Theories of Automatic Structures and their Complexity

Markus Lohrey

University of Stuttgart, Germany

Workshop on Automata, Structures and Logic 2004
Definition of Automatic Structures

Let $\mathbb{A} = (A, R_1, \ldots, R_n)$ be a relational structure, $R_i \subseteq A^{n_i}$. We say that \mathbb{A} is automatic, if the following data exist:

- a finite alphabet Σ
- a regular language $L \subseteq \Sigma^*$
- a bijection $h : L \to A$ such that for every $1 \leq i \leq n$ the relation

$$\{(u_1, u_2, \ldots, u_{n_i}) \in L^{n_i} \mid (h(u_1), h(u_2), \ldots, h(u_{n_i})) \in R_i\}$$

is synchronized rational.
Binary synchronized rational relations are recognized by synchronous 2-tape automata.

In order to accept a pair \((u, v) \in \Sigma^* \times \Sigma^*\) such an automaton operates as follows:

\[
\begin{array}{ccccccccccc}
\nu & b_0 & b_1 & b_2 & \cdots & b_{m-1} & b_m & \# & \cdots & \# \\
u & a_0 & a_1 & a_2 & \cdots & a_{m-1} & a_m & a_{m+1} & \cdots & a_n \\
\end{array}
\]
Binary synchronized rational relations are recognized by synchronous 2-tape automata.

In order to accept a pair \((u, v) \in \Sigma^* \times \Sigma^*\) such an automaton operates as follows:

\[
\begin{array}{cccccccc}
q_0 & b_0 & b_1 & b_2 & \cdots & b_{m-1} & b_m & \# & \cdots & \# \\
\hline
v & b_0 & b_1 & b_2 & \cdots & b_{m-1} & b_m & \# & \cdots & \# \\
u & a_0 & a_1 & a_2 & \cdots & a_{m-1} & a_m & a_{m+1} & \cdots & a_n
\end{array}
\]
Binary synchronized rational relations are recognized by synchronous 2-tape automata.

In order to accept a pair \((u, v) \in \Sigma^* \times \Sigma^*\) such an automaton operates as follows:

<table>
<thead>
<tr>
<th></th>
<th>(q_1)</th>
<th>(b_0)</th>
<th>(b_1)</th>
<th>(b_2)</th>
<th>(\ldots)</th>
<th>(b_{m-1})</th>
<th>(b_m)</th>
<th>#</th>
<th>(\ldots)</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v)</td>
<td></td>
<td>(b_0)</td>
<td>(b_1)</td>
<td>(b_2)</td>
<td>(\ldots)</td>
<td>(b_{m-1})</td>
<td>(b_m)</td>
<td>#</td>
<td>(\ldots)</td>
<td>#</td>
</tr>
<tr>
<td>(u)</td>
<td>(a_0)</td>
<td>(a_1)</td>
<td>(a_2)</td>
<td>(\ldots)</td>
<td>(a_{m-1})</td>
<td>(a_m)</td>
<td>(a_{m+1})</td>
<td>(\ldots)</td>
<td>(a_n)</td>
<td></td>
</tr>
</tbody>
</table>
Binary synchronized rational relations are recognized by synchronous 2-tape automata.

In order to accept a pair \((u, v) \in \Sigma^* \times \Sigma^*\) such an automaton operates as follows:

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(v)</td>
<td></td>
</tr>
<tr>
<td>(u)</td>
<td></td>
</tr>
<tr>
<td>(b_0)</td>
<td>(b_1)</td>
<td>(b_2)</td>
<td>(\cdots)</td>
<td>(b_{m-1})</td>
<td>(b_m)</td>
<td>#</td>
<td>(\cdots)</td>
<td>#</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a_0)</td>
<td>(a_1)</td>
<td>(a_2)</td>
<td>(\cdots)</td>
<td>(a_{m-1})</td>
<td>(a_m)</td>
<td>(a_{m+1})</td>
<td>(\cdots)</td>
<td>(a_n)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Binary synchronized rational relations are recognized by synchronous 2-tape automata.

In order to accept a pair \((u, v) \in \Sigma^* \times \Sigma^*\) such an automaton operates as follows:

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a0</td>
<td>a1</td>
<td>a2</td>
<td>...</td>
<td>a_{m-1}</td>
<td>a_m</td>
<td>a_{m+1}</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>b0</td>
<td>b1</td>
<td>b2</td>
<td>...</td>
<td>b_{m-1}</td>
<td>b_m</td>
<td>#</td>
</tr>
</tbody>
</table>

The automaton transition is depicted as follows:

- \(q_m\) moves to a new state when the symbols \(u\) and \(v\) synchronize.
Binary synchronized rational relations are recognized by synchronous 2-tape automata.

In order to accept a pair \((u, v) \in \Sigma^* \times \Sigma^*\) such an automaton operates as follows:

| \(v\) | \(b_0\) | \(b_1\) | \(b_2\) | \(\ldots\) | \(b_{m-1}\) | \(b_m\) | \# | \(\ldots\) | \# |
| \(u\) | \(a_0\) | \(a_1\) | \(a_2\) | \(\ldots\) | \(a_{m-1}\) | \(a_m\) | \(a_{m+1}\) | \(\ldots\) | \(a_n\) |
Binary synchronized rational relations are recognized by synchronous 2-tape automata.

In order to accept a pair \((u, v) \in \Sigma^* \times \Sigma^*\) such an automaton operates as follows:

\[
\begin{array}{cccccccccc}
\nu & b_0 & b_1 & b_2 & \cdots & b_{m-1} & b_m & \# & \cdots & \# \\
u & a_0 & a_1 & a_2 & \cdots & a_{m-1} & a_m & a_{m+1} & \cdots & a_n \\
\end{array}
\]
Examples of Automatic Structures

The following structures are automatic:

- \((\mathbb{N}, +)\)
- \((\mathbb{Q}, \leq)\)
- Transition graphs of Turing-machines

The following structures are not automatic:

- \((\mathbb{N}, \cdot)\)
- the free monoid generated by two elements
Examples of Automatic Structures

The following structures are automatic:

- $(\mathbb{N}, +)$
- (\mathbb{Q}, \leq)
- Transition graphs of Turing-machines

The following structures are not automatic:

- (\mathbb{N}, \cdot)
- the free monoid generated by two elements
Examples of Automatic Structures

The following structures are automatic:

- \((\mathbb{N}, +)\)
- \((\mathbb{Q}, \leq)\)
- Transition graphs of Turing-machines

The following structures are not automatic:

- \((\mathbb{N}, \cdot)\)
- the free monoid generated by two elements
Examples of Automatic Structures

The following structures are automatic:
- \((\mathbb{N}, +)\)
- \((\mathbb{Q}, \leq)\)
- Transition graphs of Turing-machines

The following structures are not automatic:
- \((\mathbb{N}, \cdot)\)
- the free monoid generated by two elements
Examples of Automatic Structures

The following structures are automatic:

- $\langle \mathbb{N}, + \rangle$
- $\langle \mathbb{Q}, \leq \rangle$
- Transition graphs of Turing-machines

The following structures are not automatic:

- $\langle \mathbb{N}, \cdot \rangle$
- the free monoid generated by two elements
Examples of Automatic Structures

The following structures are automatic:

- \((\mathbb{N}, +)\)
- \((\mathbb{Q}, \leq)\)
- Transition graphs of Turing-machines

The following structures are not automatic:

- \((\mathbb{N}, \cdot)\)
- the free monoid generated by two elements
Examples of Automatic Structures

The following structures are automatic:

- \((\mathbb{N}, +)\)
- \((\mathbb{Q}, \leq)\)
- Transition graphs of Turing-machines

The following structures are not automatic:

- \((\mathbb{N}, \cdot)\)
- the free monoid generated by two elements
Let $\mathbb{A} = (A, R_1, \ldots, R_n)$ be a relational structure.

