
Tree Automata and XPath on Compressed Trees

Markus Lohrey1 and Sebastian Maneth2

1 FMI, University of Stuttgaert, Germany
lohrey@informatik.uni-stuttgart.de

2 Faculté I & C, EPFL, Switzerland
sebastian.maneth@epfl.ch

Abstract. The complexity of various membership problems for tree automata on
compressed trees is analyzed. Two compressed representations are considered:
dags, which allow to share identical subtrees in a tree, and straight-line context-
free tree grammars, which moreover allow to share identical intermediate parts
of a tree. Several completeness results for the classes NL, P, and PSPACE are
obtained. Finally, the complexity of the XPath evaluation problem on trees that
are compressed via straight-line context-free tree grammars is investigated.

1 Introduction

During the last decade, the massive increase in the volume of data has motivated the
investigation of algorithms on compressed data, like for instance compressed strings,
trees, or pictures. The general goal is to develop algorithms that directly work on com-
pressed data without prior decompression. Considerable amount of work has been done
concerning algorithms on compressed strings, see e.g. [1, 2]. In this paper we investigate
the computational complexity of algorithmic problems on compressed trees. Trees serve
as a fundamental data structure in many fields of computer science, e.g. term rewriting,
model checking, XML, etc. In fact, in each of these domains, compressed trees in form
of dags (directed acyclic graphs), which allow to share identical subtrees in a tree, are
used as a key for obtaining more efficient algorithms, see for instance [3] (term graph
rewriting), [4] (model checking with BDDs), and [5, 6] (querying compressed XML
documents). Recently, straight-line context-free tree grammars (SL cf tree grammars)
were proposed as another compressed representation of trees in the context of XML [7].
Whereas a dag can be seen as a regular tree grammar [8] that generates exactly one
tree, an SL cf tree grammar is a context-free tree grammar [8] that generates exactly
one tree. SL cf tree grammars allow to share identical intermediate parts in a tree. This
results in better compression rates in comparison to dags: in the theoretical optimum,
SL cf tree grammars lead to doubly exponential compression rates, whereas dags only
allow singly exponential compression rates. In [9], a practical algorithm (BPLEX) for
generating a small SL cf tree grammar that produces a given input tree is presented. Ex-
periments with existing XML benchmark data show that BPLEX results in significantly
better compression rates than dag-based compression algorithms.

In Section 3 we study the problem of evaluating compressed trees via tree au-
tomata [8, 10]. Tree automata play a fundamental role in many applications where trees
have to be processed in a systematic way. In the context of XML, for instance, tree

2 M. Lohrey, S. Maneth

automata are used to type check documents against an XML type [11, 12]. These appli-
cations motivate the investigation of general decision problems for tree automata like
emptiness, equivalence, and intersection nonemptiness. Several complexity results are
known for these problems, see e.g. [8]. Membership problems for tree automata were
investigated in [13] for ranked trees (see Table 1 for the results of [13]) and [14] for un-
ranked trees from the perspective of computational complexity. Here we extend this line
of research by investigating the computational complexity of membership problems for
various classes of tree automata on compressed trees (dags and SL cf tree grammars).
For deterministic/nondeterministic top-down/bottom-up tree automata we analyze the
fixed membership problem (where the tree automaton is not part of the input) as well as
the uniform membership problem (where the tree automaton is also part of the input).
Moreover, we consider subclasses of SL cf tree grammars that allow more efficient al-
gorithms for evaluating tree automata. In particular, linearity and the restriction that for
some constant k, every production of the SL cf tree grammar contains at most k param-
eters (variables) lead to better complexity bounds. For all cases, we present upper and
lower bounds which vary from NL (nondeterministic logspace) to PSPACE (polynomial
space). Our results are collected in Table 1. We also briefly consider the parameterized
complexity [15] of membership problems for tree automata.

In Section 4 we consider the problem of evaluating core XPath expressions over
compressed trees. XPath is a widely used language for selecting nodes in XML docu-
ments and is the core of many modern XML technologies. The query problem for XPath
asks whether a given node in a given (unranked) tree is selected by a given XPath ex-
pression. For uncompressed trees, the complexity of this problem is intensively studied
in [16, 17]. For input trees that are represented as dags, XPath evaluation was inves-
tigated in [5, 6]. In [6] it was shown that the evaluation problem for core XPath (the
navigational part of XPath) over dag-compressed trees is PSPACE-complete. Here, we
extend this result to linear SL cf tree grammars (Theorem 9). This is remarkable, since
linear SL cf tree grammars lead to (provably) better compression rates than dags, which
is also confirmed by our experimental results for the BPLEX-algorithm (which pro-
duces linear SL cf tree grammars) from [9].

Proofs that are omitted in the main part of this paper will appear in the full version.

