: ⊕s builds the disjoint

union of two interfaces, and renames
f renames the contact nodes according to the per-

mutation f . Let us now describe the operation glues, the operation forgets can be de-
fined similarly. Let S = ({1, . . . , n}, F, %, I, U) be an n-interface. Then glues(S) is
only defined if (i) n ≥ 2, (ii) %(n) = %(n − 1) (thus, node n − 1 and n belong to
the same player and can actually be glued), and (iii) if %(n) = %(n − 1) = Eve then
n− 1 ∈ U or n ∈ U . Then glues(S) = ({1, . . . , n− 1}, F ′, %′, I ′, U ′), where:

– ({1, . . . , n− 1}, F ′, %′) = reduce(glue({1, . . . , n}, F, %)).
– I ′ = I \ {n} ∪ {n− 1} if (n− 1 ∈ I or n ∈ I), otherwise I ′ = I .
– U ′ = U \ {n} if n− 1, n ∈ U , otherwise U ′ = U \ {n− 1, n}.

The intuition behind this definition is the following. Assume that the n-interface S is
realized by an n-game graphG = (H, τ) and letG′ be a witness for this. We want to de-
fine glues(S) = ({1, . . . , n− 1}, F ′, %′, I ′, U ′) in such a way that glues(S) is realized
by glue(G) and moreover glue(G′) is a witness for this. Note that by assumption (i)–
(iii), glue(G′) is in fact a strategy reduct of glue(G). In order to determine the maximal
priority of an optimal path for Adam from τ(i) to τ(j) in glue(G′), it suffices to look at
the (n− 1)-game graph K = glue({1, . . . , n}, F, %), i.e., to calculate reduce(K). This
graph will be therefore ({1, . . . , n−1}, F ′, %′). Note that inK, there may be more than
one edge between two contact nodes. By applying reduce to K we select the optimal
edge for player Adam between two contact nodes. Finally, if n − 1 ∈ I or n ∈ I , i.e.,
there exists a τ -internal path in G′ that starts in τ(n − 1) or in τ(n) and which player
Adam wins, then we can be sure that there exists a τ -internal path in glue(G′) that
starts in τ(n − 1) and which player Adam wins. Here it is important that τ -internal
paths are non-empty. Hence, we put n− 1 into I ′. ut

Parity games over SLP-defined graphs We are now ready to prove an upper bound
of PSPACE for the parity game problem on graphs that are represented by SLPs:

Theorem 1. For a given SLP S = (Xi := ti)1≤i≤l, where eval(S) = (G, τ) is a
1-game graph, we can decide in PSPACE, whether (G, τ(1),Eve) ∈ PARITY.

Proof. W.l.o.g. we can assume that node τ(1) belongs to Eve and that τ(1) has no
incoming edge; this property can be easily enforced by adding a new node. Due to
this convention, we have (G, τ(1),Eve) ∈ PARITY if and only if eval(G) real-
izes the interface Sl = ({1}, ∅, [1 7→ Eve], ∅, ∅). We present the algorithm in form
of the following procedure P , which works on a polynomial time bounded alternat-
ing Turing machine; (Q∀) (resp. (Q∃)) indicates that the machine branches universally
(resp. existentially). Procedure P has two parameters, the current line i of the SLP and
a type(Xi)-interface Si, and it returns true if and only if Si is realized by eval(Xi).
At the beginning we call P with the parameter (l, Sl).

procedure P(i ∈ {1, . . . , l}, Si) return boolean is
if ti is a type(Xi)-game graph then return (ti realizes Si) (∗)
elseif ti = op(Xi1 , . . . , Xik

) then
(Q∃): for 1 ≤ j ≤ k guess type(Xij

)-interfaces Sij
s.t. Si = ops(Si1 , . . . , Sik

)
(Q∀): return

∧

1≤j≤k P(ij , Sij
)

endif

The correctness of the algorithm follows easily by induction on the index i ∈ {1, . . . , l}.
For the alternating polynomial time bound note that: (i) the test whether ti realizes Si

in line (∗) is in NP by Lemma 2 and (ii) each of the operations ops is computable in
polynomial time by Lemma 3 and the definition of an FPI. ut

By the following theorem, we can improve the PSPACE upper bound from Thm. 1 to
NP ∩ coNP, when we restrict to c-bounded SLPs for some fixed constant c.

Theorem 2. Let c ∈ N be a fixed constant. The problem of checking (G, τ(1),Eve) ∈
PARITY for a given c-bounded SLP S = (Xi := ti)1≤i≤l, where eval(S) = (G, τ) is
a 1-game graph, belongs to NP ∩ coNP.

