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Definition of Automatic Structures

Let A = (A,R1, . . . ,Rn) be a relational structure, Ri ⊆ Ani .
We say that A is automatic, if the following data exist:

a finite alphabet Σ

a regular language L ⊆ Σ∗

a bijection h : L → A such that for every 1 ≤ i ≤ n the
relation

{(u1, u2, . . . , uni
) ∈ Lni | (h(u1), h(u2), . . . , h(uni

)) ∈ Ri}

is synchronized rational.
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Synchronized Rational Relations

Binary synchronized rational relations are recognized by
synchronous 2-tape automata.

In order to accept a pair (u, v) ∈ Σ∗ × Σ∗ such an automaton
operates as follows:
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Synchronized Rational Relations

Binary synchronized rational relations are recognized by
synchronous 2-tape automata.

In order to accept a pair (u, v) ∈ Σ∗ × Σ∗ such an automaton
operates as follows:
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Synchronized Rational Relations

Binary synchronized rational relations are recognized by
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Examples of Automatic Structures

The following structures are automatic:

(N,+)

(Q,≤)

Transition graphs of Turing-machines

The following structures are not automatic:

(N, ·)

the free monoid generated by two elements
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First-Order Logic (FO)

Let A = (A,R1, . . . ,Rn) be a relational structure.

Let Ω be an infinite set of variables ranging over A.

The set of all FO-formulas over A is defined as follows:

x = y and Ri(x1, . . . , xni
) are FO-formulas, where

x , y , x1, . . . , xni
∈ Ω

If φ and ψ are FO-formulas then also

¬φ, φ ∧ ψ, φ ∨ ψ, ∃x : φ, ∀x : φ

are FO-formulas.

An FO-sentence is an FO-formula without free variables.
The FO-theory of A is the set of all FO-sentences that are true in
the structure A.
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FO-theories of automatic structures

Khoussainov, Nerode 1994: Every automatic structure has a
decidable FO-theory.

A problem is called elementary decidable, if it can be decided in

time 2·
·

·

2n

, where the height of this tower of exponents is constant.

Blumensath, Grädel 2000: There are automatic structures which
are not elementary decidable.

Example: ({0, 1}∗, s0, s1,�), where si = {(w ,w i | w ∈ {0, 1}∗}
and � is the prefix relation.
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Structures of Bounded Degree

Let A = (A,R1, . . . ,Rn) be a relational structure.
The Gaifman-graph of A is the undirected graph (A,E ), where

E = {(a, b) |a 6= b, a and b both belong to some tuple

of some relation Ri}

The structure A has bounded degree if its Gaifman-graph has
bounded degree, i.e., for some constant δ, every element of A has
at most δ many neighbors in the Gaifman-graph.
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Automatic Structures of Bounded Degree

Automatic Structures of bounded degree:

({0, 1}∗, s0, s1)

Transition graphs of Turing-machines

Cayley-graphs of automatic groups

Automatic Structures of unbounded degree:

(N,+)

(Q,≤)

({0, 1}∗, s0, s1,�)
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Main Results

ATIME(a(n), t(n)) is the class of all problems that can be solved in

alternating time t(n) with

only a(n) many alternations.

Well-known: ATIME(a(n), t(n)) ⊆ DSPACE(t(n))

Theorem

Let A be an automatic structure of bounded degree. Then the

FO-theory of A belongs to ATIME(n, 222c·n

) for some constant c.

Theorem

There exists an automatic structure of bounded degree such that

the FO-theory of A is not in ATIME(c · n, 22c·n
) for some constant

c.
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Main ideas for the upper bound

Let A = (A, . . .) be an automatic structure with degree bounded
by δ ∈ N.

Let Γ, L ⊆ Γ∗, and h : L → A (bijective) witness the automaticity
of A.

For an element a ∈ A of the structure A and r ∈ N let S(a, r) be
the substructure of A induced by the set

{b ∈ A |the distance between a and b in the

Gaifman-graph of A is at most r}

We prove: For every a ∈ A and r ∈ N there exists u ∈ L with:

S(a, r) ' S(h(u), r)

|u| ≤ 22c·r
for a constant c

This allows to apply the machinery of Ferrante/Rackoff.
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Main ideas for the upper bound

For every a ∈ A and r ∈ N there exists u ∈ L with:

S(a, r) ' S(h(u), r)

|u| ≤ 22c·r
for a constant c

We prove that there exists a finite automaton B(a, r) such that

the number of states of B(a, r) is bounded by 22O(r)
.

B(a, r) accepts the language {u ∈ L | S(a, r) ' S(h(u), r)}.

Note that m := |S(a, r)| ∈ 2O(r), because the degree of the
Gaifman-graph of A is bounded by the constant δ.

Let S(a, r) = {u1, . . . , um} with u = u1.