2 Preliminaries

For background in complexity theory see [18]. The set of all finite strings over a (not
necessarily finite) alphabet Σ is Σ∗. The empty string is ε. The length of a string u is
|u|. We write u ¹ v for u, v ∈ Σ∗ if u is a prefix of v. The reflexive and transitive
closure of a binary relation → is denoted by

∗
→.

Trees, dags, and SL cf tree grammars A ranked alphabet is a pair (F , arity), where
F is a finite set of function symbols and arity : F → N assigns to each α ∈ F its
arity (or rank). Let Fi = {α ∈ F | arity(α) = i}. Function symbols in F0 are called
constants. In examples we use symbols a ∈ F0, h ∈ F1, and f ∈ F2. Mostly we
omit the function arity in the description of a ranked alphabet. An F-labeled tree t
(or ground term over F) is a pair t = (domt, λt), where (i) domt ⊆ N

∗ is finite, (ii)

Tree Automata on Compressed Trees 3

λt : domt → F , (iii) if v ¹ w ∈ domt, then also v ∈ domt, and (iv) if v ∈ domt

and λt(v) ∈ Fn, then vi ∈ domt if and only if 1 ≤ i ≤ n. Note that the edge
relation of the tree t can be defined as {(v, vi) ∈ domt × domt | v ∈ N

∗, i ∈ N}.
The size of t is |t| = |domt|. With an F-labeled tree t we associate a term in the
usual way: If λt(ε) = α ∈ Fi, then this term is α(t1, . . . , ti), where tj is the term
that corresponds to the subtree of t rooted at the node j ∈ N. The set of all F-labeled
trees is T (F). Let us fix a countable set X of variables. The set of all F-labeled trees
with variables from X is T (F ,X). Formally, we consider variables as new constants
and define T (F ,X) = T (F ∪ X). A tree t ∈ T (F ,X) is linear, if every variable
x ∈ X occurs at most once in t. A term rewriting system, briefly TRS, over a ranked
alphabet F is a finite set R ⊆ (T (F ,X) \ X) × T (F ,X) such that for all (s, t) ∈ R,
every variable that occurs in t also occurs in s. The one-step rewrite relation →R over
T (F ,X) is defined as usual, see for instance [19].

Dags (directed acyclic graphs) are a popular compressed representation of trees that
allows to share identical subtrees. An F-labeled dag is a triple D = (VD, λD, ED)
where (i) VD is a finite set of nodes, (ii) λD : VD → F labels each node with a
symbol from F , (iii) ED ⊆ VD × N × VD (i.e. edges are directed and labeled with
natural numbers), (iv) every v ∈ VD contains precisely one i-labeled outgoing edge
for every 1 ≤ i ≤ arity(λD(v)), and (v) (VD, ED) is acyclic and contains precisely
one node rootD ∈ VD without incoming edges. The size of D is |D| = |VD|. A
root-path in D is a path v1, i1, v2, i2 · · · , vn in the graph (VD, ED), i.e., vk ∈ VD
(1 ≤ k ≤ n) and (vk, ik, vk+1) ∈ ED (1 ≤ k < n) that moreover starts in the
root node, i.e., v1 = rootD. Such a path can be identified with the label-sequence
i1i2 · · · in−1 ∈ N

∗. An F-labeled dag D over F can be unfolded into an F-labeled tree
eval(D): domeval(D) is the set of all root-paths in D (viewed as a subset of N

∗), and
if the root-path p ∈ N

∗ ends in the node v ∈ VD, then we set λeval(D)(p) = λD(v).
Clearly the size of eval(D) is bounded exponentially in |D|.

g

f

h a

1

2

3

1

2
1

Example 1. For the dag D on the right we have eval(D) =
g(f(h(a), h(a)), f(h(a), h(a)), h(a)). Moreover, the size of
D is 4. We have domeval(D) = {ε, 1, 2, 3, 11, 12, 21, 22, 31,
111, 121, 211, 221}.

Recently, a compressed representation of trees, which generalizes dags, was introduced:
straight-line context-free tree grammars (SL cf tree grammars) [7]. An SL cf tree gram-
mar is a tuple G = (F , N, S, P), where (i) N ∪ F is a ranked alphabet, (ii) N is
the set of nonterminals, (iii) F is the set of terminals, (iv) S ∈ N is the start non-
terminal and has rank 0, (v) P (the set of productions) is a TRS over N ∪ F that
contains for every A ∈ N exactly one rule of the form A(x1, . . . , xn) → tA, where
n = arity(A) and x1, . . . , xn are pairwise different variables, and (vi) the relation
{(A,B) ∈ N ×N | B occurs in tA} is acyclic. These conditions ensure that for every
A ∈ N of rank n there is a unique tree evalG(A)(x1, . . . , xn) ∈ T (F , {x1, . . . , xn})

with A(x1, . . . , xn)
∗
→P evalG(A)(x1, . . . , xn). Let eval(G) = evalG(S) ∈ T (F).