Proof. By the determinacy theorem it suffices to prove membership in NP. The main
idea is to guess for all 1 ≤ i ≤ l a set of type(Xi)-interfaces Mi. Note that for the
representation of a single interface c2 log |C| + 2c bits suffice, where C is the set of
priorities used in the SLP S. Thus, everyMi contains at most |C|c

2

22c many interfaces.
Hence, since c is a constant, we can guess in polynomial time the set

⋃

1≤i≤l Mi of
interfaces. Then we check whether for all 1 ≤ i ≤ l the set Mi is a subset of the set of
interfaces which are realized by eval(Xi). In case ti is an n-game graph we can do this
in NP by Lemma 2. If ti = op(Xi1 , . . . , Xik

), then one has to check, whether for every
Si ∈Mi there are Sij

∈Mij
(1 ≤ j ≤ k) s.t. Si = ops(Si1 , . . . , Sik

). ut

4 The modal µ-calculus over SLP-defined graphs

In this section, we show that both the data and combined complexity of the modal µ-
calculus over transition systems that are represented by SLPs is PSPACE-complete.
The upper bound extends [1, Thm. 9] concerning CTL. Note that a translation of the
modal µ-calculus into MSO and an application of the MSO-model-checking algorithm
from [17] leads to a higher upper bound, namely within the exponential time hierarchy
(already for data complexity). For c-bounded SLPs we obtain an upper bound of NP ∩
coNP for the data complexity, whereas the combined complexity remains PSPACE.
For the upper bounds we use a reduction to parity games, which is analogous to the
corresponding reduction for explicitly given input graphs [3, 4]:

Theorem 3. The following problem can be calculated in polynomial time:
INPUT: A c-bounded SLP St defining a transition system eval(St), a state q of eval(St),
and a sentence ϕ of the modal µ-calculus having exactly k subformulas.
OUTPUT: A (c · k)-bounded SLP Sg defining a game graph eval(Sg) and a node v of
eval(Sg) s.t. (eval(St), q) |= ϕ if and only if (eval(Sg), v,Eve) ∈ PARITY.

Corollary 1. The following problem is PSPACE-complete:
INPUT: An SLP S defining a transition system eval(S), a state q of eval(S), and a
sentence ϕ of the modal µ-calculus.
QUESTION: (eval(S), q) |= ϕ ?
Moreover: (i) the above problem is already PSPACE-complete when restricted to c-
bounded SLPs (for a suitably large c), and (ii) there exists already a fixed sentence of
the modal µ-calculus for which the above problem is PSPACE-complete.

Proof. The upper bound follows from Thm. 1 and 3. For the lower bounds, we use two
results from [1]: The combined complexity of CTL for hierarchical state machines is
PSPACE-complete [1, Thm. 9]; recall that CTL is a fragment of the modal µ-calculus.
It is easy to see that the hierarchical state machines from the proof of [1, Thm. 9] can
be generated by a 5-bounded SLP, which gives us (i). Moreover, there is already a fixed
CTL-sentence s.t. the model-checking problem for hierarchical state machines (and thus
SLPs) is PSPACE-complete [1, Thm. 11]. This implies (ii). ut

When we restrict both to c-bounded SLPs and to a fixed sentence ϕ, then we obtain a
better upper bound:

Corollary 2. Let c ∈ N be a fixed constant and ϕ be a fixed sentence of the modal
µ-calculus. The problem of checking (eval(St), q) |= ϕ for a given c-bounded SLP St

(s.t. eval(St) is a transition system) and a state q of eval(St) belongs to NP ∩ coNP.

Proof. If ϕ has k many subformulas, then the SLP Sg from Thm. 3 is (c · k)-bounded.
Since ϕ and ϕ are fixed, c ·k is a fixed constant. The corollary follows from Thm. 2. ut

5 LFP and MLFP over SLP-defined graphs

In this section we state our results concerning MLFP and LFP. An upper bound for the
most general case (combined complexity of LFP) is given by the next theorem; recall
that EXP is also the combined complexity of LFP for explicitly given structures.

Theorem 4. It can be checked in EXP, whether eval(S) |= ϕ for a given SLP S and a
given LFP-sentence ϕ.

Only for the data complexity of MLFP we obtain a better upper bound. MLFP is a
fragment of MSO (monadic second order logic). Since for every fixed MSO-sentence ϕ
and every fixed constant c the model-checking problem for ϕ on structures represented
by c-bounded SLPs belongs to the polynomial time hierarchy PH [17, Thm. 6.3], we
obtain:

Theorem 5. For every fixed MLFP sentence ϕ and every fixed constant c ∈ N, the
problem of checking eval(S) |= ϕ for a given c-bounded SLP S belongs to PH.

