Theories of Automatic Structures and their Complexity

Markus Lohrey

University of Stuttgart, Germany

Workshop on Automata, Structures and Logic 2004

・ロト ・回ト ・ヨト ・ヨト

Let $\mathbb{A} = (A, R_1, \dots, R_n)$ be a relational structure, $R_i \subseteq A^{n_i}$. We say that \mathbb{A} is automatic, if the following data exist:

- a finite alphabet Σ
- a regular language $L \subseteq \Sigma^*$
- a bijection $h: L \to A$ such that for every $1 \le i \le n$ the relation

$$\{(u_1, u_2, \ldots, u_{n_i}) \in L^{n_i} \mid (h(u_1), h(u_2), \ldots, h(u_{n_i})) \in R_i\}$$

is synchronized rational.

・ロッ ・回ッ ・ヨッ ・ロッ

In order to accept a pair $(u, v) \in \Sigma^* \times \Sigma^*$ such an automaton operates as follows:

v	b_0	b_1	<i>b</i> ₂	•••	b_{m-1}	b _m	#	 #
и	<i>a</i> 0	a ₁	a ₂		a_{m-1}	a _m	a_{m+1}	 a _n

・ロ・ ・ 日・ ・ 日・ ・ 日・

In order to accept a pair $(u, v) \in \Sigma^* \times \Sigma^*$ such an automaton operates as follows:

	q_0	_					
v	<i>b</i> 0	b_1	<i>b</i> ₂	 b_{m-1}	b _m	#	 #
и	a ₀	a ₁	a ₂	 a_{m-1}	a _m	a_{m+1}	 a _n

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

In order to accept a pair $(u, v) \in \Sigma^* \times \Sigma^*$ such an automaton operates as follows:

(ロ) (同) (E) (E)

In order to accept a pair $(u, v) \in \Sigma^* \times \Sigma^*$ such an automaton operates as follows:

			q_2				
v	<i>b</i> 0	b_1	<i>b</i> ₂	 b_{m-1}	b _m	#	 #
и	a ₀	a ₁	a ₂	 a_{m-1}	a _m	a_{m+1}	 a _n

・ロッ ・回ッ ・ヨッ ・ロッ

In order to accept a pair $(u, v) \in \Sigma^* \times \Sigma^*$ such an automaton operates as follows:

 q_m b_{m-1} . . . # b_2 # V b_1 b_m b_0 . . . am a_{m+1} a_0 a_{m-1} и a_1 a_2 an

Markus Lohrey Theories of Automatic Structures and their Complexity

(ロ) (同) (E) (E)

In order to accept a pair $(u, v) \in \Sigma^* \times \Sigma^*$ such an automaton operates as follows:

 b_{m-1} . . . # v b_2 b_m b_1 # b_0 . . . a_{m+1} a_{m-1} am и a_0 a_1 a_2 an

 q_{m+1}

(日) (同) (目) (日) (日)

In order to accept a pair $(u, v) \in \Sigma^* \times \Sigma^*$ such an automaton operates as follows:

 q_n

v	b_0	b_1	<i>b</i> ₂	•••	b_{m-1}	b _m	#	•••	#
и	a ₀	a ₁	a ₂		a_{m-1}	a _m	a_{m+1}		a _n

・ロト ・ 同ト ・ ヨト ・ ヨト

- $(\mathbb{N}, +)$
- (\mathbb{Q}, \leq)
- Transition graphs of Turing-machines

The following structures are not automatic:

Chief the monoid principal of the demonstration

イロン イボン イヨン イヨン

- (ℕ,+)
- (\mathbb{Q}, \leq)
- Transition graphs of Turing-machines

The following structures are not automatic:

- a the free monoid generated by two elements

イロン イボン イヨン イヨン

- (ℕ,+)
- (\mathbb{Q},\leq)
- Transition graphs of Turing-machines

The following structures are not automatic:

- $\bullet \ (\mathbb{N}, \cdot)$
 - the free monoid generated by two elements

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

- (ℕ, +)
- (\mathbb{Q},\leq)
- Transition graphs of Turing-machines

The following structures are not automatic:

- \bullet (\mathbb{N}, \cdot)
- the free monoid generated by two elements

・ロット (四)・ (日)・ (日)・

- (ℕ, +)
- (\mathbb{Q},\leq)
- Transition graphs of Turing-machines

The following structures are not automatic:

- (\mathbb{N}, \cdot)
- the free monoid generated by two elements

・ロト ・回ト ・ヨト ・ヨト

- (ℕ, +)
- (\mathbb{Q},\leq)
- Transition graphs of Turing-machines

The following structures are not automatic:

- (ℕ, ·)
- the free monoid generated by two elements

→ → 同→ → 三→ → 三→

- (ℕ, +)
- (\mathbb{Q},\leq)
- Transition graphs of Turing-machines

The following structures are not automatic:

- (ℕ, ·)
- the free monoid generated by two elements

(日本) (日本) (日本)

First-Order Logic (FO)

Let $\mathbb{A} = (A, R_1, \dots, R_n)$ be a relational structure.

Let Ω be an infinite set of variables ranging over A.

The set of all FO-formulas over \mathbb{A} is defined as follows:

- x = y and $R_i(x_1, ..., x_{n_i})$ are FO-formulas, where $x, y, x_1, ..., x_{n_i} \in \Omega$
- If ϕ and ψ are FO-formulas then also

$$\neg \phi, \quad \phi \wedge \psi, \quad \phi \lor \psi, \quad \exists x : \phi, \quad \forall x : \phi$$

are FO-formulas.

An FO-sentence is an FO-formula without free variables. The FO-theory of \mathbb{A} is the set of all FO-sentences that are true in the structure \mathbb{A} .

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲目 ● ● ●

A problem is called elementary decidable, if it can be decided in time 2²ⁿ, where the height of this tower of exponents is constant.

Blumensath, Grädel 2000: There are automatic structures which are not elementary decidable.

Example: $(\{0,1\}^*, s_0, s_1, \leq)$, where $s_i = \{(w, w \ i \mid w \in \{0,1\}^*\}$ and \leq is the prefix relation.

