Theories of Automatic Structures and their Complexity

Markus Lohrey
University of Stuttgart, Germany

Workshop on Automata, Structures and Logic 2004

Definition of Automatic Structures

Let $\mathbb{A}=\left(A, R_{1}, \ldots, R_{n}\right)$ be a relational structure, $R_{i} \subseteq A^{n_{i}}$.
We say that \mathbb{A} is automatic, if the following data exist:

- a finite alphabet Σ
- a regular language $L \subseteq \Sigma^{*}$
- a bijection $h: L \rightarrow A$ such that for every $1 \leq i \leq n$ the relation

$$
\left\{\left(u_{1}, u_{2}, \ldots, u_{n_{i}}\right) \in L^{n_{i}} \mid\left(h\left(u_{1}\right), h\left(u_{2}\right), \ldots, h\left(u_{n_{i}}\right)\right) \in R_{i}\right\}
$$

is synchronized rational.

Synchronized Rational Relations

Binary synchronized rational relations are recognized by synchronous 2-tape automata.

In order to accept a pair $(u, v) \in \Sigma^{*} \times \Sigma^{*}$ such an automaton operates as follows:

v	b_{0}	b_{1}	b_{2}	\cdots	b_{m-1}	b_{m}	$\#$	\cdots
$\#$								
	a_{0}	a_{1}	a_{2}	\cdots	a_{m-1}	a_{m}	a_{m+1}	\cdots
			a_{n}					

Synchronized Rational Relations

Binary synchronized rational relations are recognized by synchronous 2-tape automata.

In order to accept a pair $(u, v) \in \Sigma^{*} \times \Sigma^{*}$ such an automaton operates as follows:

Synchronized Rational Relations

Binary synchronized rational relations are recognized by synchronous 2-tape automata.

In order to accept a pair $(u, v) \in \Sigma^{*} \times \Sigma^{*}$ such an automaton operates as follows:

Synchronized Rational Relations

Binary synchronized rational relations are recognized by synchronous 2-tape automata.

In order to accept a pair $(u, v) \in \Sigma^{*} \times \Sigma^{*}$ such an automaton operates as follows:

Synchronized Rational Relations

Binary synchronized rational relations are recognized by synchronous 2-tape automata.

In order to accept a pair $(u, v) \in \Sigma^{*} \times \Sigma^{*}$ such an automaton operates as follows:

	q_{m}								
v	b_{0}	b_{1}	b_{2}	. .	b_{m-1}	b_{m}	\#	\ldots	\#
u	a_{0}	a_{1}	a_{2}	. .	a_{m-1}	a_{m}	a_{m+1}	\ldots	a_{n}

Synchronized Rational Relations

Binary synchronized rational relations are recognized by synchronous 2-tape automata.

In order to accept a pair $(u, v) \in \Sigma^{*} \times \Sigma^{*}$ such an automaton operates as follows:

				q_{m+1}					
v	b_{0}	b_{1}	b_{2}	. .	b_{m-1}	b_{m}	\#	. .	\#
u	a_{0}	a_{1}	a_{2}	\ldots	a_{m-1}	a_{m}	a_{m+1}	. .	a_{n}

Synchronized Rational Relations

Binary synchronized rational relations are recognized by synchronous 2-tape automata.

In order to accept a pair $(u, v) \in \Sigma^{*} \times \Sigma^{*}$ such an automaton operates as follows:

								q_{n}	
v	b_{0}	b_{1}	b_{2}	. .	b_{m-1}	b_{m}	\#	. .	\#
u	a_{0}	a_{1}	a_{2}	\ldots	a_{m-1}	a_{m}	a_{m+1}	\ldots	a_{n}

Examples of Automatic Structures

The following structures are automatic:

Examples of Automatic Structures

The following structures are automatic:

- ($\mathbb{N},+$)

Examples of Automatic Structures

The following structures are automatic:

- ($\mathbb{N},+$)
- (\mathbb{Q}, \leq)
- Transition graphs of Turing-machines

Examples of Automatic Structures

The following structures are automatic:

- ($\mathbb{N},+$)
- (\mathbb{Q}, \leq)
- Transition graphs of Turing-machines

The following structures are not automatic:

Examples of Automatic Structures

The following structures are automatic:

- ($\mathbb{N},+$)
- (\mathbb{Q}, \leq)
- Transition graphs of Turing-machines

The following structures are not automatic:

- the free monoid generated by two elements

Examples of Automatic Structures

The following structures are automatic:

- ($\mathbb{N},+$)
- (\mathbb{Q}, \leq)
- Transition graphs of Turing-machines

The following structures are not automatic:

- (\mathbb{N}, \cdot)
- the free monoid generated by two elements

Examples of Automatic Structures

The following structures are automatic:

- ($\mathbb{N},+$)
- (\mathbb{Q}, \leq)
- Transition graphs of Turing-machines

The following structures are not automatic:

- (\mathbb{N}, \cdot)
- the free monoid generated by two elements

First-Order Logic (FO)

Let $\mathbb{A}=\left(A, R_{1}, \ldots, R_{n}\right)$ be a relational structure.
Let Ω be an infinite set of variables ranging over A.
The set of all FO-formulas over \mathbb{A} is defined as follows:

- $x=y$ and $R_{i}\left(x_{1}, \ldots, x_{n_{i}}\right)$ are FO-formulas, where $x, y, x_{1}, \ldots, x_{n_{i}} \in \Omega$
- If ϕ and ψ are FO-formulas then also

$$
\neg \phi, \quad \phi \wedge \psi, \quad \phi \vee \psi, \quad \exists x: \phi, \quad \forall x: \phi
$$

are FO-formulas.
An FO-sentence is an FO-formula without free variables.
The FO-theory of \mathbb{A} is the set of all FO-sentences that are true in the structure \mathbb{A}.

FO-theories of automatic structures

Khoussainov, Nerode 1994: Every automatic structure has a decidable FO-theory.

A problem is called elementary decidable, if it can be decided in time 2. where the height of this tower of exponents is constant. Blumensath, Grädel 2000: There are automatic structures which are not elementary decidable.

FO-theories of automatic structures

Khoussainov, Nerode 1994: Every automatic structure has a decidable FO-theory.