Thus, an SL cf tree grammar is a context free tree grammar [8] that generates exactly
one tree. Alternatively, an SL cf tree grammar is a recursive program scheme [20] that
generates a finite tree. The size of G is |G| =

∑
A∈N |tA|. We say that G is an SL cf

4 M. Lohrey, S. Maneth

tree grammar with k parameters (k ≥ 0) if arity(A) ≤ k for every A ∈ N . The SL cf
tree grammar G is linear if for every production A(x1, . . . , xn) → tA in P the tree tA
is linear.

SL cf tree grammars generalize string generating straight-line programs [2] in a
natural way from strings to trees. The following example shows that SL cf tree gram-
mars may lead to doubly exponential compression rates; thus, they can be exponen-
tially more succinct than dags: Let the (non-linear) SL cf tree grammar Gn consist of
the following productions: S → A0(a), Ai(x) → Ai+1(Ai+1(x)) for 0 ≤ i < n,
and An(x) → f(x, x). Then eval(Gn) is a complete binary tree of height 2n. Thus,
|eval(Gn)| ∈ O(22n

). Note that Gn has only one parameter. On the other hand, it is
easy to prove by induction over the number of productions that linear SL cf tree gram-
mars can only achieve exponential compression rates. But linear SL cf tree grammars
are still more succinct than dags: The tree h(h(· · ·h(a) · · ·)) with 2n many occurrences
of h can be generated by a linear SL cf tree grammar of size O(n), which is not possible
with dags.

An SL cf tree grammar G = (F , N, S, P) with 0 parameters (i.e., arity(A) = 0
for every nonterminal A ∈ N) can be easily transformed in logspace into an F-labeled
dag that generates the same tree: we take the disjoint union of all right-hand sides of
productions from P , where the root of the right-hand side for the nonterminal A gets
the additional label A. Then we merge for every nonterminal A all nodes with label A.
Note that since arity(A) = 0 for every A ∈ N , nonterminals can only occur as leafs
in right-hand sides of G. Thus, this merging process results in a dag. For instance, the
SL cf tree grammar with the productions S → g(A,A,B), A → f(B,B), B → h(a)
corresponds to the dag from Example 1. Vice versa, from an F-labeled dag we can
construct in logspace an equivalent SL cf tree grammar with 0 parameters by taking
the nodes of the dag as nonterminals. Thus, dags can be seen as special SL cf tree
grammars. This justifies our choice to denote with eval both the evaluation function for
dags and unrestricted SL cf tree grammars.

Tree automata A (nondeterministic) top-down tree automaton, briefly TDTA, is a tu-
ple A = (Q,F , q0,R), whereQ is a finite set of states,Q∪F is a ranked alphabet with
arity(q) = 1 for all q ∈ Q, q0 ∈ Q is the initial state, and R is a TRS such that all rules
have the form q(α(x1, . . . , xn)) → α(q1(x1), . . . , qn(xn)), where q, q1, . . . , qn ∈ Q,
x1, . . . , xn are pairwise different variables, and α ∈ F has rank n. A is a determinis-
tic TDTA if no two rules in R have the same left-hand side. The tree language that is
accepted by a TDTA A is T (A) = {t ∈ T (F) | q0(t)

∗
→R t}. A (nondeterministic)

bottom-up tree automaton, briefly BUTA, is a tuple A = (Q,F , Qf ,R), where Q and
F are as above, Qf ⊆ Q is the set of final states, and R is a TRS such that all rules
have the form α(q1(x1), . . . , qn(xn)) → q(α(x1, . . . , xn)), where q, q1, . . . , qn ∈ Q,
x1, . . . , xn are pairwise different variables, and α ∈ F has rank n. A is a determin-
istic BUTA if no two rules in R have the same left-hand side. The tree language that
is accepted by a BUTA A is T (A) = {t ∈ T (F) | ∃q ∈ Qf : t

∗
→R q(t)}. It is

straight-forward to transform a nondeterministic BUTA into an equivalent nondeter-
ministic TDTA and vice versa, and a logspace transducer is able to to do these transfor-
mations. Thus, in the following we do not distinguish between nondeterministic BUTA
and nondeterministic TDTA, and we call them simply tree automata (TA). A subset of

Tree Automata on Compressed Trees 5

Table 1. Complexity results for (uniform) membership problems

det. TDTA det. BUTA TA

fixed NC
1-complete

uncompressed trees [13]

uniform L-complete
LOGDCFL,

L-hard
LOGCFL-
complete

fixed
dags

uniform
NL-complete P-complete

fixed
lin. SL + fixed number para.

uniform
P-complete

fixed
SL + fixed number para.

uniform
P-complete PSPACE-

complete

fixed
unrestricted SL

uniform
P-complete PSPACE-complete

T (F) is recognizable if it is accepted by a TA. Using a powerset construction, every rec-
ognizable tree language can be also accepted by a deterministic BUTA, but this involves
an exponential blowup in the number of states. For deterministic TDTA the situation is
different; they only recognize a proper subclass of the recognizable tree languages. The
size |A| of a TA is the sum of the sizes of all left and right hand sides of rules. Let G be
a class of SL cf tree grammars (e.g., the class of all dags). The membership problem for
the fixed TA A and the class G is the following decision problem:

INPUT: G ∈ G
QUESTION: Does eval(G) ∈ T (A) hold?