Let Ω be an infinite set of variables ranging over A.

The set of all FO-formulas over \mathbb{A} is defined as follows:

- $x = y$ and $R_i(x_1, \ldots, x_{n_i})$ are FO-formulas, where $x, y, x_1, \ldots, x_{n_i} \in \Omega$

- If ϕ and ψ are FO-formulas then also

 $\neg \phi, \phi \land \psi, \phi \lor \psi, \exists x : \phi, \forall x : \phi$

are FO-formulas.

An FO-sentence is an FO-formula without free variables.

The FO-theory of \mathbb{A} is the set of all FO-sentences that are true in the structure \mathbb{A}.
Khoussainov, Nerode 1994: Every automatic structure has a decidable FO-theory.

A problem is called elementary decidable, if it can be decided in time \(2^{2^n}\), where the height of this tower of exponents is constant.

Blumensath, Grädel 2000: There are automatic structures which are not elementary decidable.

Example: \((\{0,1\}^*, s_0, s_1, \preceq)\), where \(s_i = \{(w, w^i | w \in \{0,1\}^*)\}\) and \(\preceq\) is the prefix relation.
Khoussainov, Nerode 1994: Every automatic structure has a decidable FO-theory.

A problem is called *elementary decidable*, if it can be decided in time 2^{2^n}, where the height of this tower of exponents is constant.

Blumensath, Grädel 2000: There are automatic structures which are not elementary decidable.

Example: $({\{0,1\}}^*, s_0, s_1, \preceq)$, where $s_i = \{(w, w i \mid w \in {\{0,1\}}^*)$ and \preceq is the prefix relation.
Khoussainov, Nerode 1994: Every automatic structure has a decidable FO-theory.

A problem is called elementary decidable, if it can be decided in time 2^{2^n}, where the height of this tower of exponents is constant.

Blumensath, Grädel 2000: There are automatic structures which are not elementary decidable.

Example: $(\{0, 1\}^*, s_0, s_1, \preceq)$, where $s_i = \{(w, w i) \mid w \in \{0, 1\}^*\}$ and \preceq is the prefix relation.
Khoussainov, Nerode 1994: Every automatic structure has a decidable FO-theory.

A problem is called **elementary decidable**, if it can be decided in time 2^{2^n}, where the height of this tower of exponents is constant.

Blumensath, Grädel 2000: There are automatic structures which are not elementary decidable.

Example: $\left(\{0, 1\}^*, s_0, s_1, \preceq\right)$, where $s_i = \{(w, w i) : w \in \{0, 1\}^*\}$ and \preceq is the prefix relation.
Let $\mathbb{A} = (A, R_1, \ldots, R_n)$ be a relational structure. The Gaifman-graph of \mathbb{A} is the undirected graph (A, E), where

$$E = \{(a, b) \mid a \neq b, \ a \text{ and } b \text{ both belong to some tuple of some relation } R_i\}$$

The structure \mathbb{A} has bounded degree if its Gaifman-graph has bounded degree, i.e., for some constant δ, every element of \mathbb{A} has at most δ many neighbors in the Gaifman-graph.
Let $\mathbb{A} = (A, R_1, \ldots, R_n)$ be a relational structure. The **Gaifman-graph** of \mathbb{A} is the undirected graph (A, E), where

$$E = \{(a, b) \mid a \neq b, \text{ } a \text{ and } b \text{ both belong to some tuple of some relation } R_i\}$$

The structure \mathbb{A} has **bounded degree** if its Gaifman-graph has bounded degree, i.e., for some constant δ, every element of \mathbb{A} has at most δ many neighbors in the Gaifman-graph.
Let $\mathbb{A} = (A, R_1, \ldots, R_n)$ be a relational structure. The Gaifman-graph of \mathbb{A} is the undirected graph (A, E), where

$$E = \{(a, b) \mid a \neq b, \text{ a and } b \text{ both belong to some tuple of some relation } R_i\}$$

The structure \mathbb{A} has bounded degree if its Gaifman-graph has bounded degree, i.e., for some constant δ, every element of \mathbb{A} has at most δ many neighbors in the Gaifman-graph.
Automatic Structures of bounded degree:

- $\langle \{0, 1\}^*, s_0, s_1 \rangle$
- Transition graphs of Turing-machines
- Cayley-graphs of automatic groups

Automatic Structures of unbounded degree:

- $\langle \mathbb{N}, + \rangle$
- $\langle \mathbb{Q}, \leq \rangle$
- $\langle \{0, 1\}^*, s_0, s_1, \preceq \rangle$
Automatic Structures of bounded degree:
- \((\{0, 1\}^*, s_0, s_1)\)
- Transition graphs of Turing-machines
- Cayley-graphs of automatic groups

Automatic Structures of unbounded degree:
- \((\mathbb{N}, +)\)
- \((\mathbb{Q}, \leq)\)
- \((\{0, 1\}^*, s_0, s_1, \preceq)\)
Automatic Structures of bounded degree:
- $\langle \{0, 1\}^*, s_0, s_1 \rangle$
- Transition graphs of Turing-machines
- Cayley-graphs of automatic groups

Automatic Structures of unbounded degree:
- $\langle \mathbb{N}, + \rangle$
- $\langle \mathbb{Q}, \leq \rangle$
- $\langle \{0, 1\}^*, s_0, s_1, \preceq \rangle$
Automatic Structures of bounded degree:
- $\langle \{0, 1\}^*, s_0, s_1 \rangle$
- Transition graphs of Turing-machines
- Cayley-graphs of automatic groups

Automatic Structures of unbounded degree:
- $\langle \mathbb{N}, + \rangle$
- $\langle \mathbb{Q}, \leq \rangle$
- $\langle \{0, 1\}^*, s_0, s_1, \preceq \rangle$
Automatic Structures of bounded degree:

- \((\{0, 1\}^*, s_0, s_1) \)
- Transition graphs of Turing-machines
- Cayley-graphs of automatic groups

