Word problems on compressed words

Markus Lohrey

University of Stuttgart/RWTH Aachen

Motivation

In general, computational problems become harder, when inputs are represented in a compressed form.

Motivation

In general, computational problems become harder, when inputs are represented in a compressed form.

Two lines of research:

- Develop efficient algorithms on compressed data (strings, trees, pictures) that operate directly on compressed data without decompressing them first.
- Prove lower bounds on compressed variants of computational problems.

Motivation

In general, computational problems become harder, when inputs are represented in a compressed form.

Two lines of research:

- Develop efficient algorithms on compressed data (strings, trees, pictures) that operate directly on compressed data without decompressing them first.
- Prove lower bounds on compressed variants of computational problems.

Here we consider the compressed word problem for a fixed language $L \subseteq \Gamma^*$:

INPUT: A compressed representation of a word $w \in \Gamma^*$ QUESTION: $w \in L$?

- A straight-line program over the alphabet Γ is a context-free grammar $H = (V, \Gamma, P, S)$ in Chomsky normal form such that:
 - For every $A \in V$ there exists exactly one production of the form $A \to \alpha$ in P.
 - There exists a linear ordering A_1, A_2, \ldots, A_n of V such that $S = A_1$ and for every production $A_i \to A_j A_k$ we have i < j, k.

unfold(H) denotes the unique word generated by H.

- A straight-line program over the alphabet Γ is a context-free grammar $H = (V, \Gamma, P, S)$ in Chomsky normal form such that:
 - For every $A \in V$ there exists exactly one production of the form $A \to \alpha$ in P.
 - There exists a linear ordering A₁, A₂,..., A_n of V such that S = A₁ and for every production A_i → A_jA_k we have i < j, k.

unfold(H) denotes the unique word generated by H.

Let |H| be the number of productions of H.

Example: Let H_n be the straight-line program that consists of the following productions:

Example: Let H_n be the straight-line program that consists of the following productions:

Then $|H_n| = n + 1$ but $unfold(H_n) = a^{2^n}$.

Example: Let H_n be the straight-line program that consists of the following productions:

Then $|H_n| = n + 1$ but $\operatorname{unfold}(H_n) = a^{2^n}$.

Several other compressed representations (e.g., Lempel-Ziv) can be efficiently transformed into straight-line programs and vice versa.

For every regular language L, the compressed word problem for L is in P (Folklore).

For every regular language L, the compressed word problem for L is in P (Folklore).

Beaudry et al: There are regular languages with a P-complete compressed word problem.

For every regular language L, the compressed word problem for L is in P (Folklore).

Beaudry et al: There are regular languages with a P-complete compressed word problem.

Plandowski, Rytter: For every context-free language L, the compressed word problem for L is in PSPACE.

For every regular language L, the compressed word problem for L is in P (Folklore).

Beaudry et al: There are regular languages with a P-complete compressed word problem.

Plandowski, Rytter: For every context-free language L, the compressed word problem for L is in PSPACE.

Plandowski, Rytter: There are context-free (even linear) languages (over a unary alphabet) with an NP-hard compressed word problem.

Main new result

There exists a fixed deterministic (and linear) context-free language with a PSPACE-complete compressed word problem.

Main new result

- There exists a fixed deterministic (and linear) context-free language with a PSPACE-complete compressed word problem.
- Upper bound: Holds even for the following uniform variant:
- INPUT: A straight-line program H and a context-free grammar GQUESTION: unfold $(H) \in L(G)$?

Upper bound

Goldschlager: For a given word w and a context-free grammar G in Chomsky normal form it can be checked in space $(\log(|w| + |G|))^2$ whether $w \in L(G)$.

Upper bound

Goldschlager: For a given word w and a context-free grammar G in Chomsky normal form it can be checked in space $(\log(|w| + |G|))^2$ whether $w \in L(G)$.

For a given straight-line program H and a context-free grammar G in Chomsky normal form we simulate the $(\log(|w| + |G|))^2$ -space algorithm on unfold(H) and G without explicitly generating unfold(H).