A problem is called elementary decidable, if it can be decided in time $2^{\frac{2^n}{2^n}}$, where the height of this tower of exponents is constant.

Blumensath, Grädel 2000: There are automatic structures which are not elementary decidable.

Example: $(\{0,1\}^*, s_0, s_1, \preceq)$, where $s_i = \{(w, w \ i \mid w \in \{0,1\}^*\}$ and \preceq is the prefix relation.

・ロット (四)・ (日)・ (日)・

A problem is called elementary decidable, if it can be decided in time $2^{\frac{2^n}{2^n}}$, where the height of this tower of exponents is constant.

Blumensath, Grädel 2000: There are automatic structures which are not elementary decidable.

Example: $(\{0,1\}^*, s_0, s_1, \preceq)$, where $s_i = \{(w, w \ i \mid w \in \{0,1\}^*\}$ and \preceq is the prefix relation.

・ロ・ ・ 日・ ・ 日・ ・ 日・

A problem is called elementary decidable, if it can be decided in time $2^{\frac{2^n}{2}}$, where the height of this tower of exponents is constant.

Blumensath, Grädel 2000: There are automatic structures which are not elementary decidable.

Example: $(\{0,1\}^*, s_0, s_1, \leq)$, where $s_i = \{(w, w \ i \mid w \in \{0,1\}^*\}$ and \leq is the prefix relation.

Let $\mathbb{A} = (A, R_1, \dots, R_n)$ be a relational structure. The Gaifman-graph of \mathbb{A} is the undirected graph (A, E), where

 $E = \{(a, b) | a \neq b, a \text{ and } b \text{ both belong to some tuple} \\ \text{of some relation } R_i \}$

The structure \mathbb{A} has bounded degree if its Gaifman-graph has bounded degree, i.e., for some constant δ , every element of \mathbb{A} has at most δ many neighbors in the Gaifman-graph.

Let $\mathbb{A} = (A, R_1, \dots, R_n)$ be a relational structure. The Gaifman-graph of \mathbb{A} is the undirected graph (A, E), where

 $E = \{(a, b) | a \neq b, a \text{ and } b \text{ both belong to some tuple} \\ \text{of some relation } R_i \}$

The structure \mathbb{A} has bounded degree if its Gaifman-graph has bounded degree, i.e., for some constant δ , every element of \mathbb{A} has at most δ many neighbors in the Gaifman-graph.

(日)(同)(日)(日)(日)(日)

Let $\mathbb{A} = (A, R_1, \dots, R_n)$ be a relational structure. The Gaifman-graph of \mathbb{A} is the undirected graph (A, E), where

 $E = \{(a, b) | a \neq b, a \text{ and } b \text{ both belong to some tuple}$ of some relation $R_i\}$

The structure \mathbb{A} has bounded degree if its Gaifman-graph has bounded degree, i.e., for some constant δ , every element of \mathbb{A} has at most δ many neighbors in the Gaifman-graph.

(日)(同)(日)(日)(日)(日)

Automatic Structures of bounded degree:

- $(\{0,1\}^*, s_0, s_1)$
- Transition graphs of Turing-machines
- Cayley-graphs of automatic groups

Automatic Structures of unbounded degree:

・ロット (四)・ (日)・ (日)・

Automatic Structures of bounded degree:

- ($\{0,1\}^*, s_0, s_1$)
- Transition graphs of Turing-machines
- Cayley-graphs of automatic groups

Automatic Structures of unbounded degree:

 $\in (\{0,1\}^n, s_0, s_1, \cdot))$

・ロット (四) (日) (日)

Automatic Structures of bounded degree:

- ($\{0,1\}^*, s_0, s_1$)
- Transition graphs of Turing-machines
- Cayley-graphs of automatic groups

Automatic Structures of unbounded degree:

- (N,+)
- $\circ (0, \leq)$
- \bullet ({0,1}*, s_0, s_1, \preceq)

・ロ・ ・ 日・ ・ 日・ ・ 日・

Automatic Structures of bounded degree:

- ($\{0,1\}^*, s_0, s_1$)
- Transition graphs of Turing-machines
- Cayley-graphs of automatic groups

Automatic Structures of unbounded degree:

- (N,+)
- (\mathbb{Q}, \leq)
- ৹ ({0,1}*;ঝ,ঝ,≾)

(4回) (目) (日)

- ($\{0,1\}^*, s_0, s_1$)
- Transition graphs of Turing-machines
- Cayley-graphs of automatic groups

Automatic Structures of unbounded degree:

- $(\mathbb{N}, +)$
- (\mathbb{Q}, \leq)
- $(\{0,1\}^*, s_0, s_1, \preceq)$

- ($\{0,1\}^*, s_0, s_1$)
- Transition graphs of Turing-machines
- Cayley-graphs of automatic groups

Automatic Structures of unbounded degree:

(N,+)
(Q,≤)
({0 1}* ≤ ≤ ≺)

- ($\{0,1\}^*, s_0, s_1$)
- Transition graphs of Turing-machines
- Cayley-graphs of automatic groups

Automatic Structures of unbounded degree:

- (ℕ,+)
- (\mathbb{Q}, \leq)
- $(\{0,1\}^*, s_0, s_1, \preceq)$

(日本) (日本) (日本)

- ($\{0,1\}^*, s_0, s_1$)
- Transition graphs of Turing-machines
- Cayley-graphs of automatic groups

Automatic Structures of unbounded degree:

- (ℕ, +)
- (\mathbb{Q},\leq)
- ($\{0,1\}^*, s_0, s_1, \preceq$)

・ 同 ト ・ ヨ ト ・ ヨ ト ・

ATIME(a(n), t(n)) is the class of all problems that can be solved in

- alternating time t(n) with
- only a(n) many alternations.

Well-known: ATIME $(a(n), t(n)) \subseteq DSPACE(t(n))$

Theorem

Let \mathbb{A} be an automatic structure of bounded degree. Then the FO-theory of \mathbb{A} belongs to ATIME $(n, 2^{2^{2^{c\cdot n}}})$ for some constant c.