For a class C of tree automata, the uniform membership problem for C and the class G
is the following decision problem:

INPUT: G ∈ G and A ∈ C
QUESTION: Does eval(G) ∈ T (A) hold?

The upper part of Table 1 collects the complexity results that were obtained in [13] for
uncompressed trees. The statement that for instance the membership problem for TA
is NC1-complete means that for every fixed TA the membership problem is in NC1

and that there exists a fixed TA for which the membership problem is NC1-hard. More
details on tree automata can be found in [8, 10].

3 Membership Problems for Dags and SL CF Tree Grammars

The time bounds in the following theorem are based on dynamic programming. Note
that only the number k of parameters appears in the exponent. The idea of the proof is

6 M. Lohrey, S. Maneth

to run the tree automaton A bottom up on the right-hand sides of G’s productions. For
the parameters we have to assume at most nk different possibilities of states of A which
(a determinized simulation of) A maps to a state of A.

Theorem 1. For a given TA A with n states and a linear SL cf tree grammar G with k
parameters we can check in time O(nk+1 · |G| · |A|) whether eval(G) ∈ T (A).

For a given deterministic BUTA A with n states and a given SL cf tree grammar
with k parameters we can check in time O(nk · |G| · |A|) whether eval(G) ∈ T (A).

Recall that a dag can be seen as a (linear) SL cf tree grammar without parameters. Thus,
Theorem 1 can be also applied to dags in order to obtain a polynomial time algorithm for
the uniform membership problem for TA and dags. Using a straightforward reduction
from the P-complete monotone circuit-value problem, we obtain:

Theorem 2. There exists a fixed deterministic BUTA A such that the membership prob-
lem for A and dags is P-hard.

Remark 1. By Theorem 1 and 2, the (uniform) membership problem for (deterministic)
BUTA on dags is P-complete. This result may appear surprising when compared with
a recent result from [21]: the membership problem for so called dag automata is NP-
complete. But in contrast to our approach, a dag automaton operates directly on a dag,
whereas we consider ordinary tree automata that run on the unfolded dag. This makes
a crucial difference for the complexity of the membership problem.

By the next theorem, a deterministic TDTA can be evaluated on a dag in NL (nonde-
terministic logspace). The crucial fact is that a deterministic TDTA A accepts a tree t
if and only if the path language of t (which is, roughly speaking, the set of all words
labeling a maximal path in the tree t) is included in some regular string language L [10],
where L is accepted by a finite automaton B that is logspace constructible from A. Now
we just guess a path in the input dag and simulate B on this path. The NL lower bound
is obtained by a reduction from the graph accessibility problem for dags.

Theorem 3. The uniform membership problem for deterministic TDTA and dags is in
NL. Moreover, there exists a fixed deterministic TDTA such that the membership prob-
lem for A and dags is NL-hard.

By combining the statements in Theorem 1–3 we obtain the results for dags in Table 1.
SL cf tree grammars allow higher compression rates than dags. This makes compu-

tational problems harder when input trees are represented via SL cf tree grammars. The
following result reflects this phenomenon. The PSPACE lower bound can be shown by
a reduction from QSAT (quantified boolean satisfiability), see e.g. [18].

Theorem 4. The uniform membership problem for TA and SL cf tree grammars is in
PSPACE. Moreover, there exists a fixed deterministic BUTA such that the membership
problem for A and SL cf tree grammars is PSPACE-hard.

Only for deterministic TDTA we obtain more efficient algorithms in the context of un-
restricted SL cf tree grammars. The polynomial time upper bound in the next theorem is
again based on the concept of the path language of a tree. For an SL cf tree grammar G,
the path language of eval(G) can be generated by a small context-free string grammar.
The lower bound follows from a result of [22] about string straight-line programs.

Tree Automata on Compressed Trees 7

Theorem 5. The uniform membership problem for deterministic TDTA and SL cf tree
grammars is in P. Moreover, there is a fixed deterministic TDTA such that the member-
ship problem for A and linear SL cf tree grammars with only one parameter is P-hard.