Finally, we state several EXP lower bounds. Together with Thm. 4 we get the EXP

completeness results in Table 1. We start with the data complexity of LFP:

Theorem 6. There is a fixed LFP-sentence ϕ s.t. it is EXP-hard to check whether
eval(S) |= ϕ for a given 4-bounded SLP S.

If we do not restrict to c-bounded hierarchical graph definitions, then an EXP lower
bound can be also shown for the data complexity of MLFP:

Theorem 7. There exists a fixed MLFP-sentence ϕ s.t. it is EXP-hard to check whether
eval(S) |= ϕ for a given SLP S.

For the combined complexity of MLFP, we can derive an EXP lower bound also for the
c-bounded case:

Theorem 8. It is EXP-hard to check eval(S) |= ϕ for a given 3-bounded SLP S and a
given MLFP-sentence ϕ.

References

1. R. Alur and M. Yannakakis. Model checking of hierarchical state machines. ACM Trans.
Program. Lang. Syst., 23(3):273–303, 2001.

2. S. Dziembowski. Bounded-variable fixpoint queries are PSPACE-complete. In Proc.
CSL’96, LNCS 1258, pages 89–105. Springer, 1996.

3. E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy (extended
abstract). In Proc. FOCS’91, pages 132–142. IEEE Computer Society Press, 1991.

4. E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model checking for the µ-calculus and its
fragments. Theor. Comput. Sci., 258(1-2):491–522, 2001.

5. E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propositional
mu-calculus (extended abstract). In Proc. LICS’86, pages 267–278. IEEE Computer Society
Press, 1986.

6. J. Engelfriet. Context-free graph grammars. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, Volume 3: Beyond Words, pages 125–213. Springer, 1997.

7. S. Göller and M. Lohrey. Fixpoint logics on hierarchical structures. Tech. Rep.
2005/3, University of Stuttgart, Germany, 2005. ftp.informatik.uni-stuttgart.de/pub/library/
ncstrl.ustuttgart fi/TR-2005-04/.

8. E. Grädel, W. Thomas, and T. Wilke. Automata, Logics, and Infinite Games. LNCS 2500.
Springer, 2002.

9. N. Immerman. Relational queries computable in polynomial time. Inf. Control, 68(1–3):86–
104, 1986.

10. M. Jurdziński. Deciding the winner in parity games is in UP and co-UP. Inf. Process. Lett.,
68(3):119–124, 1998.

11. M. Jurdziński. Small progress measures for solving parity games. In Proc. STACS 2000,
LNCS 1770, pages 290–301. Springer, 2000.

12. T. Lengauer. Hierarchical planarity testing algorithms. J. Assoc. Comput. Mach., 36(3):474–
509, 1989.

13. T. Lengauer and K. W. Wagner. The correlation between the complexities of the nonhierar-
chical and hierarchical versions of graph problems. J. Comput. Syst. Sci., 44:63–93, 1992.

14. T. Lengauer and E. Wanke. Efficient solution of connectivity problems on hierarchically
defined graphs. SIAM J. Comput., 17(6):1063–1080, 1988.

15. L. Libkin. Elements of Finite Model Theory. Springer, 2004.
16. M. Lohrey. Model-checking hierarchical graphs. Tech. Rep. 2005/1, University of Stuttgart,

Germany, 2005. ftp.informatik.uni-stuttgart.de/pub/library/ncstrl.ustuttgart fi/TR-2005-1/.
17. M. Lohrey. Model-checking hierarchical structures. In Proc. LICS 2005, pages 168–177.

IEEE Computer Society Press, 2005.
18. M. V. Marathe, H. B. Hunt III, R. E. Stearns, and V. Radhakrishnan. Approximation algo-

rithms for PSPACE-hard hierarchically and periodically specified problems. SIAM J. Com-
put., 27(5):1237–1261, 1998.

19. J. Obdržálek. Fast mu-calculus model checking when tree-width is bounded. In CAV’03,
LNCS 2725, pages 80–92. Springer, 2003.

20. C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
21. M. Y. Vardi. The complexity of relational query languages (extended abstract). In

Proc. STOC 1982, pages 137–146. ACM Press, 1982.
22. M. Y. Vardi. On the complexity of bounded-variable queries. In Proc. PODS 1995, pages

266–276. ACM Press, 1995.