Theorem

There exists an automatic structure of bounded degree such that the FO-theory of \mathbb{A} is not in ATIME($c \cdot n, 2^{2^{c \cdot n}}$) for some constant

ATIME(a(n), t(n)) is the class of all problems that can be solved in

- alternating time t(n) with
- only a(n) many alternations.

Well-known: ATIME $(a(n), t(n)) \subseteq DSPACE(t(n))$

Theorem

Let \mathbb{A} be an automatic structure of bounded degree. Then the FO-theory of \mathbb{A} belongs to $ATIME(n, 2^{2^{2^{c\cdot n}}})$ for some constant c.

Theorem

There exists an automatic structure of bounded degree such that the FO-theory of \mathbb{A} is not in ATIME($c \cdot n, 2^{2^{c \cdot n}}$) for some constant

ATIME(a(n), t(n)) is the class of all problems that can be solved in

- alternating time t(n) with
- only a(n) many alternations.

Well-known: ATIME(a(n), t(n)) \subseteq DSPACE(t(n))

Theorem

Let \mathbb{A} be an automatic structure of bounded degree. Then the FO-theory of \mathbb{A} belongs to $ATIME(n, 2^{2^{2^{c\cdot n}}})$ for some constant c.

Theorem

С.

There exists an automatic structure of bounded degree such that the FO-theory of \mathbb{A} is not in $ATIME(c \cdot n, 2^{2^{c \cdot n}})$ for some constant

Main ideas for the upper bound

Let $\mathbb{A} = (A, ...)$ be an automatic structure with degree bounded by $\delta \in \mathbb{N}$.

Let Γ , $L \subseteq \Gamma^*$, and $h : L \to A$ (bijective) witness the automaticity of \mathbb{A} .

For an element $a \in A$ of the structure A and $r \in \mathbb{N}$ let S(a, r) be the substructure of A induced by the set

 $\{b \in A \mid \text{the distance between } a \text{ and } b \text{ in the} \$ Gaifman-graph of \mathbb{A} is at most $r\}$

We prove: For every a ∈ A and r ∈ N there exists u ∈ L with:
S(a, r) ≃ S(h(u), r)
|u| ≤ 2^{2^{c-r}} for a constant c

This allows to apply the machinery of Ferrante/Rackoff.
Let $\mathbb{A} = (A, ...)$ be an automatic structure with degree bounded by $\delta \in \mathbb{N}$.

Let Γ , $L \subseteq \Gamma^*$, and $h: L \to A$ (bijective) witness the automaticity of \mathbb{A} .

For an element $a \in A$ of the structure A and $r \in \mathbb{N}$ let S(a, r) be the substructure of A induced by the set

 $\{b \in A | \text{the distance between } a \text{ and } b \text{ in the} \$ Gaifman-graph of \mathbb{A} is at most $r\}$

We prove: For every $a \in A$ and $r \in \mathbb{N}$ there exists $u \in L$ with:

- $S(a,r) \simeq S(h(u),r)$
- $|u| \le 2^{2^{c \cdot r}}$ for a constant c

This allows to apply the machinery of Ferrante/Rackoff._

Let $\mathbb{A} = (A, ...)$ be an automatic structure with degree bounded by $\delta \in \mathbb{N}$.

Let Γ , $L \subseteq \Gamma^*$, and $h: L \to A$ (bijective) witness the automaticity of \mathbb{A} .

For an element $a \in A$ of the structure \mathbb{A} and $r \in \mathbb{N}$ let S(a, r) be the substructure of \mathbb{A} induced by the set

 $\{b \in A | \text{the distance between } a \text{ and } b \text{ in the} \$ Gaifman-graph of \mathbb{A} is at most $r\}$

We prove: For every $a \in A$ and $r \in \mathbb{N}$ there exists $u \in L$ with:

•
$$S(a,r) \simeq S(h(u),r)$$

• $|u| \le 2^{2^{c \cdot r}}$ for a constant c

This allows to apply the machinery of Ferrante/Rackoff.

Let $\mathbb{A} = (A, ...)$ be an automatic structure with degree bounded by $\delta \in \mathbb{N}$.

Let Γ , $L \subseteq \Gamma^*$, and $h: L \to A$ (bijective) witness the automaticity of \mathbb{A} .

For an element $a \in A$ of the structure \mathbb{A} and $r \in \mathbb{N}$ let S(a, r) be the substructure of \mathbb{A} induced by the set

 $\{b \in A | \text{the distance between } a \text{ and } b \text{ in the} \$ Gaifman-graph of \mathbb{A} is at most $r\}$

We prove: For every $a \in A$ and $r \in \mathbb{N}$ there exists $u \in L$ with:

•
$$S(a,r) \simeq S(h(u),r)$$

• $|u| \le 2^{2^{c \cdot r}}$ for a constant c

This allows to apply the machinery of Ferrante/Rackoff._

Let $\mathbb{A} = (A, ...)$ be an automatic structure with degree bounded by $\delta \in \mathbb{N}$.

Let Γ , $L \subseteq \Gamma^*$, and $h: L \to A$ (bijective) witness the automaticity of \mathbb{A} .

For an element $a \in A$ of the structure \mathbb{A} and $r \in \mathbb{N}$ let S(a, r) be the substructure of \mathbb{A} induced by the set

 $\{b \in A | \text{the distance between } a \text{ and } b \text{ in the} \$ Gaifman-graph of \mathbb{A} is at most $r\}$

We prove: For every $a \in A$ and $r \in \mathbb{N}$ there exists $u \in L$ with:

•
$$S(a,r) \simeq S(h(u),r)$$

•
$$|u| \le 2^{2^{c \cdot r}}$$
 for a constant c

This allows to apply the machinery of Ferrante/Rackoff.