From Theorem 1 and 5 (resp. Theorem 4 and 5) we obtain the complexity results for
linear SL cf tree grammars with a fixed number of parameters (resp. unrestricted SL cf
tree grammars) in Table 1, see lin. SL + fixed number para. (resp. unrestricted SL). The
following result completes our characterization presented in Table 1.

Theorem 6. The uniform membership problem for TA and (non-linear) SL cf tree gram-
mars with only one parameter is PSPACE-hard.

Proof. We prove the theorem by a reduction from QSAT [18]. Let us take a quantified
boolean formula ψ = Q1x1 · · ·Qnxn ϕ, whereQi ∈ {∀,∃} and ϕ is a boolean formula
with variables from X = {x1, . . . , xn}. W.l.o.g. we may assume that in ϕ the negation
operator ¬ only occurs directly in front of variables. Let X̄ = {¬x | x ∈ X}. We
define an SL cf tree grammar G as follows: The set of terminals contains the binary
function symbol f , a unary function symbol ti for every xi ∈ X , and a constant a. The
set of nonterminals contains the start nonterminal S, and for every subformula α of ψ
it contains a nonterminal Aα of arity 1. The productions of G are:

S → Aψ(a) Aα(y) → f(Aβ(ti(y)), Aβ(y)) if α ∈ {∀xiβ,∃xiβ}

Aα(y) → y if α ∈ X ∪ X̄ Aα(y) → f(Aβ(y), Aγ(y)) if α ∈ {β ∧ γ, β ∨ γ}

An occurrence of the symbol ti on a path in the tree eval(G) indicates that the variable
xi is set to true. Note that from a nonterminal Aα, where α begins with a quantification
∃xi or ∀xi we first generate a branching node (labeled with the binary symbol f).
Moreover, the left branch gets in addition the unary symbol ti, which indicates that xi
is set to true. The absence of ti in the right branch indicates that xi is set to false.

We define a nondeterministic TDTA A as follows: The state set of A contains all
subformulas of ψ plus an additional state q. The initial state of A is the whole formula
ψ. The set R of transition rules of A consists of the following rules:

q(f(y, z)) → f(q(y), q(z))

q(ti(y)) → ti(q(y)) for all i

q(a) → a

α(f(y, z)) → f(β(y), q(z)) if α = ∃xiβ for some i

α(f(y, z)) → f(q(y), β(z)) if α = ∃xiβ for some i

α(f(y, z)) → f(β(y), β(z)) if α = ∀xiβ for some i

α(f(y, z)) → f(β(y), q(z)) if α = β ∨ γ for some γ

α(f(y, z)) → f(q(y), γ(z)) if α = β ∨ γ for some β

α(f(y, z)) → f(β(y), γ(z)) if α = β ∧ γ

α(ti(y)) → ti(α(y)) if α ∈ (X ∪ X̄) \ {xi,¬xi}

α(ti(y)) → ti(q(y)) if α = xi

α(a) → a if α ∈ X̄

8 M. Lohrey, S. Maneth

f
∀x1∃x2 : (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)

f ∃x2 : (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2) f
∃x2 : (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)

f q f
(x1∧¬x2)∨
(¬x1∧x2) f (x1∧¬x2)∨

(¬x1∧x2)
f q

f q f q f x1∧¬x2 f q f q f
¬x1∧x2

f q f q

t2 q

t1 q

a q

t2 q

t1 q

a q

t2 q

t1 q

a q

t2 q

t1 q

a q

t1x1

a q

t1
¬x2

a¬x2

t1 q

a q

t1 q

a q

t2 q

a q

t2 q

a q

t2¬x1

a¬x1

t2x2

a q

a q a q a q a q

Fig. 1.

Figure 1 shows the tree eval(G) for the true quantified boolean formula ∀x1∃x2 : (x1∧
¬x2)∨(¬x1∧x2), where in addition every node is labeled with a state of the automaton
A such that the overall labeling is an accepting run.

By the first three rules for state q, q(t)
∗
→R t for every ground tree t. Thus, if we

reach the state q, then the corresponding subtree is accepted. If the current state α is an
existential subformula ∃xiβ, then we guess nondeterministically one of the two subtrees
of the current f -labeled node (i.e., we choose an assignment for xi) and verify β in that
subtree. The other subtree is accepted by sending q to that subtree. Similarly, if the
current state α is a universal subformula ∀xiβ, then we verify β in both subtrees, i.e.,
for both assignments for xi. The rules for α = β ∨ γ and α = β ∧ γ can be interpreted
similarly. Note that by construction of G and A, if the current state α is of the form
∃xiβ, ∀xiβ, β ∨ γ, or β ∧ γ, then the current tree node in eval(G) is an f -labeled node.
On the other hand, if the current state is from X ∪ X̄ , then the current tree node in
eval(G) is labeled with a symbol tj or the constant a. If the current state is a variable
xi, then we search for the symbol ti in the chain of tj-labeled nodes below the current
node. We accept by going into the state q as soon as we find ti: xi(ti(y)) → ti(q(y))
If we do not find ti and end up in the constant a, then we block; note that there is no
rule of form xi(a) → a. On the other hand, if the current state is a negated variable
¬xi, then we verify that there is no ti in the chain of tj-labeled nodes below the current
node. Thus, we block as soon as we find ti; note that there is no rule with left-hand side
¬xi(ti(y)). On the other hand, if we finally reach the constant a in state ¬xi, then we
accept via the rule ¬xi(a) → a. From the previous discussion, it is not hard to see that
the formula ψ is true if and only if eval(G) ∈ L(A). ut