Automatic Structures of unbounded degree:

- \((\mathbb{N}, +)\)
- \((\mathbb{Q}, \leq)\)
- \((\{0, 1\}^*, s_0, s_1, \preceq)\)
Automatic Structures of bounded degree:

- ($\{0, 1\}^*, s_0, s_1$)
- Transition graphs of Turing-machines
- Cayley-graphs of automatic groups

Automatic Structures of unbounded degree:

- ($\mathbb{N}, +$)
- (\mathbb{Q}, \leq)
- ($\{0, 1\}^*, s_0, s_1, \preceq$)
Automatic Structures of bounded degree:
- $(\{0, 1\}^*, s_0, s_1)$
- Transition graphs of Turing-machines
- Cayley-graphs of automatic groups

Automatic Structures of unbounded degree:
- $(\mathbb{N}, +)$
- (\mathbb{Q}, \leq)
- $(\{0, 1\}^*, s_0, s_1, \preceq)$
Automatic Structures of bounded degree:
- $({\{0, 1\}}^*, s_0, s_1)$
- Transition graphs of Turing-machines
- Cayley-graphs of automatic groups

Automatic Structures of unbounded degree:
- $({\mathbb{N}, +})$
- $({\mathbb{Q}, \leq})$
- $({\{0, 1\}}^*, s_0, s_1, \preceq)$
Main Results

\(\text{ATIME}(a(n), t(n)) \) is the class of all problems that can be solved in

- alternating time \(t(n) \) with
- only \(a(n) \) many alternations.

Well-known: \(\text{ATIME}(a(n), t(n)) \subseteq \text{DSPACE}(t(n)) \)

Theorem

Let \(\mathbb{A} \) be an automatic structure of bounded degree. Then the FO-theory of \(\mathbb{A} \) belongs to \(\text{ATIME}(n, 2^{2^{c \cdot n}}) \) for some constant \(c \).

Theorem

There exists an automatic structure of bounded degree such that the FO-theory of \(\mathbb{A} \) is not in \(\text{ATIME}(c \cdot n, 2^{2^{c \cdot n}}) \) for some constant \(c \).
Main Results

ATIME($a(n), t(n)$) is the class of all problems that can be solved in

- alternating time $t(n)$ with
- only $a(n)$ many alternations.

Well-known: ATIME($a(n), t(n)$) ⊆ DSPACE($t(n)$)

Theorem

Let \mathbb{A} be an automatic structure of bounded degree. Then the FO-theory of \mathbb{A} belongs to ATIME($n, 2^{2^{c \cdot n}}$) for some constant c.

Theorem

There exists an automatic structure of bounded degree such that the FO-theory of \mathbb{A} is not in ATIME($c \cdot n, 2^{2^{c \cdot n}}$) for some constant c.
ATIME\((a(n), t(n))\) is the class of all problems that can be solved in

- alternating time \(t(n)\) with
- only \(a(n)\) many alternations.

Well-known: \(\text{ATIME}(a(n), t(n)) \subseteq \text{DSPACE}(t(n))\)

Theorem

Let \(\mathbb{A}\) be an automatic structure of bounded degree. Then the FO-theory of \(\mathbb{A}\) belongs to \(\text{ATIME}(n, 2^{2^{c \cdot n}})\) for some constant \(c\).

Theorem

There exists an automatic structure of bounded degree such that the FO-theory of \(\mathbb{A}\) is not in \(\text{ATIME}(c \cdot n, 2^{2^{c \cdot n}})\) for some constant \(c\).
Main ideas for the upper bound

Let $\mathbb{A} = (A, \ldots)$ be an automatic structure with degree bounded by $\delta \in \mathbb{N}$.

Let $\Gamma, L \subseteq \Gamma^*$, and $h : L \rightarrow A$ (bijective) witness the automaticity of \mathbb{A}.

For an element $a \in A$ of the structure \mathbb{A} and $r \in \mathbb{N}$ let $S(a, r)$ be the substructure of \mathbb{A} induced by the set

$$\{ b \in A \mid \text{the distance between } a \text{ and } b \text{ in the Gaifman-graph of } \mathbb{A} \text{ is at most } r \}$$

We prove: For every $a \in A$ and $r \in \mathbb{N}$ there exists $u \in L$ with:

- $S(a, r) \simeq S(h(u), r)$
- $|u| \leq 2^{2c \cdot r}$ for a constant c

This allows to apply the machinery of Ferrante/Rackoff.
Main ideas for the upper bound

Let $\mathbb{A} = (A, \ldots)$ be an automatic structure with degree bounded by $\delta \in \mathbb{N}$.

Let $\Gamma, L \subseteq \Gamma^*$, and $h : L \rightarrow A$ (bijective) witness the automaticity of \mathbb{A}.

For an element $a \in A$ of the structure \mathbb{A} and $r \in \mathbb{N}$ let $S(a, r)$ be the substructure of \mathbb{A} induced by the set

$$\{ b \in A \mid \text{the distance between } a \text{ and } b \text{ in the } \text{Gaifman-graph of } \mathbb{A} \text{ is at most } r \}$$

We prove: For every $a \in A$ and $r \in \mathbb{N}$ there exists $u \in L$ with:

- $S(a, r) \cong S(h(u), r)$
- $|u| \leq 2^{2c \cdot r}$ for a constant c

This allows to apply the machinery of Ferrante/Rackoff.
Main ideas for the upper bound

Let $\mathbb{A} = (A, \ldots)$ be an automatic structure with degree bounded by $\delta \in \mathbb{N}$.

Let $\Gamma, L \subseteq \Gamma^*$, and $h : L \rightarrow A$ (bijective) witness the automaticity of \mathbb{A}.

For an element $a \in A$ of the structure \mathbb{A} and $r \in \mathbb{N}$ let $S(a, r)$ be the substructure of \mathbb{A} induced by the set

$$\{ b \in A \mid \text{the distance between } a \text{ and } b \text{ in the Gaifman-graph of } \mathbb{A} \text{ is at most } r \}$$

We prove: For every $a \in A$ and $r \in \mathbb{N}$ there exists $u \in L$ with:

- $S(a, r) \simeq S(h(u), r)$
- $|u| \leq 2^{2c \cdot r}$ for a constant c

This allows to apply the machinery of Ferrante/Rackoff.
Main ideas for the upper bound

Let $\mathbb{A} = (A, \ldots)$ be an automatic structure with degree bounded by $\delta \in \mathbb{N}$.

Let $\Gamma, L \subseteq \Gamma^*$, and $h : L \to A$ (bijective) witness the automaticity of \mathbb{A}.