Take variables x1, . . . , xm, where xi represents ui ∈ S(a, r).
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Main ideas for the upper bound

For every 0 ≤ n ≤ δ there exists an FO-formula (of constant size)
degn(x), expressing that x has degree n in the Gaifman-graph of A.

Let ψ(x1, . . . , xm) be the conjunction of the following formulas

xi 6= xj for i 6= j ,

R(xi1 , . . . , xin) if (ui1 , . . . , uin) ∈ R (R is an arbitrary relation
of A),

¬R(xi1 , . . . , xin) if (ui1 , . . . , uin) 6∈ R , and

degn(xi ) if the degree of ui in the Gaifman-graph of A is
precisely n.

Let θ(x1) = ∃x2 · · · ∃xm ψ(x1, x2 . . . , xm).

Then we have for every b ∈ A:

A |= θ(b) ⇔ S(a, r) ' S(b, r)
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Main ideas for the upper bound

We translate the formula θ(x1) = ∃x2 · · · ∃xm ψ(x1, x2, . . . , xm) into

an equivalent automaton B(a, r) of size 22O(r)
:

Note that ψ(x1, x2, . . . , xm) is a conjunction of 2O(r) formulas,
each of which can be translated into an automaton of size O(1).

⇒ ψ(x1, x2, . . . , xm) can be translated into an automaton on

m ∈ 2O(r) tracks with 22O(r)
states (product construction).

⇒ Using projection, θ(x1) = ∃x2 · · · ∃xm ψ(x1, x2, . . . , xm) can be

translated into an equivalent automaton of size 22O(r)
.

Markus Lohrey Theories of Automatic Structures and their Complexity



Main ideas for the upper bound

We translate the formula θ(x1) = ∃x2 · · · ∃xm ψ(x1, x2, . . . , xm) into

an equivalent automaton B(a, r) of size 22O(r)
:

Note that ψ(x1, x2, . . . , xm) is a conjunction of 2O(r) formulas,
each of which can be translated into an automaton of size O(1).

⇒ ψ(x1, x2, . . . , xm) can be translated into an automaton on

m ∈ 2O(r) tracks with 22O(r)
states (product construction).

⇒ Using projection, θ(x1) = ∃x2 · · · ∃xm ψ(x1, x2, . . . , xm) can be

translated into an equivalent automaton of size 22O(r)
.

Markus Lohrey Theories of Automatic Structures and their Complexity



Main ideas for the upper bound

We translate the formula θ(x1) = ∃x2 · · · ∃xm ψ(x1, x2, . . . , xm) into

an equivalent automaton B(a, r) of size 22O(r)
:

Note that ψ(x1, x2, . . . , xm) is a conjunction of 2O(r) formulas,
each of which can be translated into an automaton of size O(1).

⇒ ψ(x1, x2, . . . , xm) can be translated into an automaton on

m ∈ 2O(r) tracks with 22O(r)
states (product construction).

⇒ Using projection, θ(x1) = ∃x2 · · · ∃xm ψ(x1, x2, . . . , xm) can be

translated into an equivalent automaton of size 22O(r)
.

Markus Lohrey Theories of Automatic Structures and their Complexity



Main ideas for the lower bound

A binary tree with marked leafs is a structure (A, s0, s1,P), where
(A, s0, s1) is a complete binary tree and P is a unary predicate on
the leafs.

P P P

s0 s1

s0 s1 s0 s1

1 Construct a “hard” automatic structure A of bounded degree:
A consists of countably many disjoint copies of every binary
tree with marked leafs.

2 Apply the machinery of Compton/Henson to the structure A:
monadic interpretation of addition.

Markus Lohrey Theories of Automatic Structures and their Complexity



Main ideas for the lower bound

A binary tree with marked leafs is a structure (A, s0, s1,P), where
(A, s0, s1) is a complete binary tree and P is a unary predicate on
the leafs.

P P P

s0 s1

s0 s1 s0 s1

1 Construct a “hard” automatic structure A of bounded degree:
A consists of countably many disjoint copies of every binary
tree with marked leafs.

2 Apply the machinery of Compton/Henson to the structure A:
monadic interpretation of addition.

Markus Lohrey Theories of Automatic Structures and their Complexity



Main ideas for the lower bound

A binary tree with marked leafs is a structure (A, s0, s1,P), where
(A, s0, s1) is a complete binary tree and P is a unary predicate on
the leafs.

P P P

s0 s1

s0 s1 s0 s1

1 Construct a “hard” automatic structure A of bounded degree:
A consists of countably many disjoint copies of every binary
tree with marked leafs.

2 Apply the machinery of Compton/Henson to the structure A:
monadic interpretation of addition.

Markus Lohrey Theories of Automatic Structures and their Complexity



A “hard” automatic structure of bounded degree

Elements of the structure will be represented by words from the
language ({a, a′, b, b′}∗{0, 1}∗#)∗.