From Theorem 1 and Theorems 4–6 we obtain the results for SL cf tree grammars with
a fixed number of parameters in Table 1.

We end this sections with two results concerning the parameterized complexity of
membership problems for tree automata. Parameterized complexity [15] is a branch of
complexity theory with the goal to understand which input parts of a hard (e.g. NP-hard)
problem are responsible for the combinatorial explosion. A parameterized problem is a

Tree Automata on Compressed Trees 9

decision problem where the input is a pair (k, x) ∈ N×Σ∗. The first input component k
is called the input parameter (it may also consist of several natural numbers). A typical
example of a parameterized problem is the parameterized version of the clique problem,
where the input is a pair (k,G), G is an undirected graph, and it is asked whether G
has a clique of size k. A parameterized problem (with input (k, x)) is in the class FPT
(fixed parameter tractable), if the problem can be solved in time f(k) · |x|c. Here c is a
fixed constant and f is an arbitrary (e.g., exponential) computable function on N. This
means that the non-polynomial part of the algorithm is restricted to the parameter k.

Theorem 7. The following parameterized problem is in FPT:

INPUT: An SL cf tree grammar G with k parameters and a TA A with n states.
INPUT PARAMETER: (k, n)

QUESTION: eval(G) ∈ T (A)?

Proof. We first transform A into a deterministic BUTA with at most 2n states. Then we
apply Theorem 1 which gives us a running time of 2kn · |G| · |A|. ut

In recent years, a structural theory of parameterized complexity with the aim of showing
that certain problems are unlikely to belong to FPT was developed. Underlying this
theory is the notion of parameterized reductions [15]: A parameterized reduction from
a parameterized problem A (with input (k, x) ∈ N × Σ∗) to a parameterized problem
B (with input (`, y) ∈ N×Γ ∗) is a mapping f : N×Σ∗ → N×Γ ∗ such that: (i) for all
(k, x) ∈ N × Σ∗, (k, x) ∈ A if and only if f(k, x) ∈ B, (ii) f(k, x) is computable in
time g(k) · |x|c for some computable function g and some constant c, and (iii) for some
computable function h, if f(k, x) = (`, y), then ` ≤ h(k). A parameterized problem A
is fpt-reducible to a parameterized problem B if there exists a parameterized reduction
from A to B. One of the classes in the upper part of the parameterized complexity
spectrum is the class AW[P]. For the purpose of this paper it is not necessary to present
the quite technical definition of AW[P]. Roughly speaking, AW[P] results from taking
the closure (w.r.t. fpt-reducibility) of a parameterized version of the PSPACE-complete
QSAT problem. Problems that are AW[P]-hard are very unlikely to be in FPT.

Theorem 8. The following problem is AW[P]-hard w.r.t. fpt-reducibility:

INPUT: A deterministic BUTA A and an SL cf tree grammar G with k parameters
INPUT PARAMETER: k
QUESTION: eval(G) ∈ T (A)?

The theorem can be shown by a parameterized reduction from the following problem
pFOMC (parameterized first-order model-checking), which is AW[P]-hard w.r.t. fpt-
reducibility [23]:

INPUT: A directed graph H = (V,E) and a sentence φ of first-order logic (built
up from the atomic formulas x = y and E(x, y) (for variables x and y) using boolean
connectives and quantification over nodes of H).

INPUT PARAMETER: The number of different variables that are used in φ
QUESTION: Is φ true in the graph H?

10 M. Lohrey, S. Maneth

4 XPath Evaluation

In this section, we consider XML-trees that are compressed via SL cf tree grammars
and study the node selecting language XPath over such trees. For more background on
XPath see [16, 17]. We restrict our attention to linear SL cf tree grammars. Skeletons of
XML documents are usually modeled as rooted unranked labeled trees. Analogously to
Section 2, an unranked tree with labels from an (unranked) alphabet Σ can be defined
as a pair t = (domt, λt), where (i) domt ⊆ N