For every $a \in A$ and $r \in \mathbb{N}$ there exists $u \in L$ with:

- $S(a,r) \simeq S(h(u),r)$
- $|u| \le 2^{2^{c \cdot r}}$ for a constant c

We prove that there exists a finite automaton B(a, r) such that
the number of states of B(a, r) is bounded by 2^{2^{O(r)}}.
B(a, r) accepts the language {u ∈ L | S(a, r) ≃ S(h(u), r)}.

Note that $m := |S(a, r)| \in 2^{O(r)}$, because the degree of the Gaifman-graph of \mathbb{A} is bounded by the constant δ .

Let $S(a, r) = \{u_1, ..., u_m\}$ with $u = u_1$.

Take variables x_1, \ldots, x_m , where x_i represents $u_i \in S(a, r)$.

For every $a \in A$ and $r \in \mathbb{N}$ there exists $u \in L$ with:

- $S(a,r) \simeq S(h(u),r)$
- $|u| \le 2^{2^{c \cdot r}}$ for a constant c

We prove that there exists a finite automaton B(a, r) such that

- the number of states of B(a, r) is bounded by $2^{2^{O(r)}}$.
- B(a,r) accepts the language $\{u \in L \mid S(a,r) \simeq S(h(u),r)\}$.

Note that $m := |S(a, r)| \in 2^{O(r)}$, because the degree of the Gaifman-graph of A is bounded by the constant δ .

Let $S(a, r) = \{u_1, ..., u_m\}$ with $u = u_1$.

Take variables x_1, \ldots, x_m , where x_i represents $u_i \in S(a, r)$.

For every $a \in A$ and $r \in \mathbb{N}$ there exists $u \in L$ with:

- $S(a,r) \simeq S(h(u),r)$
- $|u| \le 2^{2^{c \cdot r}}$ for a constant c

We prove that there exists a finite automaton B(a, r) such that

- the number of states of B(a, r) is bounded by $2^{2^{O(r)}}$.
- B(a,r) accepts the language $\{u \in L \mid S(a,r) \simeq S(h(u),r)\}$.

Note that $m := |S(a, r)| \in 2^{O(r)}$, because the degree of the Gaifman-graph of \mathbb{A} is bounded by the constant δ .

Let $S(a,r) = \{u_1, \ldots, u_m\}$ with $u = u_1$. Take variables x_1, \ldots, x_m , where x_i represents $u_i \in S(a,r)$.

For every $a \in A$ and $r \in \mathbb{N}$ there exists $u \in L$ with:

- $S(a,r) \simeq S(h(u),r)$
- $|u| \le 2^{2^{c \cdot r}}$ for a constant c

We prove that there exists a finite automaton B(a, r) such that

- the number of states of B(a, r) is bounded by $2^{2^{O(r)}}$.
- B(a,r) accepts the language $\{u \in L \mid S(a,r) \simeq S(h(u),r)\}$.

Note that $m := |S(a, r)| \in 2^{O(r)}$, because the degree of the Gaifman-graph of \mathbb{A} is bounded by the constant δ .

Let
$$S(a, r) = \{u_1, \dots, u_m\}$$
 with $u = u_1$.
Take variables x_1, \dots, x_m , where x_i represents $u_i \in S(a, r)$.

For every $0 \le n \le \delta$ there exists an FO-formula (of constant size) $\deg_n(x)$, expressing that x has degree n in the Gaifman-graph of A.

Let $\psi(x_1,\ldots,x_m)$ be the conjunction of the following formulas

- $x_i \neq x_j$ for $i \neq j$,
- R(x_{i1},...,x_{in}) if (u_{i1},...,u_{in}) ∈ R (R is an arbitrary relation of A),
- $\neg R(x_{i_1},\ldots,x_{i_n})$ if $(u_{i_1},\ldots,u_{i_n}) \notin R$, and
- deg_n(x_i) if the degree of u_i in the Gaifman-graph of A is precisely n.

Let $\theta(x_1) = \exists x_2 \cdots \exists x_m \ \psi(x_1, x_2 \dots, x_m).$

Then we have for every $b \in \mathbb{A}$:

$$\mathbb{A} \models \theta(b) \quad \Leftrightarrow \quad S(a,r) \simeq S(b,r)$$

For every $0 \le n \le \delta$ there exists an FO-formula (of constant size) $\deg_n(x)$, expressing that x has degree n in the Gaifman-graph of A.

Let $\psi(x_1, \ldots, x_m)$ be the conjunction of the following formulas

- $x_i \neq x_j$ for $i \neq j$,
- $R(x_{i_1}, \ldots, x_{i_n})$ if $(u_{i_1}, \ldots, u_{i_n}) \in R$ (*R* is an arbitrary relation of \mathbb{A}),

•
$$\neg R(x_{i_1},\ldots,x_{i_n})$$
 if $(u_{i_1},\ldots,u_{i_n}) \notin R$, and

• $\deg_n(x_i)$ if the degree of u_i in the Gaifman-graph of A is precisely n.

Let
$$\theta(x_1) = \exists x_2 \cdots \exists x_m \ \psi(x_1, x_2 \ldots, x_m).$$

Then we have for every $b\in\mathbb{A}$:

$$\mathbb{A} \models \theta(b) \quad \Leftrightarrow \quad S(a,r) \simeq S(b,r)$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

For every $0 \le n \le \delta$ there exists an FO-formula (of constant size) $\deg_n(x)$, expressing that x has degree n in the Gaifman-graph of A.

Let $\psi(x_1, \ldots, x_m)$ be the conjunction of the following formulas

- $x_i \neq x_j$ for $i \neq j$,
- $R(x_{i_1}, \ldots, x_{i_n})$ if $(u_{i_1}, \ldots, u_{i_n}) \in R$ (*R* is an arbitrary relation of \mathbb{A}),

•
$$\neg R(x_{i_1},\ldots,x_{i_n})$$
 if $(u_{i_1},\ldots,u_{i_n}) \notin R$, and

• $\deg_n(x_i)$ if the degree of u_i in the Gaifman-graph of \mathbb{A} is precisely n.