For an element $a \in A$ of the structure \mathbb{A} and $r \in \mathbb{N}$ let $S(a, r)$ be the substructure of \mathbb{A} induced by the set

$$\{ b \in A \mid \text{the distance between } a \text{ and } b \text{ in the Gaifman-graph of } \mathbb{A} \text{ is at most } r \}$$

We prove: For every $a \in A$ and $r \in \mathbb{N}$ there exists $u \in L$ with:

- $S(a, r) \simeq S(h(u), r)$
- $|u| \leq 2^{2c \cdot r}$ for a constant c

This allows to apply the machinery of Ferrante/Rackoff.
Main ideas for the upper bound

Let $\mathbb{A} = (A, \ldots)$ be an automatic structure with degree bounded by $\delta \in \mathbb{N}$.

Let $\Gamma, L \subseteq \Gamma^*$, and $h : L \rightarrow A$ (bijective) witness the automaticity of \mathbb{A}.

For an element $a \in A$ of the structure \mathbb{A} and $r \in \mathbb{N}$ let $S(a, r)$ be the substructure of \mathbb{A} induced by the set

$$\{ b \in A \mid \text{the distance between } a \text{ and } b \text{ in the Gaifman-graph of } \mathbb{A} \text{ is at most } r \}$$

We prove: For every $a \in A$ and $r \in \mathbb{N}$ there exists $u \in L$ with:

- $S(a, r) \simeq S(h(u), r)$
- $|u| \leq 2^{2c \cdot r}$ for a constant c

This allows to apply the machinery of Ferrante/Rackoff.
Main ideas for the upper bound

For every $a \in A$ and $r \in \mathbb{N}$ there exists $u \in L$ with:

- $S(a, r) \cong S(h(u), r)$
- $|u| \leq 2^{2c \cdot r}$ for a constant c

We prove that there exists a finite automaton $B(a, r)$ such that

- the number of states of $B(a, r)$ is bounded by $2^{2^{O(r)}}$.
- $B(a, r)$ accepts the language $\{u \in L \mid S(a, r) \cong S(h(u), r)\}$.

Note that $m := |S(a, r)| \in 2^{O(r)}$, because the degree of the Gaifman-graph of A is bounded by the constant δ.

Let $S(a, r) = \{u_1, \ldots, u_m\}$ with $u = u_1$.

Take variables x_1, \ldots, x_m, where x_i represents $u_i \in S(a, r)$.
Main ideas for the upper bound

For every $a \in A$ and $r \in \mathbb{N}$ there exists $u \in L$ with:

- $S(a, r) \simeq S(h(u), r)$
- $|u| \leq 2^{c \cdot r}$ for a constant c

We prove that there exists a finite automaton $B(a, r)$ such that

- the number of states of $B(a, r)$ is bounded by $2^{2^{O(r)}}$.
- $B(a, r)$ accepts the language $\{u \in L \mid S(a, r) \simeq S(h(u), r)\}$.

Note that $m := |S(a, r)| \in 2^{O(r)}$, because the degree of the Gaifman-graph of A is bounded by the constant δ.

Let $S(a, r) = \{u_1, \ldots, u_m\}$ with $u = u_1$.

Take variables x_1, \ldots, x_m, where x_i represents $u_i \in S(a, r)$.
For every $a \in A$ and $r \in \mathbb{N}$ there exists $u \in L$ with:

- $S(a, r) \simeq S(h(u), r)$
- $|u| \leq 2^{2c \cdot r}$ for a constant c

We prove that there exists a finite automaton $B(a, r)$ such that

- the number of states of $B(a, r)$ is bounded by $2^{2^{O(r)}}$.
- $B(a, r)$ accepts the language $\{u \in L \mid S(a, r) \simeq S(h(u), r)\}$.

Note that $m := |S(a, r)| \in 2^{O(r)}$, because the degree of the Gaifman-graph of A is bounded by the constant δ.

Let $S(a, r) = \{u_1, \ldots, u_m\}$ with $u = u_1$.

Take variables x_1, \ldots, x_m, where x_i represents $u_i \in S(a, r)$.
Main ideas for the upper bound

For every \(a \in A \) and \(r \in \mathbb{N} \) there exists \(u \in L \) with:

- \(S(a, r) \cong S(h(u), r) \)
- \(|u| \leq 2^{c \cdot r} \) for a constant \(c \)

We prove that there exists a finite automaton \(B(a, r) \) such that

- the number of states of \(B(a, r) \) is bounded by \(2^{2^{O(r)}} \).
- \(B(a, r) \) accepts the language \(\{ u \in L \mid S(a, r) \cong S(h(u), r) \} \).

Note that \(m := |S(a, r)| \in 2^{O(r)} \), because the degree of the Gaifman-graph of \(A \) is bounded by the constant \(\delta \).

Let \(S(a, r) = \{ u_1, \ldots, u_m \} \) with \(u = u_1 \).

Take variables \(x_1, \ldots, x_m \), where \(x_i \) represents \(u_i \in S(a, r) \).
Main ideas for the upper bound

For every $0 \leq n \leq \delta$ there exists an FO-formula (of constant size) $\deg_n(x)$, expressing that x has degree n in the Gaifman-graph of \mathbb{A}.

Let $\psi(x_1, \ldots, x_m)$ be the conjunction of the following formulas

- $x_i \neq x_j$ for $i \neq j$,
- $R(x_{i_1}, \ldots, x_{i_n})$ if $(u_{i_1}, \ldots, u_{i_n}) \in R$ (R is an arbitrary relation of \mathbb{A}),
- $\neg R(x_{i_1}, \ldots, x_{i_n})$ if $(u_{i_1}, \ldots, u_{i_n}) \notin R$, and
- $\deg_n(x_i)$ if the degree of u_i in the Gaifman-graph of \mathbb{A} is precisely n.

Let $\theta(x_1) = \exists x_2 \cdots \exists x_m \psi(x_1, x_2 \ldots, x_m)$.

Then we have for every $b \in \mathbb{A}$:

$$\mathbb{A} \models \theta(b) \iff S(a, r) \simeq S(b, r)$$
Main ideas for the upper bound

For every $0 \leq n \leq \delta$ there exists an FO-formula (of constant size) $\deg_n(x)$, expressing that x has degree n in the Gaifman-graph of \mathbb{A}.

Let $\psi(x_1, \ldots, x_m)$ be the conjunction of the following formulas

- $x_i \neq x_j$ for $i \neq j$,
- $R(x_{i_1}, \ldots, x_{i_n})$ if $(u_{i_1}, \ldots, u_{i_n}) \in R$ (R is an arbitrary relation of \mathbb{A}),
- $\neg R(x_{i_1}, \ldots, x_{i_n})$ if $(u_{i_1}, \ldots, u_{i_n}) \notin R$, and
- $\deg_n(x_i)$ if the degree of u_i in the Gaifman-graph of \mathbb{A} is precisely n.

Let $\theta(x_1) = \exists x_2 \cdots \exists x_m \psi(x_1, x_2 \ldots, x_m)$.

Then we have for every $b \in \mathbb{A}$:

$$\mathbb{A} \models \theta(b) \iff S(a, r) \simeq S(b, r)$$
Main ideas for the upper bound

For every $0 \leq n \leq \delta$ there exists an FO-formula (of constant size) $\deg_n(x)$, expressing that x has degree n in the Gaifman-graph of \mathbb{A}.

Let $\psi(x_1, \ldots, x_m)$ be the conjunction of the following formulas:
- $x_i \neq x_j$ for $i \neq j$,
- $R(x_{i_1}, \ldots, x_{i_n})$ if $(u_{i_1}, \ldots, u_{i_n}) \in R$ (R is an arbitrary relation of \mathbb{A}),
- $\neg R(x_{i_1}, \ldots, x_{i_n})$ if $(u_{i_1}, \ldots, u_{i_n}) \notin R$, and
- $\deg_n(x_i)$ if the degree of u_i in the Gaifman-graph of \mathbb{A} is precisely n.

Let $\theta(x_1) = \exists x_2 \cdots \exists x_m \psi(x_1, x_2, \ldots, x_m)$.

Then we have for every $b \in \mathbb{A}$:

$$\mathbb{A} \models \theta(b) \iff S(a, r) \preceq S(b, r)$$
Main ideas for the upper bound

We translate the formula \(\theta(x_1) = \exists x_2 \cdots \exists x_m \psi(x_1, x_2, \ldots, x_m) \) into an equivalent automaton \(B(a, r) \) of size \(2^{2^{O(r)}} \):

Note that \(\psi(x_1, x_2, \ldots, x_m) \) is a conjunction of \(2^{O(r)} \) formulas, each of which can be translated into an automaton of size \(O(1) \).

\[\Rightarrow \psi(x_1, x_2, \ldots, x_m) \text{ can be translated into an automaton on } m \in 2^{O(r)} \text{ tracks with } 2^{2^{O(r)}} \text{ states (product construction).} \]

\[\Rightarrow \text{Using projection, } \theta(x_1) = \exists x_2 \cdots \exists x_m \psi(x_1, x_2, \ldots, x_m) \text{ can be translated into an equivalent automaton of size } 2^{2^{O(r)}}. \]
Main ideas for the upper bound

We translate the formula \(\theta(x_1) = \exists x_2 \cdots \exists x_m \psi(x_1, x_2, \ldots, x_m) \) into an equivalent automaton \(B(a, r) \) of size \(2^{2^{O(r)}} \):

Note that \(\psi(x_1, x_2, \ldots, x_m) \) is a conjunction of \(2^{O(r)} \) formulas, each of which can be translated into an automaton of size \(O(1) \).

\[\Rightarrow \psi(x_1, x_2, \ldots, x_m) \text{ can be translated into an automaton on } m \in 2^{O(r)} \text{ tracks with } 2^{2^{O(r)}} \text{ states (product construction)}. \]

\[\Rightarrow \text{Using projection, } \theta(x_1) = \exists x_2 \cdots \exists x_m \psi(x_1, x_2, \ldots, x_m) \text{ can be translated into an equivalent automaton of size } 2^{2^{O(r)}}. \]
We translate the formula $\theta(x_1) = \exists x_2 \cdots \exists x_m \psi(x_1, x_2, \ldots, x_m)$ into an equivalent automaton $B(a, r)$ of size $2^{2^{O(r)}}$:

Note that $\psi(x_1, x_2, \ldots, x_m)$ is a conjunction of $2^{O(r)}$ formulas, each of which can be translated into an automaton of size $O(1)$.

$\Rightarrow \psi(x_1, x_2, \ldots, x_m)$ can be translated into an automaton on $m \in 2^{O(r)}$ tracks with $2^{2^{O(r)}}$ states (product construction).

\Rightarrow Using projection, $\theta(x_1) = \exists x_2 \cdots \exists x_m \psi(x_1, x_2, \ldots, x_m)$ can be translated into an equivalent automaton of size $2^{2^{O(r)}}$.
Main ideas for the lower bound

A binary tree with marked leaves is a structure \((A, s_0, s_1, P)\), where \((A, s_0, s_1)\) is a complete binary tree and \(P\) is a unary predicate on the leaves.

1. Construct a “hard” automatic structure \(\mathbb{A}\) of bounded degree: \(\mathbb{A}\) consists of countably many disjoint copies of every binary tree with marked leaves.

2. Apply the machinery of Compton/Henson to the structure \(\mathbb{A}\): monadic interpretation of addition.
Main ideas for the lower bound

A binary tree with marked leaves is a structure \((A, s_0, s_1, P)\), where \((A, s_0, s_1)\) is a complete binary tree and \(P\) is a unary predicate on the leaves.

1. Construct a “hard” automatic structure \(\mathbb{A}\) of bounded degree: \(\mathbb{A}\) consists of countably many disjoint copies of every binary tree with marked leaves.

2. Apply the machinery of Compton/Henson to the structure \(\mathbb{A}\): monadic interpretation of addition.
Main ideas for the lower bound

A binary tree with marked leafs is a structure \((A, s_0, s_1, P)\), where \((A, s_0, s_1)\) is a complete binary tree and \(P\) is a unary predicate on the leafs.

1. Construct a “hard” automatic structure \(\mathbb{A}\) of bounded degree: \(\mathbb{A}\) consists of countably many disjoint copies of every binary tree with marked leafs.

2. Apply the machinery of Compton/Henson to the structure \(\mathbb{A}\): monadic interpretation of addition.
A “hard” automatic structure of bounded degree

Elements of the structure will be represented by words from the language \((\{a, a', b, b'\}*\{0, 1\}*\#)^*\).
A “hard” automatic structure of bounded degree

Elements of the structure will be represented by words from the language \((\{a, a', b, b'\}\{0, 1\}\#)^* \).

00#01#11#
A “hard” automatic structure of bounded degree

Elements of the structure will be represented by words from the language \((\{a, a', b, b'\}*\{0, 1\}*\#)^*\).

00#01#11#

Automaton for \(s_0\): In each \#\ldots\#-block, the first symbol \(x \in \{0, 1\}\) is replaced by \(a\) (if \(x = 0\)) resp. \(b'\) (if \(x = 1\)).
A “hard” automatic structure of bounded degree

Elements of the structure will be represented by words from the language \(\{a, a', b, b'\}^* \{0, 1\}^* \#^* \).

\[
00\#01\#11#
\]

\[
a0\#a1\#b'1\#
\]

Automaton for \(s_0 \): In each \(\# \cdots \# \)-block, the first symbol \(x \in \{0, 1\} \) is replaced by \(a \) (if \(x = 0 \)) resp. \(b' \) (if \(x = 1 \)).
A “hard” automatic structure of bounded degree

Elements of the structure will be represented by words from the language \(\{a, a', b, b'\}^* \{0, 1\}^* \# \)^*.

\[\begin{array}{c}
00\#01\#11#
\end{array} \]

\[\begin{array}{c}
a0\#a1\#b'1#
\end{array} \]

Automaton for \(s_0 \): In each \# \cdots \#-block, the first symbol \(x \in \{0, 1\} \) is replaced by \(a \) (if \(x = 0 \)) resp. \(b' \) (if \(x = 1 \)).

Automaton for \(s_1 \): In each \# \cdots \#-block, the first symbol \(x \in \{0, 1\} \) is replaced by \(a' \) (if \(x = 0 \)) resp. \(b \) (if \(x = 1 \)).
A “hard” automatic structure of bounded degree

Elements of the structure will be represented by words from the language \(\{a, a', b, b'\}^*\{0, 1\}^*\#\)^*.

\[
\begin{align*}
&\text{Automaton for } s_0: \text{ In each } \# \cdots \# \text{-block, the first symbol } x \in \{0, 1\} \text{ is replaced by } a \text{ (if } x = 0) \text{ resp. } b' \text{ (if } x = 1). \\
&\text{Automaton for } s_1: \text{ In each } \# \cdots \# \text{-block, the first symbol } x \in \{0, 1\} \text{ is replaced by } a' \text{ (if } x = 0) \text{ resp. } b \text{ (if } x = 1).
\end{align*}
\]
A “hard” automatic structure of bounded degree

Elements of the structure will be represented by words from the language \(\{a, a', b, b'\}^* \{0, 1\}^* \#^* \).

\[
\begin{array}{c}
00\#01\#11#
\
 a0\#a1\#b'1#
\
 aa\#ab'\#b' b' \\
 a'0\#a'1\#b1#
\
 a'a\#a'b'\# bb' \\
\end{array}
\]

Automaton for \(s_0 \): In each \(\# \cdots \# \)-block, the first symbol \(x \in \{0, 1\} \) is replaced by \(a \) (if \(x = 0 \)) resp. \(b' \) (if \(x = 1 \)).

Automaton for \(s_1 \): In each \(\# \cdots \# \)-block, the first symbol \(x \in \{0, 1\} \) is replaced by \(a' \) (if \(x = 0 \)) resp. \(b \) (if \(x = 1 \)).
A “hard” automatic structure of bounded degree

Elements of the structure will be represented by words from the language \((\{a, a', b, b'\}^*\{0, 1\}^*)^\ast\).

\[
\begin{array}{c}
00\#01\#11\\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
\quad s_0 & s_1 & s_0 & s_1 \\
a0\#a1\#b'1\\
\downarrow \quad \downarrow \\
aa\#ab'\#b'\# & aa'\#ab\#b'b' \\
\downarrow \quad \downarrow \\
aa'\#ab\#b'b' & a'a\#a'b\#bb' \\
\downarrow \quad \downarrow \\
a'0\#a'1\#b1 & a'0\#a'1\#b1\\
\end{array}
\]

Automaton for \(s_0\): In each \#\cdots\#-block, the first symbol \(x \in \{0, 1\}\) is replaced by \(a\) (if \(x = 0\)) resp. \(b'\) (if \(x = 1\)).

Automaton for \(s_1\): In each \#\cdots\#-block, the first symbol \(x \in \{0, 1\}\) is replaced by \(a'\) (if \(x = 0\)) resp. \(b\) (if \(x = 1\)).
A “hard” automatic structure of bounded degree

Elements of the structure will be represented by words from the language \(\{a, a', b, b'\}^* \{0, 1\}^* \#\)^*.

![Diagram showing automata for different states and transitions.]

Automaton for \(s_0\): In each \(\# \cdots \#\)-block, the first symbol \(x \in \{0, 1\}\) is replaced by \(a\) (if \(x = 0\)) resp. \(b'\) (if \(x = 1\)).

Automaton for \(s_1\): In each \(\# \cdots \#\)-block, the first symbol \(x \in \{0, 1\}\) is replaced by \(a'\) (if \(x = 0\)) resp. \(b\) (if \(x = 1\)).

Automaton for \(P\): accepts all words, where some \(\# \cdots \#\)-block belongs to \(\{a, b\}^*\).
A “hard” automatic structure of bounded degree

Elements of the structure will be represented by words from the language \((\{a, a', b, b'\}^*\{0, 1\}^*\#)^*\).

![Diagram of automata]

Automaton for \(s_0\): In each \# \cdots \#-block, the first symbol \(x \in \{0, 1\}\) is replaced by \(a\) (if \(x = 0\)) resp. \(b'\) (if \(x = 1\)).

Automaton for \(s_1\): In each \# \cdots \#-block, the first symbol \(x \in \{0, 1\}\) is replaced by \(a'\) (if \(x = 0\)) resp. \(b\) (if \(x = 1\)).

Automaton for \(P\): accepts all words, where some \# \cdots \#-block belongs to \(\{a, b\}^*\).
Monadic interpretation of addition

For an FO-formula $\varphi(x_1, \ldots, x_n, y_1, \ldots, y_m)$ over A and $b_1, \ldots, b_m \in A$ let $\varphi(x_1, \ldots, x_n, b_1, \ldots, b_m)^A$ be the n-ary relation

$$\{(a_1, \ldots, a_n) \mid \varphi(a_1, \ldots, a_n, b_1, \ldots, b_m) \text{ is true in } A\}.$$

For every $k \geq 0$ we can efficiently construct FO-formulas

$$\phi_k(x, y), \psi_k(x_1, x_2, x_3, y), \mu_k(x, y, z)$$

over A such that there exists $a \in A$ with:

1. the structure $(\phi_k(x, a)^A, \psi_k(x_1, x_2, x_3, a)^A)$ is isomorphic to $(\{0, \ldots, 2^{2^k} - 1\}, \{(x, y, z) \mid x + y = z\})$, and
2. every subset of $\phi_k(x, a)^A$ is of the form $\mu_k(x, a, b)^A$ for some $b \in A$.
Monadic interpretation of addition

For an FO-formula \(\varphi(x_1, \ldots, x_n, y_1, \ldots, y_m) \) over \(A \) and \(b_1, \ldots, b_m \in A \) let \(\varphi(x_1, \ldots, x_n, b_1, \ldots, b_m)^A \) be the \(n \)-ary relation

\[
\{(a_1, \ldots, a_n) \mid \varphi(a_1, \ldots, a_n, b_1, \ldots, b_m) \text{ is true in } A\}.
\]

For every \(k \geq 0 \) we can efficiently construct FO-formulas

\[
\phi_k(x, y), \ \psi_k(x_1, x_2, x_3, y), \ \mu_k(x, y, z)
\]

over \(A \) such that there exists \(a \in A \) with:

1. the structure \((\phi_k(x, a)^A, \psi_k(x_1, x_2, x_3, a)^A) \) is isomorphic to \((\{0, \ldots, 2^{2^k} - 1\}, \{(x, y, z) \mid x + y = z\}) \), and

2. every subset of \(\phi_k(x, a)^A \) is of the form \(\mu_k(x, a, b)^A \) for some \(b \in A \).
For every $k \geq 0$ we can efficiently construct FO-formulas

$$\phi_k(x, y), \psi_k(x_1, x_2, x_3, y), \mu_k(x, y, z)$$

over \mathbb{A} such that there exists $a \in A$ with:

1. the structure $(\phi_k(x, a)\mathbb{A}, \psi_k(x_1, x_2, x_3, a)\mathbb{A})$ is isomorphic to $(\{0, \ldots, 2^{2k} - 1\}, \{(x, y, z) \mid x + y = z\})$, and

2. every subset of $\phi_k(x, a)\mathbb{A}$ is of the form $\mu_k(x, a, b)\mathbb{A}$ for some $b \in A$.
For every $k \geq 0$ we can efficiently construct FO-formulas

$$\phi_k(x, y), \psi_k(x_1, x_2, x_3, y), \mu_k(x, y, z)$$

over \mathbb{A} such that there exists $a \in A$ with:

1. the structure $(\phi_k(x, a)^\mathbb{A}, \psi_k(x_1, x_2, x_3, a)^\mathbb{A})$ is isomorphic to $\left(\{0, \ldots, 2^{2^k} - 1\}, \{(x, y, z) \mid x + y = z\}\right)$, and

2. every subset of $\phi_k(x, a)^\mathbb{A}$ is of the form $\mu_k(x, a, b)^\mathbb{A}$ for some $b \in A$.
For every $k \geq 0$ we can efficiently construct FO-formulas

$$\phi_k(x, y), \psi_k(x_1, x_2, x_3, y), \mu_k(x, y, z)$$

over A such that there exists $a \in A$ with:

1. the structure $(\phi_k(x, a)^A, \psi_k(x_1, x_2, x_3, a)^A)$ is isomorphic to $(\{0, \ldots, 2^{2^k} - 1\}, \{(x, y, z) \mid x + y = z\})$, and

2. every subset of $\phi_k(x, a)^A$ is of the form $\mu_k(x, a, b)^A$ for some $b \in A$.

Choose for a the root of a binary tree T_k of height 2^k (labeling of the leaves irrelevant): Leafs of $T_k \leftrightarrow \{0, \ldots, 2^{2^k} - 1\}$.
Monadic interpretation of addition

For every $k \geq 0$ we can efficiently construct FO-formulas

\[\phi_k(x, y), \psi_k(x_1, x_2, x_3, y), \mu_k(x, y, z) \]

over A such that there exists $a \in A$ with:

1. the structure $(\phi_k(x, a)^A, \psi_k(x_1, x_2, x_3, a)^A)$ is isomorphic to $(\{0, \ldots, 2^{2k} - 1\}, \{(x, y, z) \mid x + y = z\})$, and
2. every subset of $\phi_k(x, a)^A$ is of the form $\mu_k(x, a, b)^A$ for some $b \in A$.

Choose for a the root of a binary tree T_k of height 2^k (labeling of the leaves irrelevant): Leaves of $T_k \equiv \{0, \ldots, 2^{2k} - 1\}$.
Monadic interpretation of addition

For every $k \geq 0$ we can efficiently construct FO-formulas

$$
\phi_k(x, y), \psi_k(x_1, x_2, x_3, y), \mu_k(x, y, z)
$$

over \mathbb{A} such that there exists $a \in A$ with:

1. the structure $(\phi_k(x, a)^\mathbb{A}, \psi_k(x_1, x_2, x_3, a)^\mathbb{A})$ is isomorphic to $\left(\{0, \ldots, 2^{2^k} - 1\}, \{(x, y, z) \mid x + y = z\}\right)$, and

2. every subset of $\phi_k(x, a)^\mathbb{A}$ is of the form $\mu_k(x, a, b)^\mathbb{A}$ for some $b \in A$.

Choose for a the root of a binary tree T_k of height 2^k (labeling of the leafs irrelevant): Leafs of $T_k \rightleftharpoons \{0, \ldots, 2^{2^k} - 1\}$.

We can express $x + y = z$ with an FO-formula of size $O(k)$: carry-look-ahead addition
For every $k \geq 0$ we can efficiently construct FO-formulas

$$\phi_k(x, y), \psi_k(x_1, x_2, x_3, y), \mu_k(x, y, z)$$

over A such that there exists $a \in A$ with:

1. the structure $(\phi_k(x, a)^A, \psi_k(x_1, x_2, x_3, a)^A)$ is isomorphic to $(\{0, \ldots, 2^{2^k} - 1\}, \{(x, y, z) \mid x + y = z\})$, and

2. every subset of $\phi_k(x, a)^A$ is of the form $\mu_k(x, a, b)^A$ for some $b \in A$.
Monadic interpretation of addition

For every $k \geq 0$ we can efficiently construct FO-formulas

$$\phi_k(x, y), \psi_k(x_1, x_2, x_3, y), \mu_k(x, y, z)$$

over \mathbb{A} such that there exists $a \in A$ with:

1. the structure $(\phi_k(x, a)^\mathbb{A}, \psi_k(x_1, x_2, x_3, a)^\mathbb{A})$ is isomorphic to $\langle \{0, \ldots, 2^{2k} - 1\}, \{ (x, y, z) \mid x + y = z \} \rangle$, and

2. every subset of $\phi_k(x, a)^\mathbb{A}$ is of the form $\mu_k(x, a, b)^\mathbb{A}$ for some $b \in A$.

Let B be an arbitrary subset of $\phi_k(x, a)^\mathbb{A}$, i.e., an arbitrary subset of the leafs of the tree T_k rooted at a.

![Diagram of a binary tree with labels a, s_0, s_1, s_0, s_1, s_0, s_1, and B at the leaf nodes.](image)
For every $k \geq 0$ we can efficiently construct FO-formulas

$$
\phi_k(x, y), \psi_k(x_1, x_2, x_3, y), \mu_k(x, y, z)
$$

over \mathbb{A} such that there exists $a \in A$ with:

1. the structure $(\langle \phi_k(x, a) \rangle^\mathbb{A}, \langle \psi_k(x_1, x_2, x_3, a) \rangle^\mathbb{A})$ is isomorphic to $(\{0, \ldots, 2^{2^k} - 1\}, \{(x, y, z) \mid x + y = z\})$, and
2. every subset of $\phi_k(x, a)$ is of the form $\mu_k(x, a, b)$ for some $b \in A$.

Let B be an arbitrary subset of $\phi_k(x, a)$, i.e., an arbitrary subset of the leafs of the tree T_k rooted at a.

Tree automatic structures are defined similarly to automatic structures using tree automata.

(\mathbb{N}, \cdot) is a tree automatic structure that is not automatic.

Let A be a tree automatic structure of bounded degree. Then the FO-theory of A belongs to $\text{ATIME}(n, 2^{2^{2^c \cdot n}})$ for some constant c.
Tree automatic structures are defined similarly to automatic structures using tree automata.

(\mathbb{N}, \cdot) is a tree automatic structure that is not automatic.

Let A be a tree automatic structure of bounded degree. Then the FO-theory of A belongs to $\text{ATIME}(n, 2^{2^{2^c n}})$ for some constant c.
Tree automatic structures are defined similarly to automatic structures using tree automata.

(\mathbb{N}, \cdot) is a tree automatic structure that is not automatic.

Let \mathcal{A} be a tree automatic structure of bounded degree. Then the FO-theory of \mathcal{A} belongs to $\text{ATIME}(n, 2^{2^{2^{2^c \cdot n}}})$ for some constant c.
Tree automatic structures are defined similarly to automatic structures using tree automata.

(\mathbb{N}, \cdot) is a tree automatic structure that is not automatic.

Let \mathbb{A} be a tree automatic structure of bounded degree. Then the FO-theory of \mathbb{A} belongs to $\text{ATIME}(n, 2^{2^{c \cdot n}})$ for some constant c.
Open Problems

- For automatic structures: Close that gap between ATIME$(c \cdot n, 2^{2^{c \cdot n}})$ (lower bound) and ATIME$(n, 2^{2^{2^{2^{c \cdot n}}}})$ (upper bound).
- For tree automatic structures: Close that gap between ATIME$(c \cdot n, 2^{2^{c \cdot n}})$ and ATIME$(n, 2^{2^{2^{2^{2^{c \cdot n}}}}})$.
- What about first-order logic with \exists^ω-quantifiers?
- Is there a tree automatic structure of bounded degree that is not automatic?
- Other classes of (tree) automatic structures with elementary FO-theories.
- E.g. $(\mathbb{N}, +)$: Is there an automatic structure \mathcal{A} of bounded degree such that $(\mathbb{N}, +)$ is first-order interpretable in \mathcal{A}.

Markus Lohrey
Theories of Automatic Structures and their Complexity
For automatic structures: Close that gap between
ATIME\((c \cdot n, 2^{2c \cdot n})\) (lower bound) and ATIME\((n, 2^{2^{2c \cdot n}})\) (upper bound).

For tree automatic structures: Close that gap between
ATIME\((c \cdot n, 2^{2c \cdot n})\) and ATIME\((n, 2^{2^{2^{2c \cdot n}}})\).

What about first-order logic with $\exists\omega$-quantifiers?

Is there a tree automatic structure of bounded degree that is not automatic?

Other classes of (tree) automatic structures with elementary FO-theories.

E.g. $\langle \mathbb{N}, + \rangle$: Is there an automatic structure A of bounded degree such that $\langle \mathbb{N}, + \rangle$ is first-order interpretable in A.

Markus Lohrey
Theories of Automatic Structures and their Complexity
Open Problems

- For automatic structures: Close that gap between $\text{ATIME}(c \cdot n, 2^{2c \cdot n})$ (lower bound) and $\text{ATIME}(n, 2^{2^{2c \cdot n}})$ (upper bound).

- For tree automatic structures: Close that gap between $\text{ATIME}(c \cdot n, 2^{2c \cdot n})$ and $\text{ATIME}(n, 2^{2^{22c \cdot n}})$.

- What about first-order logic with \exists^ω-quantifiers?

- Is there a tree automatic structure of bounded degree that is not automatic?

- Other classes of (tree) automatic structures with elementary FO-theories.

- E.g. $(\mathbb{N}, +)$: Is there an automatic structure \mathcal{A} of bounded degree such that $(\mathbb{N}, +)$ is first-order interpretable in \mathcal{A}.
Open Problems

For automatic structures: Close that gap between $\text{ATIME}(c \cdot n, 2^{2^c \cdot n})$ (lower bound) and $\text{ATIME}(n, 2^{2^{2^c} \cdot n})$ (upper bound).

For tree automatic structures: Close that gap between $\text{ATIME}(c \cdot n, 2^{2^c \cdot n})$ and $\text{ATIME}(n, 2^{2^{2^c} \cdot n})$.

What about first-order logic with \exists^ω-quantifiers?

- Is there a tree automatic structure of bounded degree that is not automatic?

- Other classes of (tree) automatic structures with elementary FO-theories.

- E.g. $(\mathbb{N}, +)$: Is there an automatic structure \mathfrak{A} of bounded degree such that $(\mathbb{N}, +)$ is first-order interpretable in \mathfrak{A}.
Open Problems

- For automatic structures: Close that gap between \(\text{ATIME}(c \cdot n, 2^{2c \cdot n}) \) (lower bound) and \(\text{ATIME}(n, 2^{2^{2c \cdot n}}) \) (upper bound).

- For tree automatic structures: Close that gap between \(\text{ATIME}(c \cdot n, 2^{2c \cdot n}) \) and \(\text{ATIME}(n, 2^{2^{2^{2c \cdot n}}}) \).

- What about first-order logic with \(\exists^\omega \)-quantifiers?

- Is there a tree automatic structure of bounded degree that is not automatic?

- Other classes of (tree) automatic structures with elementary FO-theories.

- E.g. \((\mathbb{N}, +)\): Is there an automatic structure \(\mathbb{A} \) of bounded degree such that \((\mathbb{N}, +)\) is first-order interpretable in \(\mathbb{A} \).
Open Problems

- For automatic structures: Close that gap between $\text{ATIME}(c \cdot n, 2^{2c \cdot n})$ (lower bound) and $\text{ATIME}(n, 2^{22c \cdot n})$ (upper bound).
- For tree automatic structures: Close that gap between $\text{ATIME}(c \cdot n, 2^{2c \cdot n})$ and $\text{ATIME}(n, 2^{22c \cdot n})$.
- What about first-order logic with \exists^ω-quantifiers?
- Is there a tree automatic structure of bounded degree that is not automatic?
- Other classes of (tree) automatic structures with elementary FO-theories.
 - E.g. $(\mathbb{N}, +)$: Is there an automatic structure A of bounded degree such that $(\mathbb{N}, +)$ is first-order interpretable in A.
Open Problems

- For automatic structures: Close that gap between
 $\text{ATIME}(c \cdot n, 2^{2c \cdot n})$ (lower bound) and $\text{ATIME}(n, 2^{2^{2c \cdot n}})$ (upper bound).

- For tree automatic structures: Close that gap between
 $\text{ATIME}(c \cdot n, 2^{2c \cdot n})$ and $\text{ATIME}(n, 2^{2^{22c \cdot n}})$.

- What about first-order logic with \exists^ω-quantifiers?

- Is there a tree automatic structure of bounded degree that is not automatic?

- Other classes of (tree) automatic structures with elementary FO-theories.

- E.g. $(\mathbb{N}, +)$: Is there an automatic structure \mathfrak{A} of bounded degree such that $(\mathbb{N}, +)$ is first-order interpretable in \mathfrak{A}.