∗ is finite, (ii) λt : domt → F , (iii) if v ¹
w ∈ domt, then also v ∈ domt, and (iv) if vi ∈ domt then also vj ∈ domt for every
1 ≤ j ≤ i. For the purpose of this section, it is more suitable to view such an unranked
tree t = (domt, λt) as a relational structure t = (domt, child, next-sibling, (Qa)a∈Σ),
where Qa = λ−1

t (a) ⊆ domt, child = {(v, vi) ∈ domt × domt | v ∈ N
∗, i ∈ N},

and next-sibling = {(vi, v(i+ 1)) ∈ domt× domt | v ∈ N
∗, i ∈ N}. Thus, child(u, v)

is the child-relation in t and next-sibling(u, v) if and only if v is the right sibling of u.
From the basic tree relations child and next-sibling further tree relations that are called
XPath-axes can be defined. For instance let descendant := child∗ (the reflexive and
transitive closure of child) and following-sibling := next-sibling∗. For the definition of
the other XPath axes see for instance [16]. In the following we consider the four XPath
axes child, descendant, next-sibling, and following-sibling; handling of other axes is
straightforward and needs no further ideas.

The node selection language core XPath [16] can be seen as the tree navigational
core of XPath. Its syntax is given by the following EBNF; here, χ is an XPath-axis and
a ∈ Σ ∪ {∗} (where ∗ is a new symbol):

corexpath ::= locationpath | / locationpath

locationpath ::= locationstep (/ locationstep)∗

locationstep ::= χ :: a | χ :: a [pred]

pred ::= (pred and pred) | (pred or pred) | not(pred) | locationpath

LetQ∗ be the unary predicate that is true for every node of a tree t. We define the seman-
tics of core XPath by translating a given tree t = (domt, child, next-sibling, (Qa)a∈Σ)
and a given expression π ∈ L(corexpath) (resp. e ∈ L(pred)) into a binary relation
S[π, t] ⊆ domt × domt (resp. a unary relation E [e, t] ⊆ domt). Let π, π1, π2 ∈
L(locationpath), e, e1, e2 ∈ L(pred), and let χ be an XPath axes (recall that ε is the
root of a tree).

S[χ :: a[e], t] := {(x, y) ∈ domt × domt | (x, y) ∈ χ, y ∈ Qa, y ∈ E [e, t]}

S[/π, t] := domt × {x ∈ domt | (ε, x) ∈ S[π, t]}

S[π1/π2, t] := {(x, y) ∈ domt × domt | ∃z : (x, z) ∈ S[π1, t], (z, y) ∈ S[π2, t]}

E [e1 and e2, t] := E [e1, t] ∩ E [e2, t]

E [e1 or e2, t] := E [e1, t] ∪ E [e2, t]

E [not(e), t] := domt \ E [e, t]

E [π, t] := {x ∈ domt | ∃y : (x, y) ∈ S[π, t]}

Recall that by definition SL cf tree grammars generate ranked trees. In order to gen-
erate XML skeletons, i.e., unranked trees, with SL cf tree grammars, we encode un-

Tree Automata on Compressed Trees 11

ranked trees by binary trees (and hence ranked trees) using a standard encoding: For
an unranked tree t = (domt, child, next-sibling, (Qa)a∈Σ) define the binary encod-
ing bin(t) = (domt, child1, child2, (Qa)a∈Σ), where (i) (u, v) ∈ child1 if and only
if (u, v) ∈ child and there does not exist w ∈ domt with (w, v) ∈ next-sibling (i.e.,
v is the left-most child of u), and (ii) child2 = next-sibling. Note that t and bin(t)
have the same set of nodes. The following theorem is our main result in this section.
PSPACE-hardness follows from the corresponding result for dags [6].

Theorem 9. The following problem is PSPACE-complete:
INPUT: A linear SL cf tree grammar G generating a binary tree with eval(G) =

bin(t) for some (unique) unranked tree t, two nodes u, v of eval(G), and a core XPath
expression π ∈ L(corexpath).

QUESTION: (u, v) ∈ S[π, t] ?

For the proof of the PSPACE upper bound in Theorem 9 we first translate a given XPath
expression into a first-order formula that uses the XPath axes as atomic predicates. We
then show that such a first-order formula can be evaluated on eval(G) for a given linear
SL cf tree grammar by an alternating Turing machine [18] that works in polynomial
time with respect to the size of the formula and the size of the grammar. For this it is
crucial that nodes of eval(G) can be represented in polynomial space (with respect to
the size of G) and hence can be guessed in polynomial time. This does not hold for
non-linear SL cf tree grammars which can generate trees of doubly exponential size.
Finally, one can use the fact that PSPACE is precisely the class of all problems that can
be solved on an alternating Turing machine in polynomial time, cf. [18].