Upper bound

Goldschlager: For a given word w and a context-free grammar G in Chomsky normal form it can be checked in space $(\log(|w| + |G|))^2$ whether $w \in L(G)$.

For a given straight-line program H and a context-free grammar G in Chomsky normal form we simulate the $(\log(|w| + |G|))^2$ -space algorithm on unfold(H) and G without explicitly generating unfold(H).

Critical fact: A position j in unfold(H) can be stored in polynomial space and the symbol at position j in unfold(H) can be calculated in polynomial time.

Let $\Gamma = \{b, c_0, c_1, c_2, \#, \$, \triangleright, 0\}$ and let R be the monadic string-rewriting system consisting of the following rules:

$b c_0 \to \varepsilon$	$b \$ \rightarrow \triangleright$	$\triangleright c_i \rightarrow \triangleright$	for $i \in \{0, 1, 2\}$
$ ho\$ \longrightarrow \$$	$\# \$ \to \varepsilon$	$b c_2 \to 0$	
$0 x \to 0 \text{for} \ x \in \Gamma$	$x \ 0 \to 0 \ \ {\rm for} \ x \in \Gamma$		

Let $\Gamma = \{b, c_0, c_1, c_2, \#, \$, \triangleright, 0\}$ and let R be the monadic string-rewriting system consisting of the following rules:

$b c_0 \to \varepsilon$	$b \$ \rightarrow \triangleright$	$\triangleright c_i \rightarrow \triangleright$	for $i \in \{0, 1, 2\}$
$ ho\$ \longrightarrow \$$	$\# \$ \to \varepsilon$	$b c_2 \rightarrow 0$	
$0 x \to 0 \text{ for } x \in \Gamma$	$x \ 0 \to 0 \text{for} \ x \in \Gamma$		

The reduction relation \rightarrow_R is confluent.

Let $\Gamma = \{b, c_0, c_1, c_2, \#, \$, \triangleright, 0\}$ and let R be the monadic string-rewriting system consisting of the following rules:

$b c_0 \to \varepsilon$	$b \$ \rightarrow \triangleright$	$\triangleright c_i \rightarrow \triangleright$	for $i \in \{0, 1, 2\}$
$ ho\$ \longrightarrow \$$	$\# \$ \to \varepsilon$	$b c_2 \rightarrow 0$	
$0 x \to 0 \text{ for } x \in \Gamma$	$x \ 0 \to 0 \text{for} \ x \in \Gamma$		

The reduction relation \rightarrow_R is confluent.

 \Rightarrow the language $\{w \in \Gamma^* \mid w \xrightarrow{*}_R 0\}$ is deterministic context-free.

Let $\Gamma = \{b, c_0, c_1, c_2, \#, \$, \triangleright, 0\}$ and let R be the monadic string-rewriting system consisting of the following rules:

$b c_0 \to \varepsilon$	$b \$ \rightarrow \triangleright$	$\triangleright c_i \rightarrow \triangleright$	for $i \in \{0, 1, 2\}$
$ ho\$ \longrightarrow \$$	$\# \$ \to \varepsilon$	$b c_2 \rightarrow 0$	
$0 x \to 0 \text{ for } x \in \Gamma$	$x \ 0 \to 0 \text{for} \ x \in \Gamma$		

The reduction relation \rightarrow_R is confluent.

 \Rightarrow the language $\{w \in \Gamma^* \mid w \xrightarrow{*}_R 0\}$ is deterministic context-free.

We show that the compressed word problem for $\{w \in \Gamma^* \mid w \xrightarrow{*}_R 0\}$ is PSPACE-complete.

Let G = (V, E) be a directed forest such that $V = \{v_1, v_2, \dots, v_n\}$ and $(v_i, v_j) \in E \Rightarrow i < j$.

Fix a set $U \subseteq V$ of final nodes without outgoing edges.

Let G = (V, E) be a directed forest such that $V = \{v_1, v_2, \dots, v_n\}$ and $(v_i, v_j) \in E \Rightarrow i < j$.

Fix a set $U \subseteq V$ of final nodes without outgoing edges.

Example:

Let G = (V, E) be a directed forest such that $V = \{v_1, v_2, \dots, v_n\}$ and $(v_i, v_j) \in E \Rightarrow i < j$.

Fix a set $U \subseteq V$ of final nodes without outgoing edges.

Define $w(G, U) = (\# b^n)^n \, \delta_1 \, \$ \, \delta_2 \, \$ \cdots \delta_n \$$ where

 $\delta_i = \begin{cases} c_0^{n+1-(j-i)} & \text{if } (v_i, v_j) \text{ is the unique outgoing edge at } v_i \\ c_1 & \text{if } v_i \in V \setminus U \text{ and } v_i \text{ has no outgoing edge} \\ c_2 & \text{if } v_i \in U \end{cases}$

Let G = (V, E) be a directed forest such that $V = \{v_1, v_2, \dots, v_n\}$ and $(v_i, v_j) \in E \Rightarrow i < j$.

Fix a set $U \subseteq V$ of final nodes without outgoing edges.

Define $w(G, U) = (\# b^n)^n \, \delta_1 \, \$ \, \delta_2 \, \$ \cdots \delta_n \$$ where

 $\delta_i = \begin{cases} c_0^{n+1-(j-i)} & \text{if } (v_i, v_j) \text{ is the unique outgoing edge at } v_i \\ c_1 & \text{if } v_i \in V \setminus U \text{ and } v_i \text{ has no outgoing edge} \\ c_2 & \text{if } v_i \in U \end{cases}$

For the above example: $w(G, U) = (\#b^7)^7 c_0^5 \$ c_0^6 \$ c_0^6 \$ c_0^6 \$ c_0^6 \$ c_0^6 \$ c_2 \$ c_1 \$$

 $\begin{vmatrix} b c_0 \to \varepsilon & b \$ \to \rhd & b \And c_i \to \rhd & \text{for } i \in \{0, 1, 2\} \\ \flat \$ \to \$ & \# \$ \to \varepsilon & b c_2 \to 0 \\ 0 x \to 0 & \text{for } x \in \Gamma & x \ 0 \to 0 & \text{for } x \in \Gamma \\ \end{vmatrix}$

 $\frac{v_1}{\# b^7 \# b$

 $\frac{v_1}{\# b^7 \# b$

 $\begin{vmatrix} b c_0 \to \varepsilon & b \$ \to \rhd & b c_i \to \rhd & \text{for } i \in \{0, 1, 2\} \\ \flat \$ \to \$ & \# \$ \to \varepsilon & b c_2 \to 0 \\ 0 x \to 0 & \text{for } x \in \Gamma & x \ 0 \to 0 & \text{for } x \in \Gamma \end{vmatrix}$

 $\frac{v_2}{\# b^7 \# b$

 $\begin{vmatrix} b c_0 \to \varepsilon & b \$ \to \rhd & b c_i \to \rhd & \text{for } i \in \{0, 1, 2\} \\ \flat \$ \to \$ & \# \$ \to \varepsilon & b c_2 \to 0 \\ 0 x \to 0 & \text{for } x \in \Gamma & x \ 0 \to 0 & \text{for } x \in \Gamma \end{vmatrix}$

 $\frac{v_2}{\# b^7 \# b$

 $\begin{vmatrix} b c_0 \to \varepsilon & b \$ \to \rhd & b \And c_i \to \triangleright & \text{for } i \in \{0, 1, 2\} \\ \triangleright \$ \to \$ & \# \$ \to \varepsilon & b c_2 \to 0 \\ 0 x \to 0 & \text{for } x \in \Gamma & x \ 0 \to 0 & \text{for } x \in \Gamma \end{vmatrix}$

 $\begin{vmatrix} b c_0 \to \varepsilon & b \$ \to \rhd & b c_i \to \rhd & \text{for } i \in \{0, 1, 2\} \\ \flat \$ \to \$ & \# \$ \to \varepsilon & b c_2 \to 0 \\ 0 x \to 0 & \text{for } x \in \Gamma & x \ 0 \to 0 & \text{for } x \in \Gamma \\ \end{vmatrix}$

 $\begin{vmatrix} b c_0 \to \varepsilon & b \$ \to \rhd & b c_i \to \rhd & \text{for } i \in \{0, 1, 2\} \\ \flat \$ \to \$ & \# \$ \to \varepsilon & b c_2 \to 0 \\ 0 x \to 0 & \text{for } x \in \Gamma & x \ 0 \to 0 & \text{for } x \in \Gamma \\ \end{vmatrix}$

 $\begin{vmatrix} b c_0 \to \varepsilon & b \$ \to \rhd & b c_i \to \rhd & \text{for } i \in \{0, 1, 2\} \\ \flat \$ \to \$ & \# \$ \to \varepsilon & b c_2 \to 0 \\ 0 x \to 0 & \text{for } x \in \Gamma & x \ 0 \to 0 & \text{for } x \in \Gamma \\ \end{vmatrix}$

 $\frac{v_3}{\# b^7 \# b$

 $\begin{vmatrix} b c_0 \to \varepsilon & b \$ \to \rhd & b c_i \to \rhd & \text{for } i \in \{0, 1, 2\} \\ \flat \$ \to \$ & \# \$ \to \varepsilon & b c_2 \to 0 \\ 0 x \to 0 & \text{for } x \in \Gamma & x \ 0 \to 0 & \text{for } x \in \Gamma \\ \end{vmatrix}$

 $\frac{v_4 \quad v_5 \quad v_6 \quad v_7}{\# b^7 \# b$

 $\frac{v_4}{\# b^7 \# b$

 $\frac{v_4}{\# b^7 \# b$

 $\begin{array}{cccc} b c_0 \to \varepsilon & b \$ \to \rhd & b c_i \to \rhd & \text{for } i \in \{0, 1, 2\} \\ \triangleright \$ \to \$ & \# \$ \to \varepsilon & b c_2 \to 0 \\ 0 x \to 0 & \text{for } x \in \Gamma & x 0 \to 0 & \text{for } x \in \Gamma \end{array}$

 $\frac{v_5}{\# b^7 \# b^7 h^7$

 $\frac{v_5}{\# b^7 \# b^7 h^7$

 $\begin{vmatrix} b c_0 \to \varepsilon & b \$ \to \rhd & b c_i \to \triangleright & \text{for } i \in \{0, 1, 2\} \\ \flat \$ \to \$ & \# \$ \to \varepsilon & b c_2 \to 0 \\ 0 x \to 0 & \text{for } x \in \Gamma & x \, 0 \to 0 & \text{for } x \in \Gamma \end{vmatrix}$

 $\frac{v_5}{\# b^7 \# b$

 $\begin{vmatrix} b c_0 \to \varepsilon & b \$ \to \rhd & b \And c_i \to \triangleright & \text{for } i \in \{0, 1, 2\} \\ \triangleright \$ \to \$ & \# \$ \to \varepsilon & b c_2 \to 0 \\ 0 x \to 0 & \text{for } x \in \Gamma & x \ 0 \to 0 & \text{for } x \in \Gamma \end{vmatrix}$

 $\frac{v_5}{\# b^7 \# b$

 $\begin{vmatrix} b c_0 \to \varepsilon & b \$ \to \rhd & b c_i \to \triangleright & \text{for } i \in \{0, 1, 2\} \\ \flat \$ \to \$ & \# \$ \to \varepsilon & b c_2 \to 0 \\ 0 x \to 0 & \text{for } x \in \Gamma & x \, 0 \to 0 & \text{for } x \in \Gamma \end{vmatrix}$

 $\begin{array}{ccc} v_6 & v_7 \\ \# \, b^7 \, \# \, b^7 \, \# \, b^7 \, \# \, b^7 \, \# \, b^7 \end{array} \\ c_2 \, \$ \, c_1 \, \$ \end{array}$

 $\frac{v_6}{\# b^7 \# b^7 \# b^7 \# b^7} = \frac{v_6}{c_2} \$ c_1 \$$

 $\begin{vmatrix} b c_0 \to \varepsilon & b \$ \to \rhd & b c_i \to \triangleright & \text{for } i \in \{0, 1, 2\} \\ \flat \$ \to \$ & \# \$ \to \varepsilon & b c_2 \to 0 \\ 0 x \to 0 & \text{for } x \in \Gamma & x \, 0 \to 0 & \text{for } x \in \Gamma \end{vmatrix}$

 $\# b^7 \# b^7 \# b^7 \# b^7 \# b^6$

 $\frac{v_7}{0 \ \$ \ c_1 \ \$}$

 $\# b^7 \# b^7 \# b^7 \# b^7 \# b^6$

 v_7

$$0 \ \ c_1 \$$

 $\begin{vmatrix} b c_0 \to \varepsilon & b \$ \to \rhd & b c_i \to \triangleright & \text{for } i \in \{0, 1, 2\} \\ \triangleright \$ \to \$ & \# \$ \to \varepsilon & b c_2 \to 0 \\ 0 x \to 0 & \text{for } x \in \Gamma & x \, 0 \to 0 & \text{for } x \in \Gamma \end{vmatrix}$

0

Main property: $w(G, U) \xrightarrow{*}_{R} 0 \Leftrightarrow \exists u \in U : u \text{ reachable from } v_1 \text{ in } G.$

Main property: $w(G, U) \xrightarrow{*}_{R} 0 \Leftrightarrow \exists u \in U : u \text{ reachable from } v_1 \text{ in } G.$ Consequence: $L = \{ w \in \Gamma^* \mid w \xrightarrow{*}_{R} 0 \}$ is logspace-hard.

Main property: $w(G, U) \xrightarrow{*}_{R} 0 \Leftrightarrow \exists u \in U : u \text{ reachable from } v_1 \text{ in } G.$ Consequence: $L = \{ w \in \Gamma^* \mid w \xrightarrow{*}_{R} 0 \}$ is logspace-hard.

Let \mathcal{A} be a fixed deterministic linear bounded automaton with a PSPACE-complete acceptance problem. Let s be an input for \mathcal{A} .

Main property: $w(G, U) \xrightarrow{*}_{R} 0 \Leftrightarrow \exists u \in U : u \text{ reachable from } v_1 \text{ in } G.$ Consequence: $L = \{ w \in \Gamma^* \mid w \xrightarrow{*}_{R} 0 \}$ is logspace-hard.

Let \mathcal{A} be a fixed deterministic linear bounded automaton with a PSPACE-complete acceptance problem. Let s be an input for \mathcal{A} .

Let G be the configuration graph of \mathcal{A} , restricted to configurations of size |s| — it has size $2^{\mathcal{O}(|s|)}$.

Main property: $w(G, U) \xrightarrow{*}_{R} 0 \Leftrightarrow \exists u \in U : u$ reachable from v_1 in G. Consequence: $L = \{ w \in \Gamma^* \mid w \xrightarrow{*}_{R} 0 \}$ is logspace-hard.

Let \mathcal{A} be a fixed deterministic linear bounded automaton with a PSPACE-complete acceptance problem. Let s be an input for \mathcal{A} .

Let G be the configuration graph of \mathcal{A} , restricted to configurations of size |s| — it has size $2^{\mathcal{O}(|s|)}$.

By adding a binary counter, we can enforce that G is a directed forest.

Main property: $w(G, U) \xrightarrow{*}_{R} 0 \Leftrightarrow \exists u \in U : u$ reachable from v_1 in G. Consequence: $L = \{ w \in \Gamma^* \mid w \xrightarrow{*}_{R} 0 \}$ is logspace-hard.

Let \mathcal{A} be a fixed deterministic linear bounded automaton with a PSPACE-complete acceptance problem. Let s be an input for \mathcal{A} .

Let G be the configuration graph of \mathcal{A} , restricted to configurations of size |s| — it has size $2^{\mathcal{O}(|s|)}$.

By adding a binary counter, we can enforce that G is a directed forest.

Order nodes of G, i.e., configurations of \mathcal{A} lexicographically: v_1, v_2, \ldots , w.l.o.g. $v_1 =$ intial configuration for input s.

Main property: $w(G, U) \xrightarrow{*}_{R} 0 \Leftrightarrow \exists u \in U : u$ reachable from v_1 in G. Consequence: $L = \{ w \in \Gamma^* \mid w \xrightarrow{*}_{R} 0 \}$ is logspace-hard.

Let \mathcal{A} be a fixed deterministic linear bounded automaton with a PSPACE-complete acceptance problem. Let s be an input for \mathcal{A} .

Let G be the configuration graph of \mathcal{A} , restricted to configurations of size |s| — it has size $2^{\mathcal{O}(|s|)}$.

By adding a binary counter, we can enforce that G is a directed forest.

Order nodes of G, i.e., configurations of \mathcal{A} lexicographically: v_1, v_2, \ldots , w.l.o.g. $v_1 =$ intial configuration for input s.

Main technical property: The word $w(G, \{\text{final configurations}\})$ can be generated by a straight-line program H of size $\mathcal{O}(|s|)$.

Main property: $w(G, U) \xrightarrow{*}_{R} 0 \Leftrightarrow \exists u \in U : u$ reachable from v_1 in G. Consequence: $L = \{ w \in \Gamma^* \mid w \xrightarrow{*}_{R} 0 \}$ is logspace-hard.

Let \mathcal{A} be a fixed deterministic linear bounded automaton with a PSPACE-complete acceptance problem. Let s be an input for \mathcal{A} .

Let G be the configuration graph of \mathcal{A} , restricted to configurations of size |s| — it has size $2^{\mathcal{O}(|s|)}$.

By adding a binary counter, we can enforce that G is a directed forest.

Order nodes of G, i.e., configurations of \mathcal{A} lexicographically: v_1, v_2, \ldots , w.l.o.g. $v_1 =$ intial configuration for input s.

Main technical property: The word $w(G, \{\text{final configurations}\})$ can be generated by a straight-line program H of size $\mathcal{O}(|s|)$.

Thus, $\operatorname{unfold}(H) \in L \Leftrightarrow \mathcal{A} \text{ accepts } s$.

 For every language in AC[k] (k ∈ N), the compressed word problem is on the k-th level of the polynomial time hierarchy.

- For every language in AC[k] (k ∈ N), the compressed word problem is on the k-th level of the polynomial time hierarchy.
- For every k ∈ N there exists a language L in AC[k] such that the compressed word problem for L is complete for the k-th level of the polynomial time hierarchy.

- For every language in AC[k] (k ∈ N), the compressed word problem is on the k-th level of the polynomial time hierarchy.
- For every k ∈ N there exists a language L in AC[k] such that the compressed word problem for L is complete for the k-th level of the polynomial time hierarchy.
- For every language in NC, the compressed word problem is in PSPACE.

- For every language in AC[k] (k ∈ N), the compressed word problem is on the k-th level of the polynomial time hierarchy.
- For every k ∈ N there exists a language L in AC[k] such that the compressed word problem for L is complete for the k-th level of the polynomial time hierarchy.
- For every language in NC, the compressed word problem is in PSPACE.
- There exists a fixed language L in NC¹ such that the compressed word problem for L is PSPACE-complete.

- For every language in AC[k] (k ∈ N), the compressed word problem is on the k-th level of the polynomial time hierarchy.
- For every k ∈ N there exists a language L in AC[k] such that the compressed word problem for L is complete for the k-th level of the polynomial time hierarchy.
- For every language in NC, the compressed word problem is in PSPACE.
- There exists a fixed language L in NC¹ such that the compressed word problem for L is PSPACE-complete.
- The compressed word problem for the free group of rank 2 is P-complete.

- For every language in AC[k] (k ∈ N), the compressed word problem is on the k-th level of the polynomial time hierarchy.
- For every k ∈ N there exists a language L in AC[k] such that the compressed word problem for L is complete for the k-th level of the polynomial time hierarchy.
- For every language in NC, the compressed word problem is in PSPACE.
- There exists a fixed language L in NC¹ such that the compressed word problem for L is PSPACE-complete.
- The compressed word problem for the free group of rank 2 is P-complete.
- There exists a fixed context-sensitive language with an EXPSPACE-complete compressed word problem.