Let
$$\theta(x_1) = \exists x_2 \cdots \exists x_m \ \psi(x_1, x_2 \ldots, x_m).$$

Then we have for every $b \in \mathbb{A}$:

$$\mathbb{A}\models heta(b) \quad \Leftrightarrow \quad S(a,r)\simeq S(b,r)$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

We translate the formula $\theta(x_1) = \exists x_2 \cdots \exists x_m \psi(x_1, x_2, \dots, x_m)$ into an equivalent automaton B(a, r) of size $2^{2^{O(r)}}$:

Note that $\psi(x_1, x_2, ..., x_m)$ is a conjunction of $2^{O(r)}$ formulas, each of which can be translated into an automaton of size O(1).

⇒ $\psi(x_1, x_2, ..., x_m)$ can be translated into an automaton on $m \in 2^{O(r)}$ tracks with $2^{2^{O(r)}}$ states (product construction).

⇒ Using projection, $\theta(x_1) = \exists x_2 \cdots \exists x_m \psi(x_1, x_2, \dots, x_m)$ can be translated into an equivalent automaton of size $2^{2^{O(r)}}$.

We translate the formula $\theta(x_1) = \exists x_2 \cdots \exists x_m \psi(x_1, x_2, \dots, x_m)$ into an equivalent automaton B(a, r) of size $2^{2^{O(r)}}$:

Note that $\psi(x_1, x_2, ..., x_m)$ is a conjunction of $2^{O(r)}$ formulas, each of which can be translated into an automaton of size O(1).

⇒ $\psi(x_1, x_2, ..., x_m)$ can be translated into an automaton on $m \in 2^{O(r)}$ tracks with $2^{2^{O(r)}}$ states (product construction).

⇒ Using projection, $\theta(x_1) = \exists x_2 \cdots \exists x_m \psi(x_1, x_2, \dots, x_m)$ can be translated into an equivalent automaton of size $2^{2^{O(r)}}$.

We translate the formula $\theta(x_1) = \exists x_2 \cdots \exists x_m \psi(x_1, x_2, \dots, x_m)$ into an equivalent automaton B(a, r) of size $2^{2^{O(r)}}$:

Note that $\psi(x_1, x_2, ..., x_m)$ is a conjunction of $2^{O(r)}$ formulas, each of which can be translated into an automaton of size O(1).

⇒ $\psi(x_1, x_2, ..., x_m)$ can be translated into an automaton on $m \in 2^{O(r)}$ tracks with $2^{2^{O(r)}}$ states (product construction).

⇒ Using projection, $\theta(x_1) = \exists x_2 \cdots \exists x_m \psi(x_1, x_2, \dots, x_m)$ can be translated into an equivalent automaton of size $2^{2^{O(r)}}$.

Main ideas for the lower bound

A binary tree with marked leafs is a structure (A, s_0, s_1, P) , where (A, s_0, s_1) is a complete binary tree and P is a unary predicate on the leafs.

- Construct a "hard" automatic structure A of bounded degree: A consists of countably many disjoint copies of every binary tree with marked leafs.
- Apply the machinery of Compton/Henson to the structure A: monadic interpretation of addition.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Main ideas for the lower bound

A binary tree with marked leafs is a structure (A, s_0, s_1, P) , where (A, s_0, s_1) is a complete binary tree and P is a unary predicate on the leafs.

- Construct a "hard" automatic structure A of bounded degree: A consists of countably many disjoint copies of every binary tree with marked leafs.
- 2 Apply the machinery of Compton/Henson to the structure A: monadic interpretation of addition.

・ロト ・回ト ・ヨト ・ヨト

Main ideas for the lower bound

A binary tree with marked leafs is a structure (A, s_0, s_1, P) , where (A, s_0, s_1) is a complete binary tree and P is a unary predicate on the leafs.

- Construct a "hard" automatic structure A of bounded degree: A consists of countably many disjoint copies of every binary tree with marked leafs.
- Apply the machinery of Compton/Henson to the structure A: monadic interpretation of addition.

白 ト イヨト イヨト

Elements of the structure will be represented by words from the language $(\{a, a', b, b'\}^* \{0, 1\}^* \#)^*$.

・ロ・ ・ 日・ ・ 日・ ・ 日・

Elements of the structure will be represented by words from the language $(\{a, a', b, b'\}^* \{0, 1\}^* \#)^*$.

00#01#11#

・ロン ・同 とくほう ・日 ・ ほ

Elements of the structure will be represented by words from the language $(\{a, a', b, b'\}^* \{0, 1\}^* \#)^*$.

00#01#11#

Automaton for s_0 : In each $\# \cdots \#$ -block, the first symbol $x \in \{0, 1\}$ is replaced by a (if x = 0) resp. b' (if x = 1).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで

Elements of the structure will be represented by words from the language $(\{a, a', b, b'\}^* \{0, 1\}^* \#)^*$.

Automaton for s_0 : In each $\# \cdots \#$ -block, the first symbol $x \in \{0, 1\}$ is replaced by a (if x = 0) resp. b' (if x = 1).

Elements of the structure will be represented by words from the language $(\{a, a', b, b'\}^* \{0, 1\}^* \#)^*$.

Automaton for s_0 : In each $\# \cdots \#$ -block, the first symbol $x \in \{0, 1\}$ is replaced by a (if x = 0) resp. b' (if x = 1).

Automaton for s_1 : In each $\# \cdots \#$ -block, the first symbol $x \in \{0,1\}$ is replaced by a' (if x = 0) resp. b (if x = 1).

(D) (A) (A) (A) (A)

Elements of the structure will be represented by words from the language $(\{a, a', b, b'\}^* \{0, 1\}^* \#)^*$.

Automaton for s_0 : In each $\# \cdots \#$ -block, the first symbol $x \in \{0, 1\}$ is replaced by a (if x = 0) resp. b' (if x = 1).

Automaton for s_1 : In each $\# \cdots \#$ -block, the first symbol $x \in \{0,1\}$ is replaced by a' (if x = 0) resp. b (if x = 1).

Elements of the structure will be represented by words from the language $(\{a, a', b, b'\}^* \{0, 1\}^* \#)^*$.