5 Open Problems and Conclusions

An interesting class of SL cf tree grammars that is missing in our present complexity
analysis of tree automata is the class of linear SL cf tree grammar (with an unbounded
number of parameters in contrast to Theorem 1). The results in this paper leave a gap
from P to PSPACE for the uniform membership problem for TA and linear SL cf tree
grammars (with an unbounded number of parameters). Our algorithm BPLEX from [9]
outputs linear SL cf tree grammars. Note that BPLEX, even when bounding the number
of parameters by a small constant (like 2 or 3), clearly outperforms compression by
dags. The results presented here show that with respect to tree automata membership
problems and XPath evaluation, exactly the same complexity bounds hold for linear SL
cf tree grammars with a bounded number of parameter as for dags [5, 6]. This motivates
us to believe that linear SL cf tree grammars are better suited than dags as memory
efficient representations of XML documents. Precise trade-offs between the representa-
tions have to be determined in practice; we are currently implementing our ideas as part
of BPLEX. For the XPath evaluation problem, the complexity for non-linear SL cf tree
grammars remains open. We conjecture that the PSPACE upper bound from Theorem 9
cannot be generalized to the non-linear case.

12 M. Lohrey, S. Maneth

References

1. Lohrey, M.: Word problems on compressed word. In Diaz, J., Karhumäki, J., Lepistö, A.,
Sannella, D., eds.: Proc. ICALP 2004, Turku (Finland). Number 3142 in Lecture Notes in
Computer Science, Springer (2004) 906–918

2. Rytter, W.: Grammar compression, LZ-encodings, and string algorithms with implicit in-
put. In Diaz, J., Karhumäki, J., Lepistö, A., Sannella, D., eds.: Proc. ICALP 2004, Turku
(Finland). Number 3142 in Lecture Notes in Computer Science, Springer (2004) 15–27

3. Plump, D.: Term graph rewriting. In Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G.,
eds.: Handbook of Graph Grammars and Computing by Graph Transformation. Volume 2.
World Scientific (1999) 3–61

4. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision diagrams. ACM
Computing Surveys 24 (1992) 293–318

5. Buneman, P., Grohe, M., Koch, C.: Path queries on compressed XML. In Freytag, J.C., et al.,
eds.: Proc. VLDB 2003, Morgan Kaufmann (2003) 141–152

6. Frick, M., Grohe, M., Koch, C.: Query evaluation on compressed trees (extended abstract).
In: Proc. LICS’2003, IEEE Computer Society Press (2003) 188–197

7. Maneth, S., Busatto, G.: Tree transducers and tree compressions. In Walukiewicz, I., ed.:
Proc. FoSSaCS 2004, Barcelona (Spain). Number 2987 in Lecture Notes in Computer Sci-
ence, Springer (2004) 363–377

8. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S.,
Tommasi, M.: Tree automata techniques and applications. Available on:
http://www.grappa.univ-lille3.fr/tata (2002)

9. Busatto, G., Lohrey, M., Maneth, S.: Efficient memory representation of XML documents.
In: Proc. DBPL 2005, Trondheim (Norway), Springer (2005) to appear.

10. Gécseg, F., Steinby, M.: Tree automata. Akadémiai Kiadó (1984)
11. Murata, M., Lee, D., Mani, M.: Taxonomy of XML Schema Languages using Formal Lan-

guage Theory. In: Proc. Extreme Markup Languages 2000, Montréal (Canada). (2000)
12. Neven, F.: Automata theory for XML researchers. SIGMOD Record 31 (2002) 39–46
13. Lohrey, M.: On the parallel complexity of tree automata. In Middeldorp, A., ed.: Proc. RTA

2001, Utrecht (The Netherlands). Number 2051 in Lecture Notes in Computer Science,
Springer (2001) 201–215

14. Segoufin, L.: Typing and querying XML documents: some complexity bounds. In:
Proc. PODS 2003, ACM Press (2003) 167–178

15. Downey, R.G., Fellows, M.R.: Parametrized Complexity. Springer (1999)
16. Gottlob, G., Koch, C., Pichler, R.: Efficient algorithms for processing XPath queries. In:

Proc. VLDB 2002, Morgan Kaufmann (2002) 95–106
17. Gottlob, G., Koch, C., Pichler, R.: The complexity of XPath query evaluation. In:

Proc. PODS 2003, ACM Press (2003) 179–190
18. Papadimitriou, C.H.: Computational Complexity. Addison Wesley (1994)
19. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press (1998)
20. Courcelle, B.: A representation of trees by languages I. Theoretical Computer Science 6

(1978) 255–279
21. Anantharaman, S., Narendran, P., Rusinowitch, M.: Closure properties and decision prob-

lems of dag automata. Information Processing Letters 94 (2005) 231–240
22. Markey, N., Schnoebelen, P.: A PTIME-complete matching problem for SLP-compressed

words. Information Processing Letters 90 (2004) 3–6
23. Papadimitriou, C.H., Yannakakis, M.: On the complexity of database queries. Journal of

Computer and System Sciences 58 (1999) 407–427