Markus Lohrey Theories of Automatic Structures and their Complexity



A “hard” automatic structure of bounded degree

Elements of the structure will be represented by words from the
language ({a, a′, b, b′}∗{0, 1}∗#)∗.

00#01#11#

Markus Lohrey Theories of Automatic Structures and their Complexity



A “hard” automatic structure of bounded degree

Elements of the structure will be represented by words from the
language ({a, a′, b, b′}∗{0, 1}∗#)∗.

00#01#11#

Automaton for s0: In each # · · ·#-block, the first symbol
x ∈ {0, 1} is replaced by a (if x = 0) resp. b ′ (if x = 1).
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Monadic interpretation of addition

For an FO-formula ϕ(x1, . . . , xn, y1, . . . , ym) over A and
b1, . . . , bm ∈ A let ϕ(x1, . . . , xn, b1, . . . , bm)A be the n-ary relation

{(a1, . . . , an) | ϕ(a1, . . . , an, b1, . . . , bm) is true in A}.

For every k ≥ 0 we can efficiently construct FO-formulas

φk(x , y), ψk(x1, x2, x3, y), µk(x , y , z)

over A such that there exists a ∈ A with:

1 the structure (φk (x , a)A, ψk (x1, x2, x3, a)
A) is isomorphic to

({0, . . . , 22k
− 1}, {(x , y , z) | x + y = z}), and

2 every subset of φk(x , a)A is of the form µk(x , a, b)A for some
b ∈ A.
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For every k ≥ 0 we can efficiently construct FO-formulas

φk(x , y), ψk(x1, x2, x3, y), µk(x , y , z)

over A such that there exists a ∈ A with:

1 the structure (φk (x , a)A, ψk (x1, x2, x3, a)
A) is isomorphic to

({0, . . . , 22k
− 1}, {(x , y , z) | x + y = z}), and

2 every subset of φk(x , a)A is of the form µk(x , a, b)A for some
b ∈ A.

Choose for a the root of a binary tree Tk of height 2k (labeling of

the leafs irrelevant): Leafs of Tk 
 {0, . . . , 22k
− 1}.

a

0 1 2 3

s0 s1

s0 s1 s0 s1
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Monadic interpretation of addition

For every k ≥ 0 we can efficiently construct FO-formulas

φk(x , y), ψk(x1, x2, x3, y), µk(x , y , z)

over A such that there exists a ∈ A with:

1 the structure (φk (x , a)A, ψk (x1, x2, x3, a)
A) is isomorphic to

({0, . . . , 22k
− 1}, {(x , y , z) | x + y = z}), and

2 every subset of φk(x , a)A is of the form µk(x , a, b)A for some
b ∈ A.

Choose for a the root of a binary tree Tk of height 2k (labeling of

the leafs irrelevant): Leafs of Tk 
 {0, . . . , 22k
− 1}.

a

0 1x 2y 3z

s0 s1

s0 s1 s0 s1

We can express x + y = z with an FO-formula

of size O(k): carry-look-ahead addition
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For every k ≥ 0 we can efficiently construct FO-formulas

φk(x , y), ψk(x1, x2, x3, y), µk(x , y , z)

over A such that there exists a ∈ A with:

1 the structure (φk (x , a)A, ψk (x1, x2, x3, a)
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({0, . . . , 22k
− 1}, {(x , y , z) | x + y = z}), and

2 every subset of φk(x , a)A is of the form µk(x , a, b)A for some
b ∈ A.

Let B be an arbitrary subset of φk(x , a)A, i.e., an arbitrary subset
of the leafs of the tree Tk rooted at a.

a

B B B

s0 s1

s0 s1 s0 s1
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B B B

s0 s1

s0 s1 s0 s1

b

P P P

s0 s1

s0 s1 s0 s1
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Tree automatic structures

Tree automatic structures are defined similarly to automatic
structures using tree automata.

(N, ·) is a tree automatic structure that is not automatic.

Let A be a tree automatic structure of bounded degree. Then

the FO-theory of A belongs to ATIME(n, 2222
c·n

) for some
constant c .
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Open Problems

For automatic structures: Close that gap between

ATIME(c · n, 22c·n
) (lower bound) and ATIME(n, 222c·n

) (upper
bound).

For tree automatic structures: Close that gap between

ATIME(c · n, 22c·n
) and ATIME(n, 2222

c·n

).

What about first-order logic with ∃ω-quantifiers?

Is there a tree automatic structure of bounded degree that is
not automatic?

Other classes of (tree) automatic structures with elementary
FO-theories.

E.g. (N,+): Is there an automatic structure A of bounded
degree such that (N,+) is first-order interpretable in A.
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