Automaton for s_0 : In each $\# \cdots \#$ -block, the first symbol $x \in \{0, 1\}$ is replaced by a (if x = 0) resp. b' (if x = 1).

Automaton for s_1 : In each $\# \cdots \#$ -block, the first symbol $x \in \{0,1\}$ is replaced by a' (if x = 0) resp. b (if x = 1).

(D) (A) (A) (A) (A)

Elements of the structure will be represented by words from the language $(\{a, a', b, b'\}^* \{0, 1\}^* \#)^*$.

Automaton for s_0 : In each $\# \cdots \#$ -block, the first symbol $x \in \{0, 1\}$ is replaced by a (if x = 0) resp. b' (if x = 1).

Automaton for s_1 : In each $\# \cdots \#$ -block, the first symbol $x \in \{0, 1\}$ is replaced by a' (if x = 0) resp. b (if x = 1).

(D) (A) (A) (A) (A)

Elements of the structure will be represented by words from the language $(\{a, a', b, b'\}^* \{0, 1\}^* \#)^*$.

Automaton for s_0 : In each $\# \cdots \#$ -block, the first symbol $x \in \{0, 1\}$ is replaced by a (if x = 0) resp. b' (if x = 1).

Automaton for s_1 : In each $\# \cdots \#$ -block, the first symbol $x \in \{0, 1\}$ is replaced by a' (if x = 0) resp. b (if x = 1).

Automaton for *P*: accepts all words, where some $\# \cdots \#$ -block belongs to $\{a, b\}^*$.

Elements of the structure will be represented by words from the language $(\{a, a', b, b'\}^* \{0, 1\}^* \#)^*$.

Automaton for s_0 : In each $\# \cdots \#$ -block, the first symbol $x \in \{0, 1\}$ is replaced by a (if x = 0) resp. b' (if x = 1).

Automaton for s_1 : In each $\# \cdots \#$ -block, the first symbol $x \in \{0, 1\}$ is replaced by a' (if x = 0) resp. b (if x = 1).

Automaton for *P*: accepts all words, where some $\# \cdots \#$ -block belongs to $\{a, b\}^*$.

For an FO-formula $\varphi(x_1, \ldots, x_n, y_1, \ldots, y_m)$ over \mathbb{A} and $b_1, \ldots, b_m \in A$ let $\varphi(x_1, \ldots, x_n, b_1, \ldots, b_m)^{\mathbb{A}}$ be the *n*-ary relation

$$\{(a_1,\ldots,a_n) \mid \varphi(a_1,\ldots,a_n,b_1,\ldots,b_m) \text{ is true in } \mathbb{A}\}$$

For every $k \ge 0$ we can efficiently construct FO-formulas

 $\phi_k(x,y), \ \psi_k(x_1,x_2,x_3,y), \ \mu_k(x,y,z)$

over A such that there exists $a \in A$ with:

- the structure $(\phi_k(x, a)^{\mathbb{A}}, \psi_k(x_1, x_2, x_3, a)^{\mathbb{A}})$ is isomorphic to $(\{0, \dots, 2^{2^k} 1\}, \{(x, y, z) \mid x + y = z\})$, and
- every subset of $\phi_k(x, a)^{\mathbb{A}}$ is of the form $\mu_k(x, a, b)^{\mathbb{A}}$ for some $b \in A$.

For an FO-formula
$$\varphi(x_1, \ldots, x_n, y_1, \ldots, y_m)$$
 over \mathbb{A} and $b_1, \ldots, b_m \in A$ let $\varphi(x_1, \ldots, x_n, b_1, \ldots, b_m)^{\mathbb{A}}$ be the *n*-ary relation

$$\{(a_1,\ldots,a_n) \mid \varphi(a_1,\ldots,a_n,b_1,\ldots,b_m) \text{ is true in } \mathbb{A}\}.$$

For every $k \ge 0$ we can efficiently construct FO-formulas

$$\phi_k(x,y), \ \psi_k(x_1,x_2,x_3,y), \ \mu_k(x,y,z)$$

over \mathbb{A} such that there exists $a \in A$ with:

- the structure $(\phi_k(x, a)^{\mathbb{A}}, \psi_k(x_1, x_2, x_3, a)^{\mathbb{A}})$ is isomorphic to $(\{0, \dots, 2^{2^k} 1\}, \{(x, y, z) \mid x + y = z\})$, and
- every subset of φ_k(x, a)^A is of the form µ_k(x, a, b)^A for some b ∈ A.

For every $k \ge 0$ we can efficiently construct FO-formulas

$$\phi_k(x, y), \ \psi_k(x_1, x_2, x_3, y), \ \mu_k(x, y, z)$$

over \mathbb{A} such that there exists $a \in A$ with:

- the structure $(\phi_k(x, a)^{\mathbb{A}}, \psi_k(x_1, x_2, x_3, a)^{\mathbb{A}})$ is isomorphic to $(\{0, \dots, 2^{2^k} 1\}, \{(x, y, z) \mid x + y = z\})$, and
- every subset of φ_k(x, a)^A is of the form µ_k(x, a, b)^A for some b ∈ A.

For every $k \ge 0$ we can efficiently construct FO-formulas

$$\phi_k(x, y), \ \psi_k(x_1, x_2, x_3, y), \ \mu_k(x, y, z)$$

over \mathbb{A} such that there exists $a \in A$ with:

- the structure $(\phi_k(x, a)^{\mathbb{A}}, \psi_k(x_1, x_2, x_3, a)^{\mathbb{A}})$ is isomorphic to $(\{0, \dots, 2^{2^k} 1\}, \{(x, y, z) \mid x + y = z\})$, and
- every subset of φ_k(x, a)^A is of the form µ_k(x, a, b)^A for some b ∈ A.