A problem is called elementary decidable, if it can be decided in $.2^{n}$ time 2. , where the height of this tower of exponents is constant.

Blumensath, Grädel 2000: There are automatic structures which are not elementary decidable.

Example: $(\{0,1\}$
and \preceq is the prefix relation.

FO-theories of automatic structures

Khoussainov, Nerode 1994: Every automatic structure has a decidable FO-theory.

A problem is called elementary decidable, if it can be decided in $.2^{n}$ time 2 , where the height of this tower of exponents is constant.

Blumensath, Grädel 2000: There are automatic structures which are not elementary decidable.

Example: $\left(\{0,1\}^{*}, s_{0}, s_{1}, \preceq\right)$, where $s_{i}=\left\{\left(w, w i \mid w \in\{0,1\}^{*}\right\}\right.$
and \preceq is the prefix relation.

FO-theories of automatic structures

Khoussainov, Nerode 1994: Every automatic structure has a decidable FO-theory.

A problem is called elementary decidable, if it can be decided in $.2^{n}$
time 2 , where the height of this tower of exponents is constant.
Blumensath, Grädel 2000: There are automatic structures which are not elementary decidable.

Example: $\left(\{0,1\}^{*}, s_{0}, s_{1}, \preceq\right)$, where $s_{i}=\left\{\left(w, w i \mid w \in\{0,1\}^{*}\right\}\right.$ and \preceq is the prefix relation.

Structures of Bounded Degree

Let $\mathbb{A}=\left(A, R_{1}, \ldots, R_{n}\right)$ be a relational structure.
The Gaifman-graph of \mathbb{A} is the undirected graph (A, E), where

$$
\begin{gathered}
E=\{(a, b) \mid a \neq b, \text { a and } b \text { both belong to some tuple } \\
\text { of some relation } \left.R_{i}\right\}
\end{gathered}
$$

[^0]at most δ many neighbors in the Gaifman-graph.

Structures of Bounded Degree

Let $\mathbb{A}=\left(A, R_{1}, \ldots, R_{n}\right)$ be a relational structure. The Gaifman-graph of \mathbb{A} is the undirected graph (A, E), where

$$
\begin{gathered}
E=\{(a, b) \mid a \neq b, a \text { and } b \text { both belong to some tuple } \\
\text { of some relation } \left.R_{i}\right\}
\end{gathered}
$$

The structure \mathbb{A} has bounded degree if its Gaifman-graph has bounded degree, i.e., for some constant δ, every element of \mathbb{A} has at most δ many neighbors in the Gaifman-graph.

Structures of Bounded Degree

Let $\mathbb{A}=\left(A, R_{1}, \ldots, R_{n}\right)$ be a relational structure. The Gaifman-graph of \mathbb{A} is the undirected graph (A, E), where

$$
\begin{gathered}
E=\{(a, b) \mid a \neq b, a \text { and } b \text { both belong to some tuple } \\
\text { of some relation } \left.R_{i}\right\}
\end{gathered}
$$

The structure \mathbb{A} has bounded degree if its Gaifman-graph has bounded degree, i.e., for some constant δ, every element of \mathbb{A} has at most δ many neighbors in the Gaifman-graph.

Automatic Structures of Bounded Degree

Automatic Structures of bounded degree:

Automatic Structures of Bounded Degree

Automatic Structures of bounded degree:

- $\left(\{0,1\}^{*}, s_{0}, s_{1}\right)$
- Transition graphs of Turing-machines

Automatic Structures of Bounded Degree

Automatic Structures of bounded degree:

- $\left(\{0,1\}^{*}, s_{0}, s_{1}\right)$
- Transition graphs of Turing-machines
- Cayley-graphs of automatic groups

Automatic Structures of unbounded degree:

Automatic Structures of Bounded Degree

Automatic Structures of bounded degree:

- $\left(\{0,1\}^{*}, s_{0}, s_{1}\right)$
- Transition graphs of Turing-machines
- Cayley-graphs of automatic groups

Automatic Structures of unbounded degree:

Automatic Structures of Bounded Degree

Automatic Structures of bounded degree:

- $\left(\{0,1\}^{*}, s_{0}, s_{1}\right)$
- Transition graphs of Turing-machines
- Cayley-graphs of automatic groups

Automatic Structures of unbounded degree:

Automatic Structures of Bounded Degree

Automatic Structures of bounded degree:

- $\left(\{0,1\}^{*}, s_{0}, s_{1}\right)$
- Transition graphs of Turing-machines
- Cayley-graphs of automatic groups

Automatic Structures of unbounded degree:

- ($\mathbb{N},+$)
- (\mathbb{Q}, \leq)

Automatic Structures of Bounded Degree

Automatic Structures of bounded degree:

- $\left(\{0,1\}^{*}, s_{0}, s_{1}\right)$
- Transition graphs of Turing-machines
- Cayley-graphs of automatic groups

Automatic Structures of unbounded degree:

- ($\mathbb{N},+$)
- (\mathbb{Q}, \leq)
- $\left(\{0,1\}^{*}, s_{0}, s_{1}, \preceq\right)$

Automatic Structures of Bounded Degree

Automatic Structures of bounded degree:

- $\left(\{0,1\}^{*}, s_{0}, s_{1}\right)$
- Transition graphs of Turing-machines
- Cayley-graphs of automatic groups

Automatic Structures of unbounded degree:

- ($\mathbb{N},+$)
- (\mathbb{Q}, \leq)
- $\left(\{0,1\}^{*}, s_{0}, s_{1}, \preceq\right)$

Main Results

$\operatorname{ATIME}(a(n), t(n))$ is the class of all problems that can be solved in

- alternating time $t(n)$ with
- only a(n) many alternations.

Well-known: $\operatorname{ATIME}(a(n), t(n)) \subseteq \operatorname{DSPACE}(t(n))$

Theorem

Let \mathbb{A} be an automatic structure of bounded degree. Then the FO-theory of \mathbb{A} belongs to $\operatorname{ATIME}\left(n, 2^{2^{2-}}\right)$ for some constant c.

Main Results

$\operatorname{ATIME}(a(n), t(n))$ is the class of all problems that can be solved in

- alternating time $t(n)$ with
- only a(n) many alternations.

Well-known: $\operatorname{ATIME}(a(n), t(n)) \subseteq \operatorname{DSPACE}(t(n))$

Theorem

Let \mathbb{A} be an automatic structure of bounded degree. Then the FO-theory of \mathbb{A} belongs to $\operatorname{ATIME}\left(n, 2^{2^{2^{c \cdot n}}}\right)$ for some constant c.

Theorem
There exists an automatic structure of bounded degree such that the FO-theory of \mathbb{A} is not in $\operatorname{ATIME}\left(c \cdot n, 2^{2^{c \cdot n}}\right)$ for some constant

Main Results

$\operatorname{ATIME}(a(n), t(n))$ is the class of all problems that can be solved in

- alternating time $t(n)$ with
- only $a(n)$ many alternations.

Well-known: $\operatorname{ATIME}(a(n), t(n)) \subseteq \operatorname{DSPACE}(t(n))$

Theorem

Let \mathbb{A} be an automatic structure of bounded degree. Then the FO-theory of \mathbb{A} belongs to $\operatorname{ATIME}\left(n, 2^{2^{2^{c \cdot n}}}\right)$ for some constant c.

Theorem

There exists an automatic structure of bounded degree such that the $F O$-theory of \mathbb{A} is not in $\operatorname{ATIME}\left(c \cdot n, 2^{2^{c \cdot n}}\right)$ for some constant c.

Main ideas for the upper bound

Let $\mathbb{A}=(A, \ldots)$ be an automatic structure with degree bounded by $\delta \in \mathbb{N}$.

Main ideas for the upper bound

Let $\mathbb{A}=(A, \ldots)$ be an automatic structure with degree bounded by $\delta \in \mathbb{N}$.

Let $\Gamma, L \subseteq \Gamma^{*}$, and $h: L \rightarrow A$ (bijective) witness the automaticity of \mathbb{A}.

For an element $a \in A$ of the structure \mathbb{A} and $r \in \mathbb{N}$ let $S(a, r)$ be the substructure of \mathbb{A} induced by the set
$\{b \in A \mid$ the distance between a and b in the
Gaifman-graph of \mathbb{A} is at most $r\}$

Main ideas for the upper bound

Let $\mathbb{A}=(A, \ldots)$ be an automatic structure with degree bounded by $\delta \in \mathbb{N}$.

Let $\Gamma, L \subseteq \Gamma^{*}$, and $h: L \rightarrow A$ (bijective) witness the automaticity of \mathbb{A}.

For an element $a \in A$ of the structure \mathbb{A} and $r \in \mathbb{N}$ let $S(a, r)$ be the substructure of \mathbb{A} induced by the set
$\{b \in A \mid$ the distance between a and b in the Gaifman-graph of \mathbb{A} is at most $r\}$

We prove: For every $a \in A$ and $r \in \mathbb{N}$ there exists $u \in L$ with:
\square

- $|u| \leq 2^{2^{c \cdot r}}$ for a constant c

Main ideas for the upper bound

Let $\mathbb{A}=(A, \ldots)$ be an automatic structure with degree bounded by $\delta \in \mathbb{N}$.

Let $\Gamma, L \subseteq \Gamma^{*}$, and $h: L \rightarrow A$ (bijective) witness the automaticity of \mathbb{A}.

For an element $a \in A$ of the structure \mathbb{A} and $r \in \mathbb{N}$ let $S(a, r)$ be the substructure of \mathbb{A} induced by the set
$\{b \in A \mid$ the distance between a and b in the Gaifman-graph of \mathbb{A} is at most $r\}$

We prove: For every $a \in A$ and $r \in \mathbb{N}$ there exists $u \in L$ with:

- $S(a, r) \simeq S(h(u), r)$
- $|u| \leq 2^{2^{c \cdot r}}$ for a constant c

Main ideas for the upper bound

Let $\mathbb{A}=(A, \ldots)$ be an automatic structure with degree bounded by $\delta \in \mathbb{N}$.

Let $\Gamma, L \subseteq \Gamma^{*}$, and $h: L \rightarrow A$ (bijective) witness the automaticity of \mathbb{A}.

For an element $a \in A$ of the structure \mathbb{A} and $r \in \mathbb{N}$ let $S(a, r)$ be the substructure of \mathbb{A} induced by the set
$\{b \in A \mid$ the distance between a and b in the Gaifman-graph of \mathbb{A} is at most $r\}$

We prove: For every $a \in A$ and $r \in \mathbb{N}$ there exists $u \in L$ with:

- $S(a, r) \simeq S(h(u), r)$
- $|u| \leq 2^{2^{c \cdot r}}$ for a constant c

This allows to apply the machinery of Ferrante/Rackoff.

Main ideas for the upper bound

For every $a \in A$ and $r \in \mathbb{N}$ there exists $u \in L$ with:

- $S(a, r) \simeq S(h(u), r)$
- $|u| \leq 2^{2^{c \cdot r}}$ for a constant c

> We prove that there exists a finite automaton $B(a, r)$ such that
> - the number of states of $B(a, r)$ is bounded by $2^{2^{0(r)}}$
> - $B(a, r)$ accepts the language $\{u \in L \mid S(a, r) \simeq S(h(u), r)\}$

Main ideas for the upper bound

For every $a \in A$ and $r \in \mathbb{N}$ there exists $u \in L$ with:

- $S(a, r) \simeq S(h(u), r)$
- $|u| \leq 2^{2^{c \cdot r}}$ for a constant c

We prove that there exists a finite automaton $B(a, r)$ such that

- the number of states of $B(a, r)$ is bounded by $2^{2^{O(r)}}$.
- $B(a, r)$ accepts the language $\{u \in L \mid S(a, r) \simeq S(h(u), r)\}$.

Note that $m:=|S(a, r)| \in 2^{O(r)}$, because the degree of the Gaifman-graph of \mathbb{A} is bounded by the constant δ.

Main ideas for the upper bound

For every $a \in A$ and $r \in \mathbb{N}$ there exists $u \in L$ with:

- $S(a, r) \simeq S(h(u), r)$
- $|u| \leq 2^{2^{\cdot \cdot r}}$ for a constant c

We prove that there exists a finite automaton $B(a, r)$ such that

- the number of states of $B(a, r)$ is bounded by $2^{2^{O(r)}}$.
- $B(a, r)$ accepts the language $\{u \in L \mid S(a, r) \simeq S(h(u), r)\}$.

Note that $m:=|S(a, r)| \in 2^{O(r)}$, because the degree of the Gaifman-graph of \mathbb{A} is bounded by the constant δ.

Let $S(a, r)=\left\{u_{1}, \ldots, u_{m}\right\}$ with $u=u_{1}$.
Take variables x_{1}, \ldots, x_{m}, where x_{i} represents $u_{i} \in S(a, r)$.

Main ideas for the upper bound

For every $a \in A$ and $r \in \mathbb{N}$ there exists $u \in L$ with:

- $S(a, r) \simeq S(h(u), r)$
- $|u| \leq 2^{2^{\cdot \cdot r}}$ for a constant c

We prove that there exists a finite automaton $B(a, r)$ such that

- the number of states of $B(a, r)$ is bounded by $2^{2^{O(r)}}$.
- $B(a, r)$ accepts the language $\{u \in L \mid S(a, r) \simeq S(h(u), r)\}$.

Note that $m:=|S(a, r)| \in 2^{O(r)}$, because the degree of the Gaifman-graph of \mathbb{A} is bounded by the constant δ.

Let $S(a, r)=\left\{u_{1}, \ldots, u_{m}\right\}$ with $u=u_{1}$.
Take variables x_{1}, \ldots, x_{m}, where x_{i} represents $u_{i} \in S(a, r)$.

Main ideas for the upper bound

For every $0 \leq n \leq \delta$ there exists an FO-formula (of constant size) $\operatorname{deg}_{n}(x)$, expressing that x has degree n in the Gaifman-graph of \mathbb{A}.

Main ideas for the upper bound

For every $0 \leq n \leq \delta$ there exists an FO-formula (of constant size) $\operatorname{deg}_{n}(x)$, expressing that x has degree n in the Gaifman-graph of \mathbb{A}.

Let $\psi\left(x_{1}, \ldots, x_{m}\right)$ be the conjunction of the following formulas

- $x_{i} \neq x_{j}$ for $i \neq j$,
- $R\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)$ if $\left(u_{i_{1}}, \ldots, u_{i_{n}}\right) \in R(R$ is an arbitrary relation of \mathbb{A}),
- $\neg R\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)$ if $\left(u_{i_{1}}, \ldots, u_{i_{n}}\right) \notin R$, and
- $\operatorname{deg}_{n}\left(x_{i}\right)$ if the degree of u_{i} in the Gaifman-graph of \mathbb{A} is precisely n.
Let $\theta\left(x_{1}\right)=\exists x_{2} \cdots \exists x_{m} \psi\left(x_{1}, x_{2} \ldots, x_{m}\right)$.
Then we have for every $b \in \mathbb{A}$:

Main ideas for the upper bound

For every $0 \leq n \leq \delta$ there exists an FO-formula (of constant size) $\operatorname{deg}_{n}(x)$, expressing that x has degree n in the Gaifman-graph of \mathbb{A}.

Let $\psi\left(x_{1}, \ldots, x_{m}\right)$ be the conjunction of the following formulas

- $x_{i} \neq x_{j}$ for $i \neq j$,
- $R\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)$ if $\left(u_{i_{1}}, \ldots, u_{i_{n}}\right) \in R(R$ is an arbitrary relation of \mathbb{A}),
- $\neg R\left(x_{i_{1}}, \ldots, x_{i_{n}}\right)$ if $\left(u_{i_{1}}, \ldots, u_{i_{n}}\right) \notin R$, and
- $\operatorname{deg}_{n}\left(x_{i}\right)$ if the degree of u_{i} in the Gaifman-graph of \mathbb{A} is precisely n.
Let $\theta\left(x_{1}\right)=\exists x_{2} \cdots \exists x_{m} \psi\left(x_{1}, x_{2} \ldots, x_{m}\right)$.
Then we have for every $b \in \mathbb{A}$:

$$
\mathbb{A} \models \theta(b) \quad \Leftrightarrow \quad S(a, r) \simeq S(b, r)
$$

Main ideas for the upper bound

We translate the formula $\theta\left(x_{1}\right)=\exists x_{2} \cdots \exists x_{m} \psi\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ into an equivalent automaton $B(a, r)$ of size $2^{2^{O(r)}}$:

Note that $\psi\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ is a conjunction of $2^{O(r)}$ formulas, each of which can be translated into an automaton of size $O(1)$.

Main ideas for the upper bound

We translate the formula $\theta\left(x_{1}\right)=\exists x_{2} \cdots \exists x_{m} \psi\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ into an equivalent automaton $B(a, r)$ of size $2^{2^{O(r)}}$:

Note that $\psi\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ is a conjunction of $2^{O(r)}$ formulas, each of which can be translated into an automaton of size $O(1)$.
$\Rightarrow \psi\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ can be translated into an automaton on $m \in 2^{O(r)}$ tracks with $2^{2^{O(r)}}$ states (product construction).
\Rightarrow Using projection, $\theta\left(x_{1}\right)=\exists x_{2} \cdots \exists x_{m} \psi\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ can be
translated into an equivalent automaton of size $2^{2^{O(r)}}$

Main ideas for the upper bound

We translate the formula $\theta\left(x_{1}\right)=\exists x_{2} \cdots \exists x_{m} \psi\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ into an equivalent automaton $B(a, r)$ of size $2^{2^{O(r)}}$:

Note that $\psi\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ is a conjunction of $2^{O(r)}$ formulas, each of which can be translated into an automaton of size $O(1)$.
$\Rightarrow \psi\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ can be translated into an automaton on $m \in 2^{O(r)}$ tracks with $2^{2^{O(r)}}$ states (product construction).
\Rightarrow Using projection, $\theta\left(x_{1}\right)=\exists x_{2} \cdots \exists x_{m} \psi\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ can be translated into an equivalent automaton of size $2^{2^{\circ(r)}}$.

Main ideas for the lower bound

A binary tree with marked leafs is a structure $\left(A, s_{0}, s_{1}, P\right)$, where (A, s_{0}, s_{1}) is a complete binary tree and P is a unary predicate on the leafs.

(1) Construct a "hard" automatic structure \mathbb{A} of bounded degree: A consists of countably many disjoint copies of every binary tree with marked leafs.
(2) Apply the machinery of Compton/Henson to the structure \mathbb{A} monadic interpretation of addition.

Main ideas for the lower bound

A binary tree with marked leafs is a structure $\left(A, s_{0}, s_{1}, P\right)$, where (A, s_{0}, s_{1}) is a complete binary tree and P is a unary predicate on the leafs.

(1) Construct a "hard" automatic structure \mathbb{A} of bounded degree: \mathbb{A} consists of countably many disjoint copies of every binary tree with marked leafs.
(2) Apply the machinery of Compton/Henson to the structure \mathbb{A} : monadic interpretation of addition.

Main ideas for the lower bound

A binary tree with marked leafs is a structure $\left(A, s_{0}, s_{1}, P\right)$, where (A, s_{0}, s_{1}) is a complete binary tree and P is a unary predicate on the leafs.

(1) Construct a "hard" automatic structure \mathbb{A} of bounded degree: \mathbb{A} consists of countably many disjoint copies of every binary tree with marked leafs.
(2) Apply the machinery of Compton/Henson to the structure \mathbb{A} : monadic interpretation of addition.

A "hard" automatic structure of bounded degree

Elements of the structure will be represented by words from the language $\left(\left\{a, a^{\prime}, b, b^{\prime}\right\}^{*}\{0,1\}^{*} \#\right)^{*}$.

A "hard" automatic structure of bounded degree

Elements of the structure will be represented by words from the language $\left(\left\{a, a^{\prime}, b, b^{\prime}\right\}^{*}\{0,1\}^{*} \#\right)^{*}$.
00\#01\#11\#

A "hard" automatic structure of bounded degree

Elements of the structure will be represented by words from the language $\left(\left\{a, a^{\prime}, b, b^{\prime}\right\}^{*}\{0,1\}^{*} \#\right)^{*}$.
00\#01\#11\#

Automaton for s_{0} : In each $\# \cdots$ - $\#$-block, the first symbol $x \in\{0,1\}$ is replaced by a (if $x=0$) resp. b^{\prime} (if $x=1$).

A "hard" automatic structure of bounded degree

Elements of the structure will be represented by words from the language $\left(\left\{a, a^{\prime}, b, b^{\prime}\right\}^{*}\{0,1\}^{*} \#\right)^{*}$.

Automaton for s_{0} : In each \#...\#-block, the first symbol $x \in\{0,1\}$ is replaced by a (if $x=0$) resp. b^{\prime} (if $x=1$).

A "hard" automatic structure of bounded degree

Elements of the structure will be represented by words from the language $\left(\left\{a, a^{\prime}, b, b^{\prime}\right\}^{*}\{0,1\}^{*} \#\right)^{*}$.

Automaton for s_{0} : In each $\# \cdots$ - $\#$-block, the first symbol $x \in\{0,1\}$ is replaced by a (if $x=0$) resp. b^{\prime} (if $x=1$).

Automaton for s_{1} : In each $\# \cdots \#$-block, the first symbol $x \in\{0,1\}$ is replaced by a^{\prime} (if $x=0$) resp. b (if $x=1$).

A "hard" automatic structure of bounded degree

Elements of the structure will be represented by words from the language $\left(\left\{a, a^{\prime}, b, b^{\prime}\right\}^{*}\{0,1\}^{*} \#\right)^{*}$.

Automaton for s_{0} : In each $\# \cdots \#$-block, the first symbol $x \in\{0,1\}$ is replaced by a (if $x=0$) resp. b^{\prime} (if $x=1$).

Automaton for s_{1} : In each $\# \cdots \#$-block, the first symbol $x \in\{0,1\}$ is replaced by a^{\prime} (if $x=0$) resp. b (if $x=1$).

A "hard" automatic structure of bounded degree

Elements of the structure will be represented by words from the language $\left(\left\{a, a^{\prime}, b, b^{\prime}\right\}^{*}\{0,1\}^{*} \#\right)^{*}$.

Automaton for s_{0} : In each $\# \cdots$ - $\#$-block, the first symbol $x \in\{0,1\}$ is replaced by a (if $x=0$) resp. b^{\prime} (if $x=1$).

Automaton for s_{1} : In each $\# \cdots \#$-block, the first symbol $x \in\{0,1\}$ is replaced by a^{\prime} (if $x=0$) resp. b (if $x=1$).

A "hard" automatic structure of bounded degree

Elements of the structure will be represented by words from the language $\left(\left\{a, a^{\prime}, b, b^{\prime}\right\}^{*}\{0,1\}^{*} \#\right)^{*}$.

$a a \# a b^{\prime} \# b^{\prime} b^{\prime} \# \quad a a^{\prime} \# a b \# b^{\prime} b \# \quad a^{\prime} a \# a^{\prime} b^{\prime} \# b b^{\prime} \# \quad a^{\prime} a^{\prime} \# a^{\prime} b \# b b \#$
Automaton for s_{0} : In each $\# \cdots$ - $\#$-block, the first symbol $x \in\{0,1\}$ is replaced by a (if $x=0$) resp. b^{\prime} (if $x=1$).

Automaton for s_{1} : In each $\# \cdots \#$-block, the first symbol $x \in\{0,1\}$ is replaced by a^{\prime} (if $x=0$) resp. b (if $x=1$).

A "hard" automatic structure of bounded degree

Elements of the structure will be represented by words from the language $\left(\left\{a, a^{\prime}, b, b^{\prime}\right\}^{*}\{0,1\}^{*} \#\right)^{*}$.

$a a \# a b^{\prime} \# b^{\prime} b^{\prime} \# \quad a a^{\prime} \# a b \# b^{\prime} b \# \quad a^{\prime} a \# a^{\prime} b^{\prime} \# b b^{\prime} \# \quad a^{\prime} a^{\prime} \# a^{\prime} b \# b b \#$
Automaton for s_{0} : In each $\# \cdots$ - $\#$-block, the first symbol $x \in\{0,1\}$ is replaced by a (if $x=0$) resp. b^{\prime} (if $x=1$).

Automaton for s_{1} : In each $\# \cdots \#$-block, the first symbol $x \in\{0,1\}$ is replaced by a^{\prime} (if $x=0$) resp. b (if $x=1$).

Automaton for P : accepts all words, where some \# \cdot. \#-block belongs to $\{a, b\}^{*}$.

A "hard" automatic structure of bounded degree

Elements of the structure will be represented by words from the language $\left(\left\{a, a^{\prime}, b, b^{\prime}\right\}^{*}\{0,1\}^{*} \#\right)^{*}$.

$a a \# a b^{\prime} \# b^{\prime} b^{\prime} \# \quad a a^{\prime} \# a b \# b^{\prime} b \# \quad a^{\prime} a \# a^{\prime} b^{\prime} \# b b^{\prime} \# \quad a^{\prime} a^{\prime} \# a^{\prime} b \# b b \#$
Automaton for s_{0} : In each $\# \cdots$ - $\#$-block, the first symbol $x \in\{0,1\}$ is replaced by a (if $x=0$) resp. b^{\prime} (if $x=1$).

Automaton for s_{1} : In each $\# \cdots \#$-block, the first symbol $x \in\{0,1\}$ is replaced by a^{\prime} (if $x=0$) resp. b (if $x=1$).

Automaton for P : accepts all words, where some \# \cdot. \#-block belongs to $\{a, b\}^{*}$.

Monadic interpretation of addition

For an FO-formula $\varphi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ over \mathbb{A} and $b_{1}, \ldots, b_{m} \in A$ let $\varphi\left(x_{1}, \ldots, x_{n}, b_{1}, \ldots, b_{m}\right)^{\mathbb{A}}$ be the n-ary relation

$$
\left\{\left(a_{1}, \ldots, a_{n}\right) \mid \varphi\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right) \text { is true in } \mathbb{A}\right\} .
$$

For every $k \geq 0$ we can efficiently construct FO-formulas

$$
\phi_{k}(x, y), \psi_{k}\left(x_{1}, x_{2}, x_{3}, y\right), \mu_{k}(x, y, z)
$$

over \mathbb{A} such that there exists $a \in A$ with:
(1) the structure $\left(\phi_{1}(x, a)^{\mathbb{A}}, v_{1}\left(x_{1}, x_{2}, x_{3}, a\right)^{\mathbb{A}}\right)$ is isomorphic to $\left(\left\{0, \ldots, 2^{2^{k}}-1\right\},\{(x, y, z) \mid x+y=z\}\right)$, and
(2) every subset of $\phi_{k}(x, a)^{\mathbb{A}}$ is of the form $\mu_{k}(x, a, b)^{\mathbb{A}}$ for some $b \in A$.

Monadic interpretation of addition

For an FO-formula $\varphi\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ over \mathbb{A} and
$b_{1}, \ldots, b_{m} \in A$ let $\varphi\left(x_{1}, \ldots, x_{n}, b_{1}, \ldots, b_{m}\right)^{\mathbb{A}}$ be the n-ary relation

$$
\left\{\left(a_{1}, \ldots, a_{n}\right) \mid \varphi\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m}\right) \text { is true in } \mathbb{A}\right\} .
$$

For every $k \geq 0$ we can efficiently construct FO-formulas

$$
\phi_{k}(x, y), \psi_{k}\left(x_{1}, x_{2}, x_{3}, y\right), \mu_{k}(x, y, z)
$$

over \mathbb{A} such that there exists $a \in A$ with:
(1) the structure $\left(\phi_{k}(x, a)^{\mathbb{A}}, \psi_{k}\left(x_{1}, x_{2}, x_{3}, a\right)^{\mathbb{A}}\right)$ is isomorphic to $\left(\left\{0, \ldots, 2^{2^{k}}-1\right\},\{(x, y, z) \mid x+y=z\}\right)$, and
(2) every subset of $\phi_{k}(x, a)^{\mathbb{A}}$ is of the form $\mu_{k}(x, a, b)^{\mathbb{A}}$ for some $b \in A$.

Monadic interpretation of addition

For every $k \geq 0$ we can efficiently construct FO-formulas

$$
\phi_{k}(x, y), \psi_{k}\left(x_{1}, x_{2}, x_{3}, y\right), \mu_{k}(x, y, z)
$$

over \mathbb{A} such that there exists $a \in A$ with:
(1) the structure $\left(\phi_{k}(x, a)^{\mathbb{A}}, \psi_{k}\left(x_{1}, x_{2}, x_{3}, a\right)^{\mathbb{A}}\right)$ is isomorphic to $\left(\left\{0, \ldots, 2^{2^{k}}-1\right\},\{(x, y, z) \mid x+y=z\}\right)$, and
(2) every subset of $\phi_{k}(x, a)^{\mathbb{A}}$ is of the form $\mu_{k}(x, a, b)^{\mathbb{A}}$ for some $b \in A$.

Monadic interpretation of addition

For every $k \geq 0$ we can efficiently construct FO-formulas

$$
\phi_{k}(x, y), \psi_{k}\left(x_{1}, x_{2}, x_{3}, y\right), \mu_{k}(x, y, z)
$$

over \mathbb{A} such that there exists $a \in A$ with:
(1) the structure $\left(\phi_{k}(x, a)^{\mathbb{A}}, \psi_{k}\left(x_{1}, x_{2}, x_{3}, a\right)^{\mathbb{A}}\right)$ is isomorphic to $\left(\left\{0, \ldots, 2^{2^{k}}-1\right\},\{(x, y, z) \mid x+y=z\}\right)$, and
(2) every subset of $\phi_{k}(x, a)^{\mathbb{A}}$ is of the form $\mu_{k}(x, a, b)^{\mathbb{A}}$ for some $b \in A$.

Monadic interpretation of addition

For every $k \geq 0$ we can efficiently construct FO-formulas

$$
\phi_{k}(x, y), \psi_{k}\left(x_{1}, x_{2}, x_{3}, y\right), \mu_{k}(x, y, z)
$$

over \mathbb{A} such that there exists $a \in A$ with:
(1) the structure $\left(\phi_{k}(x, a)^{\mathbb{A}}, \psi_{k}\left(x_{1}, x_{2}, x_{3}, a\right)^{\mathbb{A}}\right)$ is isomorphic to $\left(\left\{0, \ldots, 2^{2^{k}}-1\right\},\{(x, y, z) \mid x+y=z\}\right)$, and
(2) every subset of $\phi_{k}(x, a)^{\mathbb{A}}$ is of the form $\mu_{k}(x, a, b)^{\mathbb{A}}$ for some $b \in A$.

Choose for a the root of a binary tree T_{k} of height 2^{k} (labeling of the leafs irrelevant): Leafs of $T_{k} \rightleftharpoons\left\{0, \ldots, 2^{2^{k}}-1\right\}$.

Monadic interpretation of addition

For every $k \geq 0$ we can efficiently construct FO-formulas

$$
\phi_{k}(x, y), \psi_{k}\left(x_{1}, x_{2}, x_{3}, y\right), \mu_{k}(x, y, z)
$$

over \mathbb{A} such that there exists $a \in A$ with:
(1) the structure $\left(\phi_{k}(x, a)^{\mathbb{A}}, \psi_{k}\left(x_{1}, x_{2}, x_{3}, a\right)^{\mathbb{A}}\right)$ is isomorphic to $\left(\left\{0, \ldots, 2^{2^{k}}-1\right\},\{(x, y, z) \mid x+y=z\}\right)$, and
(2) every subset of $\phi_{k}(x, a)^{\mathbb{A}}$ is of the form $\mu_{k}(x, a, b)^{\mathbb{A}}$ for some $b \in A$.

Choose for a the root of a binary tree T_{k} of height 2^{k} (labeling of the leafs irrelevant): Leafs of $T_{k} \rightleftharpoons\left\{0, \ldots, 2^{2^{k}}-1\right\}$.

Monadic interpretation of addition

For every $k \geq 0$ we can efficiently construct FO-formulas

$$
\phi_{k}(x, y), \psi_{k}\left(x_{1}, x_{2}, x_{3}, y\right), \mu_{k}(x, y, z)
$$

over \mathbb{A} such that there exists $a \in A$ with:
(1) the structure $\left(\phi_{k}(x, a)^{\mathbb{A}}, \psi_{k}\left(x_{1}, x_{2}, x_{3}, a\right)^{\mathbb{A}}\right)$ is isomorphic to $\left(\left\{0, \ldots, 2^{2^{k}}-1\right\},\{(x, y, z) \mid x+y=z\}\right)$, and
(2) every subset of $\phi_{k}(x, a)^{\mathbb{A}}$ is of the form $\mu_{k}(x, a, b)^{\mathbb{A}}$ for some $b \in A$.

Choose for a the root of a binary tree T_{k} of height 2^{k} (labeling of the leafs irrelevant): Leafs of $T_{k} \rightleftharpoons\left\{0, \ldots, 2^{2^{k}}-1\right\}$.

We can express $x+y=z$ with an FO-formula of size $O(k)$: carry-look-ahead addition

Monadic interpretation of addition

For every $k \geq 0$ we can efficiently construct FO-formulas

$$
\phi_{k}(x, y), \psi_{k}\left(x_{1}, x_{2}, x_{3}, y\right), \mu_{k}(x, y, z)
$$

over \mathbb{A} such that there exists $a \in A$ with:
(1) the structure $\left(\phi_{k}(x, a)^{\mathbb{A}}, \psi_{k}\left(x_{1}, x_{2}, x_{3}, a\right)^{\mathbb{A}}\right)$ is isomorphic to $\left(\left\{0, \ldots, 2^{2^{k}}-1\right\},\{(x, y, z) \mid x+y=z\}\right)$, and
(2) every subset of $\phi_{k}(x, a)^{\mathbb{A}}$ is of the form $\mu_{k}(x, a, b)^{\mathbb{A}}$ for some $b \in A$.

Monadic interpretation of addition

For every $k \geq 0$ we can efficiently construct FO-formulas

$$
\phi_{k}(x, y), \psi_{k}\left(x_{1}, x_{2}, x_{3}, y\right), \mu_{k}(x, y, z)
$$

over \mathbb{A} such that there exists $a \in A$ with:
(1) the structure $\left(\phi_{k}(x, a)^{\mathbb{A}}, \psi_{k}\left(x_{1}, x_{2}, x_{3}, a\right)^{\mathbb{A}}\right)$ is isomorphic to $\left(\left\{0, \ldots, 2^{2^{k}}-1\right\},\{(x, y, z) \mid x+y=z\}\right)$, and
(2) every subset of $\phi_{k}(x, a)^{\mathbb{A}}$ is of the form $\mu_{k}(x, a, b)^{\mathbb{A}}$ for some $b \in A$.

Let B be an arbitrary subset of $\phi_{k}(x, a)^{\mathbb{A}}$, i.e., an arbitrary subset of the leafs of the tree T_{k} rooted at a.

Monadic interpretation of addition

For every $k \geq 0$ we can efficiently construct FO-formulas

$$
\phi_{k}(x, y), \psi_{k}\left(x_{1}, x_{2}, x_{3}, y\right), \mu_{k}(x, y, z)
$$

over \mathbb{A} such that there exists $a \in A$ with:
(1) the structure $\left(\phi_{k}(x, a)^{\mathbb{A}}, \psi_{k}\left(x_{1}, x_{2}, x_{3}, a\right)^{\mathbb{A}}\right)$ is isomorphic to $\left(\left\{0, \ldots, 2^{2^{k}}-1\right\},\{(x, y, z) \mid x+y=z\}\right)$, and
(2) every subset of $\phi_{k}(x, a)^{\mathbb{A}}$ is of the form $\mu_{k}(x, a, b)^{\mathbb{A}}$ for some $b \in A$.

Let B be an arbitrary subset of $\phi_{k}(x, a)^{\mathbb{A}}$, i.e., an arbitrary subset of the leafs of the tree T_{k} rooted at a.

Tree automatic structures

- Tree automatic structures are defined similarly to automatic structures using tree automata.

- Tree automatic structures are defined similarly to automatic structures using tree automata.
- (\mathbb{N}, \cdot) is a tree automatic structure that is not automatic. - Let \mathbb{A} be a tree automatic structure of bounded degree. Then the FO-theory of \mathbb{A} helongs to $\operatorname{ATIMF}\left(n 2^{2^{2^{2}}}\right)$ for some constant c
- Tree automatic structures are defined similarly to automatic structures using tree automata.
- (\mathbb{N}, \cdot) is a tree automatic structure that is not automatic.
- Let \mathbb{A} be a tree automatic structure of bounded degree. Then the FO-theory of \mathbb{A} belongs to $\operatorname{ATIME}\left(n, 2^{2^{2^{2}}}\right)$ for some constant c.
- Tree automatic structures are defined similarly to automatic structures using tree automata.
- ($\mathbb{N}, \cdot)$ is a tree automatic structure that is not automatic.
- Let \mathbb{A} be a tree automatic structure of bounded degree. Then the FO-theory of \mathbb{A} belongs to $\operatorname{ATIME}\left(n, 2^{2^{2^{2^{c \cdot n}}}}\right)$ for some constant c.

Open Problems

- For automatic structures: Close that gap between $\operatorname{ATIME}\left(c \cdot n, 2^{2^{c \cdot n}}\right)$ (lower bound) and $\operatorname{ATIME}\left(n, 2^{2^{2^{c \cdot n}}}\right.$) (upper bound).
- For tree automatic structures: Close that gap between $\triangle T I M A E\left(C \cdot n 2^{2^{c \cdot n}}\right)$ and $\triangle T I M E\left(n 2^{2^{2^{2}}}\right)$

Open Problems

- For automatic structures: Close that gap between $\operatorname{ATIME}\left(c \cdot n, 2^{2^{c \cdot n}}\right)$ (lower bound) and $\operatorname{ATIME}\left(n, 2^{2^{2^{c \cdot n}}}\right.$) (upper bound).
- For tree automatic structures: Close that gap between $\operatorname{ATIME}\left(c \cdot n, 2^{2^{c \cdot n}}\right)$ and $\operatorname{ATIME}\left(n, 2^{2^{2^{2^{c}}}}\right)$.

Open Problems

- For automatic structures: Close that gap between $\operatorname{ATIME}\left(c \cdot n, 2^{2^{c \cdot n}}\right)$ (lower bound) and $\operatorname{ATIME}\left(n, 2^{2^{2^{c \cdot n}}}\right.$) (upper bound).
- For tree automatic structures: Close that gap between $\operatorname{ATIME}\left(c \cdot n, 2^{2^{c \cdot n}}\right)$ and $\operatorname{ATIME}\left(n, 2^{2^{2^{c^{c \cdot n}}}}\right)$.
- What about first-order logic with \exists^{ω}-quantifiers?

Open Problems

- For automatic structures: Close that gap between $\operatorname{ATIME}\left(c \cdot n, 2^{2^{c \cdot n}}\right)$ (lower bound) and $\operatorname{ATIME}\left(n, 2^{2^{2^{c \cdot n}}}\right.$) (upper bound).
- For tree automatic structures: Close that gap between
$\operatorname{ATIME}\left(c \cdot n, 2^{2^{c \cdot n}}\right)$ and $\operatorname{ATIME}\left(n, 2^{2^{2^{c^{\cdot \cdot n}}}}\right)$.
- What about first-order logic with \exists^{ω}-quantifiers?
- Is there a tree automatic structure of bounded degree that is not automatic?

Open Problems

- For automatic structures: Close that gap between $\operatorname{ATIME}\left(c \cdot n, 2^{2^{c \cdot n}}\right)$ (lower bound) and $\operatorname{ATIME}\left(n, 2^{2^{2^{c \cdot n}}}\right.$) (upper bound).
- For tree automatic structures: Close that gap between
$\operatorname{ATIME}\left(c \cdot n, 2^{2^{c \cdot n}}\right)$ and $\operatorname{ATIME}\left(n, 2^{2^{2^{c^{c \cdot n}}}}\right)$.
- What about first-order logic with \exists^{ω}-quantifiers?
- Is there a tree automatic structure of bounded degree that is not automatic?
- Other classes of (tree) automatic structures with elementary FO-theories.

Open Problems

- For automatic structures: Close that gap between $\operatorname{ATIME}\left(c \cdot n, 2^{2^{c \cdot n}}\right)$ (lower bound) and $\operatorname{ATIME}\left(n, 2^{2^{2^{c \cdot n}}}\right.$) (upper bound).
- For tree automatic structures: Close that gap between
$\operatorname{ATIME}\left(c \cdot n, 2^{2^{c \cdot n}}\right)$ and $\operatorname{ATIME}\left(n, 2^{2^{2^{c^{c \cdot n}}}}\right)$.
- What about first-order logic with \exists^{ω}-quantifiers?
- Is there a tree automatic structure of bounded degree that is not automatic?
- Other classes of (tree) automatic structures with elementary FO-theories.
- E.g. $(\mathbb{N},+)$: Is there an automatic structure \mathbb{A} of bounded degree such that $(\mathbb{N},+)$ is first-order interpretable in \mathbb{A}.

Open Problems

- For automatic structures: Close that gap between $\operatorname{ATIME}\left(c \cdot n, 2^{2^{c \cdot n}}\right)$ (lower bound) and $\operatorname{ATIME}\left(n, 2^{2^{2^{c \cdot n}}}\right.$) (upper bound).
- For tree automatic structures: Close that gap between $\operatorname{ATIME}\left(c \cdot n, 2^{2^{c \cdot n}}\right)$ and $\operatorname{ATIME}\left(n, 2^{2^{2^{c^{c \cdot n}}}}\right)$.
- What about first-order logic with \exists^{ω}-quantifiers?
- Is there a tree automatic structure of bounded degree that is not automatic?
- Other classes of (tree) automatic structures with elementary FO-theories.
- E.g. $(\mathbb{N},+)$: Is there an automatic structure \mathbb{A} of bounded degree such that $(\mathbb{N},+)$ is first-order interpretable in \mathbb{A}.

[^0]: The structure \mathbb{A} has bounded degree if its Gaifman-graph has
 bounded degree, i.e., for some constant δ, every element of \mathbb{A} has