For every $k \ge 0$ we can efficiently construct FO-formulas

$$\phi_k(x, y), \ \psi_k(x_1, x_2, x_3, y), \ \mu_k(x, y, z)$$

over \mathbb{A} such that there exists $a \in A$ with:

- the structure $(\phi_k(x, a)^{\mathbb{A}}, \psi_k(x_1, x_2, x_3, a)^{\mathbb{A}})$ is isomorphic to $(\{0, \dots, 2^{2^k} 1\}, \{(x, y, z) \mid x + y = z\})$, and
- every subset of $\phi_k(x, a)^{\mathbb{A}}$ is of the form $\mu_k(x, a, b)^{\mathbb{A}}$ for some $b \in A$.

Choose for *a* the root of a binary tree T_k of height 2^k (labeling of the leafs irrelevant): Leafs of $T_k \rightleftharpoons \{0, \ldots, 2^{2^k} - 1\}$.

• • = • • = •

For every $k \ge 0$ we can efficiently construct FO-formulas

$$\phi_k(x, y), \ \psi_k(x_1, x_2, x_3, y), \ \mu_k(x, y, z)$$

over \mathbb{A} such that there exists $a \in A$ with:

 $\left| s_1 s_0 \right\rangle$

- the structure $(\phi_k(x, a)^{\mathbb{A}}, \psi_k(x_1, x_2, x_3, a)^{\mathbb{A}})$ is isomorphic to $(\{0, \dots, 2^{2^k} 1\}, \{(x, y, z) \mid x + y = z\})$, and
- every subset of φ_k(x, a)^A is of the form µ_k(x, a, b)^A for some b ∈ A.

Choose for *a* the root of a binary tree T_k of height 2^k (labeling of the leafs irrelevant): Leafs of $T_k \rightleftharpoons \{0, \ldots, 2^{2^k} - 1\}$.

• • = • • = •

For every $k \ge 0$ we can efficiently construct FO-formulas

$$\phi_k(x, y), \ \psi_k(x_1, x_2, x_3, y), \ \mu_k(x, y, z)$$

over \mathbb{A} such that there exists $a \in A$ with:

- the structure $(\phi_k(x, a)^{\mathbb{A}}, \psi_k(x_1, x_2, x_3, a)^{\mathbb{A}})$ is isomorphic to $(\{0, \dots, 2^{2^k} 1\}, \{(x, y, z) \mid x + y = z\})$, and
- every subset of φ_k(x, a)^A is of the form µ_k(x, a, b)^A for some b ∈ A.

Choose for *a* the root of a binary tree T_k of height 2^k (labeling of the leafs irrelevant): Leafs of $T_k \rightleftharpoons \{0, \ldots, 2^{2^k} - 1\}$.

50 5150 51 510' x'1 y'2 z'3

We can express x + y = z with an FO-formula of size O(k): carry-look-ahead addition

- イボト イヨト - 三日

For every $k \ge 0$ we can efficiently construct FO-formulas

$$\phi_k(x, y), \ \psi_k(x_1, x_2, x_3, y), \ \mu_k(x, y, z)$$

over \mathbb{A} such that there exists $a \in A$ with:

- the structure $(\phi_k(x, a)^{\mathbb{A}}, \psi_k(x_1, x_2, x_3, a)^{\mathbb{A}})$ is isomorphic to $(\{0, \dots, 2^{2^k} 1\}, \{(x, y, z) \mid x + y = z\})$, and
- every subset of φ_k(x, a)^A is of the form µ_k(x, a, b)^A for some b ∈ A.

For every $k \ge 0$ we can efficiently construct FO-formulas

$$\phi_k(x, y), \ \psi_k(x_1, x_2, x_3, y), \ \mu_k(x, y, z)$$

over \mathbb{A} such that there exists $a \in A$ with:

- the structure $(\phi_k(x, a)^{\mathbb{A}}, \psi_k(x_1, x_2, x_3, a)^{\mathbb{A}})$ is isomorphic to $(\{0, \dots, 2^{2^k} 1\}, \{(x, y, z) \mid x + y = z\})$, and
- every subset of $\phi_k(x, a)^{\mathbb{A}}$ is of the form $\mu_k(x, a, b)^{\mathbb{A}}$ for some $b \in A$.

Let *B* be an arbitrary subset of $\phi_k(x, a)^{\mathbb{A}}$, i.e., an arbitrary subset of the leafs of the tree T_k rooted at *a*.

$$s_0$$
 s_1 s_0 s_1 s_0 s_1 s_1 s_2 s_3 s_1 s_3 s_1 s_3 s_1 s_2 s_3 s_1 s_1 s_2 s_1 s_1 s_1 s_2 s_1 s_1 s_1 s_2 s_1 s_1
Monadic interpretation of addition

For every $k \ge 0$ we can efficiently construct FO-formulas

$$\phi_k(x, y), \ \psi_k(x_1, x_2, x_3, y), \ \mu_k(x, y, z)$$

over \mathbb{A} such that there exists $a \in A$ with:

- the structure $(\phi_k(x, a)^{\mathbb{A}}, \psi_k(x_1, x_2, x_3, a)^{\mathbb{A}})$ is isomorphic to $(\{0, \dots, 2^{2^k} 1\}, \{(x, y, z) \mid x + y = z\})$, and
- every subset of $\phi_k(x, a)^{\mathbb{A}}$ is of the form $\mu_k(x, a, b)^{\mathbb{A}}$ for some $b \in A$.

Let *B* be an arbitrary subset of $\phi_k(x, a)^{\mathbb{A}}$, i.e., an arbitrary subset of the leafs of the tree T_k rooted at *a*.

$$\begin{array}{c} a \\ s_{0} \\ s_{0} \\ s_{1} \\ s_{$$

- Tree automatic structures are defined similarly to automatic structures using tree automata.
- (\mathbb{N}, \cdot) is a tree automatic structure that is not automatic.
- Let A be a tree automatic structure of bounded degree. Then the FO-theory of A belongs to ATIME(n, 2^{2^{2^{c·n}}}) for some constant c.

・ロト ・回ト ・ヨト ・ヨト

- Tree automatic structures are defined similarly to automatic structures using tree automata.
- (\mathbb{N}, \cdot) is a tree automatic structure that is not automatic.
- Let A be a tree automatic structure of bounded degree. Then the FO-theory of A belongs to ATIME(n, 2^{2^{2^{c·n}}}) for some constant c.

・ロ・ ・ 日・ ・ 日・ ・ 日・

- Tree automatic structures are defined similarly to automatic structures using tree automata.
- (\mathbb{N}, \cdot) is a tree automatic structure that is not automatic.
- Let A be a tree automatic structure of bounded degree. Then the FO-theory of A belongs to ATIME(n, 2^{2^{2^{c·n}}}) for some constant c.

- Tree automatic structures are defined similarly to automatic structures using tree automata.
- (\mathbb{N}, \cdot) is a tree automatic structure that is not automatic.
- Let A be a tree automatic structure of bounded degree. Then the FO-theory of A belongs to ATIME(n, 2^{2^{2^{c·n}}}) for some constant c.

・ 御 と ・ 国 と ・ 国 と

- For automatic structures: Close that gap between ATIME $(c \cdot n, 2^{2^{c \cdot n}})$ (lower bound) and ATIME $(n, 2^{2^{2^{c \cdot n}}})$ (upper bound).
- For tree automatic structures: Close that gap between $ATIME(c \cdot n, 2^{2^{c \cdot n}})$ and $ATIME(n, 2^{2^{2^{c \cdot n}}})$.
- What about first-order logic with ∃^ω-quantifiers?
- Is there a tree automatic structure of bounded degree that is not automatic?
- Other classes of (tree) automatic structures with elementary FO-theories.
- E.g. (N, +): Is there an automatic structure A of bounded degree such that (N, +) is first-order interpretable in A.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

- For automatic structures: Close that gap between ATIME(c · n, 2^{2^{c·n}}) (lower bound) and ATIME(n, 2^{2^{2^{c·n}}}) (upper bound).
- For tree automatic structures: Close that gap between $ATIME(c \cdot n, 2^{2^{c \cdot n}})$ and $ATIME(n, 2^{2^{2^{c \cdot n}}})$.
- What about first-order logic with ∃^ω-quantifiers?
- Is there a tree automatic structure of bounded degree that is not automatic?
- Other classes of (tree) automatic structures with elementary FO-theories.
- E.g. (N, +): Is there an automatic structure A of bounded degree such that (N, +) is first-order interpretable in A.

・ロン ・同と ・ヨン ・ヨン

- For automatic structures: Close that gap between ATIME(c · n, 2^{2^{c·n}}) (lower bound) and ATIME(n, 2^{2^{2^{c·n}}}) (upper bound).
- For tree automatic structures: Close that gap between ATIME $(c \cdot n, 2^{2^{c \cdot n}})$ and ATIME $(n, 2^{2^{2^{c \cdot n}}})$.
- What about first-order logic with \exists^{ω} -quantifiers?
- Is there a tree automatic structure of bounded degree that is not automatic?
- Other classes of (tree) automatic structures with elementary FO-theories.
- E.g. (N, +): Is there an automatic structure A of bounded degree such that (N, +) is first-order interpretable in A.

(日)(同)(日)(日)(日)(日)

- For automatic structures: Close that gap between ATIME $(c \cdot n, 2^{2^{c \cdot n}})$ (lower bound) and ATIME $(n, 2^{2^{2^{c \cdot n}}})$ (upper bound).
- For tree automatic structures: Close that gap between ATIME $(c \cdot n, 2^{2^{c \cdot n}})$ and ATIME $(n, 2^{2^{2^{2^{c \cdot n}}}})$.
- What about first-order logic with ∃^ω-quantifiers?
- Is there a tree automatic structure of bounded degree that is not automatic?
- Other classes of (tree) automatic structures with elementary FO-theories.
- E.g. (N,+): Is there an automatic structure A of bounded degree such that (N,+) is first-order interpretable in A.

(日)(同)(日)(日)(日)(日)

- For automatic structures: Close that gap between ATIME $(c \cdot n, 2^{2^{c \cdot n}})$ (lower bound) and ATIME $(n, 2^{2^{2^{c \cdot n}}})$ (upper bound).
- For tree automatic structures: Close that gap between ATIME $(c \cdot n, 2^{2^{c \cdot n}})$ and ATIME $(n, 2^{2^{2^{c \cdot n}}})$.
- What about first-order logic with \exists^{ω} -quantifiers?
- Is there a tree automatic structure of bounded degree that is not automatic?
- Other classes of (tree) automatic structures with elementary FO-theories.
- E.g. (N,+): Is there an automatic structure A of bounded degree such that (N,+) is first-order interpretable in A.

- For automatic structures: Close that gap between ATIME $(c \cdot n, 2^{2^{c \cdot n}})$ (lower bound) and ATIME $(n, 2^{2^{2^{c \cdot n}}})$ (upper bound).
- For tree automatic structures: Close that gap between ATIME $(c \cdot n, 2^{2^{c \cdot n}})$ and ATIME $(n, 2^{2^{2^{c \cdot n}}})$.
- What about first-order logic with \exists^{ω} -quantifiers?
- Is there a tree automatic structure of bounded degree that is not automatic?
- Other classes of (tree) automatic structures with elementary FO-theories.
- E.g. (N, +): Is there an automatic structure A of bounded degree such that (N, +) is first-order interpretable in A.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲目 ● ● ●

- For automatic structures: Close that gap between ATIME(c · n, 2^{2^{c·n}}) (lower bound) and ATIME(n, 2^{2^{2^{c·n}}}) (upper bound).
- For tree automatic structures: Close that gap between ATIME $(c \cdot n, 2^{2^{c \cdot n}})$ and ATIME $(n, 2^{2^{2^{c \cdot n}}})$.
- What about first-order logic with \exists^{ω} -quantifiers?
- Is there a tree automatic structure of bounded degree that is not automatic?
- Other classes of (tree) automatic structures with elementary FO-theories.
- E.g. (N, +): Is there an automatic structure A of bounded degree such that (N, +) is first-order interpretable in A.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへで