Word problems on compressed words

Markus Lohrey
University of Stuttgart/RWTH Aachen

Motivation

In general, computational problems become harder, when inputs are represented in a compressed form.

Motivation

In general, computational problems become harder, when inputs are represented in a compressed form.

Two lines of research:

- Develop efficient algorithms on compressed data (strings, trees, pictures) that operate directly on compressed data without decompressing them first.
- Prove lower bounds on compressed variants of computational problems.

Motivation

In general, computational problems become harder, when inputs are represented in a compressed form.

Two lines of research:

- Develop efficient algorithms on compressed data (strings, trees, pictures) that operate directly on compressed data without decompressing them first.
- Prove lower bounds on compressed variants of computational problems.

Here we consider the compressed word problem for a fixed language $L \subseteq \Gamma^{*}$:

INPUT: A compressed representation of a word $w \in \Gamma^{*}$ QUESTION: $w \in L$?

Compressing strings

A straight-line program over the alphabet Γ is a context-free grammar $H=(V, \Gamma, P, S)$ in Chomsky normal form such that:

- For every $A \in V$ there exists exactly one production of the form $A \rightarrow \alpha$ in P.
- There exists a linear ordering $A_{1}, A_{2}, \ldots, A_{n}$ of V such that $S=A_{1}$ and for every production $A_{i} \rightarrow A_{j} A_{k}$ we have $i<j, k$. unfold (H) denotes the unique word generated by H.

Compressing strings

A straight-line program over the alphabet Γ is a context-free grammar $H=(V, \Gamma, P, S)$ in Chomsky normal form such that:

- For every $A \in V$ there exists exactly one production of the form $A \rightarrow \alpha$ in P.
- There exists a linear ordering $A_{1}, A_{2}, \ldots, A_{n}$ of V such that $S=A_{1}$ and for every production $A_{i} \rightarrow A_{j} A_{k}$ we have $i<j, k$.
unfold (H) denotes the unique word generated by H.
Let $|H|$ be the number of productions of H.

Compressing strings

Example: Let H_{n} be the straight-line program that consists of the following productions:

$$
\begin{aligned}
S & \rightarrow A_{1} A_{1} \\
A_{1} & \rightarrow A_{2} A_{2} \\
& \vdots \\
A_{n-1} & \rightarrow A_{n} A_{n} \\
A_{n} & \rightarrow a
\end{aligned}
$$

Compressing strings

Example: Let H_{n} be the straight-line program that consists of the following productions:

$$
\begin{aligned}
S & \rightarrow A_{1} A_{1} \\
A_{1} & \rightarrow A_{2} A_{2} \\
& \vdots \\
A_{n-1} & \rightarrow A_{n} A_{n} \\
A_{n} & \rightarrow a
\end{aligned}
$$

Then $\left|H_{n}\right|=n+1$ but $\operatorname{unfold}\left(H_{n}\right)=a^{2^{n}}$.

Compressing strings

Example: Let H_{n} be the straight-line program that consists of the following productions:

$$
\begin{aligned}
S & \rightarrow A_{1} A_{1} \\
A_{1} & \rightarrow A_{2} A_{2} \\
& \vdots \\
A_{n-1} & \rightarrow A_{n} A_{n} \\
A_{n} & \rightarrow a
\end{aligned}
$$

Then $\left|H_{n}\right|=n+1$ but $\operatorname{unfold}\left(H_{n}\right)=a^{2^{n}}$.
Several other compressed representations (e.g., Lempel-Ziv) can be efficiently transformed into straight-line programs and vice versa.

Known results

For every regular language L, the compressed word problem for L is in P (Folklore).

Known results

For every regular language L, the compressed word problem for L is in P (Folklore).

Beaudry et al: There are regular languages with a P-complete compressed word problem.

Known results

For every regular language L, the compressed word problem for L is in P (Folklore).

Beaudry et al: There are regular languages with a P-complete compressed word problem.

Plandowski, Rytter: For every context-free language L, the compressed word problem for L is in PSPACE.

Known results

For every regular language L, the compressed word problem for L is in P (Folklore).

Beaudry et al: There are regular languages with a P-complete compressed word problem.

Plandowski, Rytter: For every context-free language L, the compressed word problem for L is in PSPACE.

Plandowski, Rytter: There are context-free (even linear) languages (over a unary alphabet) with an NP-hard compressed word problem.

Main new result

There exists a fixed deterministic (and linear) context-free language with a PSPACE-complete compressed word problem.

Main new result

There exists a fixed deterministic (and linear) context-free language with a PSPACE-complete compressed word problem.

Upper bound: Holds even for the following uniform variant:
INPUT: A straight-line program H and a context-free grammar G QUESTION: unfold $(H) \in L(G)$?

Upper bound

Goldschlager: For a given word w and a context-free grammar G in Chomsky normal form it can be checked in space $(\log (|w|+|G|))^{2}$ whether $w \in L(G)$.

Upper bound

Goldschlager: For a given word w and a context-free grammar G in Chomsky normal form it can be checked in space $(\log (|w|+|G|))^{2}$ whether $w \in L(G)$.

For a given straight-line program H and a context-free grammar G in Chomsky normal form we simulate the $(\log (|w|+|G|))^{2}$-space algorithm on unfold (H) and G without explicitly generating unfold (H).

Upper bound

Goldschlager: For a given word w and a context-free grammar G in Chomsky normal form it can be checked in space $(\log (|w|+|G|))^{2}$ whether $w \in L(G)$.

For a given straight-line program H and a context-free grammar G in Chomsky normal form we simulate the $(\log (|w|+|G|))^{2}$-space algorithm on unfold (H) and G without explicitly generating unfold (H).

Critical fact: A position j in unfold (H) can be stored in polynomial space and the symbol at position j in unfold (H) can be calculated in polynomial time.

Lower bound

Let $\Gamma=\left\{b, c_{0}, c_{1}, c_{2}, \#, \$, \triangleright, 0\right\}$ and let R be the monadic string-rewriting system consisting of the following rules:

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

Lower bound

Let $\Gamma=\left\{b, c_{0}, c_{1}, c_{2}, \#, \$, \triangleright, 0\right\}$ and let R be the monadic string-rewriting system consisting of the following rules:

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

The reduction relation \rightarrow_{R} is confluent.

Lower bound

Let $\Gamma=\left\{b, c_{0}, c_{1}, c_{2}, \#, \$, \triangleright, 0\right\}$ and let R be the monadic string-rewriting system consisting of the following rules:

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 & \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma \\
&
\end{array}
$$

The reduction relation \rightarrow_{R} is confluent.
\Rightarrow the language $\left\{w \in \Gamma^{*} \mid w \xrightarrow{*}_{R} 0\right\}$ is deterministic context-free.

Lower bound

Let $\Gamma=\left\{b, c_{0}, c_{1}, c_{2}, \#, \$, \triangleright, 0\right\}$ and let R be the monadic string-rewriting system consisting of the following rules:

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 & \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma \\
&
\end{array}
$$

The reduction relation \rightarrow_{R} is confluent.
\Rightarrow the language $\left\{w \in \Gamma^{*} \mid w \xrightarrow{*}_{R} 0\right\}$ is deterministic context-free.
We show that the compressed word problem for $\left\{w \in \Gamma^{*} \mid w \xrightarrow{*}_{R} 0\right\}$ is PSPACE-complete.

Lower bound

Let $G=(V, E)$ be a directed forest such that $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\left(v_{i}, v_{j}\right) \in E \Rightarrow i<j$.

Fix a set $U \subseteq V$ of final nodes without outgoing edges.

Lower bound

Let $G=(V, E)$ be a directed forest such that $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\left(v_{i}, v_{j}\right) \in E \Rightarrow i<j$.

Fix a set $U \subseteq V$ of final nodes without outgoing edges.
Example:

Lower bound

Let $G=(V, E)$ be a directed forest such that $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\left(v_{i}, v_{j}\right) \in E \Rightarrow i<j$.

Fix a set $U \subseteq V$ of final nodes without outgoing edges.
Example:

Define $w(G, U)=\left(\# b^{n}\right)^{n} \delta_{1} \$ \delta_{2} \$ \cdots \delta_{n} \$$ where

$$
\delta_{i}= \begin{cases}c_{0}^{n+1-(j-i)} & \text { if }\left(v_{i}, v_{j}\right) \text { is the unique outgoing edge at } v_{i} \\ c_{1} & \text { if } v_{i} \in V \backslash U \text { and } v_{i} \text { has no outgoing edge } \\ c_{2} & \text { if } v_{i} \in U\end{cases}
$$

Lower bound

Let $G=(V, E)$ be a directed forest such that $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\left(v_{i}, v_{j}\right) \in E \Rightarrow i<j$.

Fix a set $U \subseteq V$ of final nodes without outgoing edges.
Example:

Define $w(G, U)=\left(\# b^{n}\right)^{n} \delta_{1} \$ \delta_{2} \$ \cdots \delta_{n} \$$ where

$$
\delta_{i}= \begin{cases}c_{0}^{n+1-(j-i)} & \text { if }\left(v_{i}, v_{j}\right) \text { is the unique outgoing edge at } v_{i} \\ c_{1} & \text { if } v_{i} \in V \backslash U \text { and } v_{i} \text { has no outgoing edge } \\ c_{2} & \text { if } v_{i} \in U\end{cases}
$$

For the above example: $w(G, U)=\left(\# b^{7}\right)^{7} c_{0}^{5} \$ c_{0}^{6} \$ c_{0}^{4} \$ c_{0}^{6} \$ c_{0}^{6} \$ c_{2} \$ c_{1} \$$

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

$\# b^{v_{1}} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} c_{0}^{5} \$ c_{0}^{6} \$ c_{0}^{4} \$ c_{0}^{6} \$ c_{0}^{6} \$ c_{2} \$ c_{1} \$$

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 & \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma \\
&
\end{array}
$$

$\# b^{v_{1}} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} c_{0}^{5} \$ c_{0}^{6} \$ c_{0}^{4} \$ c_{0}^{6} \$ c_{0}^{6} \$ c_{2} \$ c_{1} \$$

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}
$\# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b$	$b \$ c_{0}^{6} \$ c_{0}^{4} \$ c_{0}^{6} \$ c_{0}^{6} \$$	$c_{2} \$ c_{1} \$$				

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}
$\# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b$	$b \$ c_{0}^{6} \$ c_{0}^{4} \$ c_{0}^{6} \$ c_{0}^{6} \$$	$c_{2} \$ c_{1} \$$				

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

$\# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b \quad \triangleright c_{3}^{6} \$ c_{0}^{4} \$ c_{0}^{6} \$ c_{0}^{6} \$ c_{2} \$ c_{1} \$$

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

$\# \begin{array}{ccccccc} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & v_{7} \\ \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b & \triangleright c_{0}^{6} \$ c_{0}^{4} \$ c_{0}^{6} \$ c_{0}^{6} \$ & c_{2} \$ c_{1} \\end{array}

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}
$\# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b$	$\triangleright \$ c_{0}^{4} \$ c_{0}^{6} \$ c_{0}^{6} \$$	$c_{2} \$ c_{1} \$$			

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

$\# \begin{array}{cccccc} & v_{3} & v_{4} & v_{5} & v_{6} & v_{7} \\ \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b & \triangleright \$ c_{0}^{4} \$ c_{0}^{6} \$ c_{0}^{6} \$ & c_{2} \$ c_{1} \\end{array}

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

$\# \begin{array}{cccccc} & v_{3} & v_{4} & v_{5} & v_{6} & v_{7} \\ \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b & \$ c_{0}^{4} \$ c_{0}^{6} \$ c_{0}^{6} \$ & c_{2} \$ c_{1} \\end{array}

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

$\# \begin{array}{cccccc} & v_{3} & v_{4} & v_{5} & v_{6} & v_{7} \\ \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b & \$ c_{0}^{4} \$ c_{0}^{6} \$ c_{0}^{6} \$ & c_{2} \$ c_{1} \\end{array}

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

$\# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# \quad v_{3} \quad v_{4} \quad v_{5} \quad v_{6} \quad v_{7}$

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

$\# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# \quad v_{3} \quad v_{4} \quad v_{5} \quad v_{6} \quad v_{7}$

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

$\# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# \quad$| v_{4} | $v_{5} \quad v_{6} \quad v_{7}$ |
| :---: | :---: | :---: | :---: |
| $\$ c_{0}^{6} \$ c_{0}^{6} \$ c_{2} \$ c_{1} \$$ | |

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

$\# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# \quad v_{4} \quad v_{5} \quad v_{6} \quad v_{7}$

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

$\# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# \quad$| v_{4} | $v_{5} \quad v_{6} \quad v_{7}$ |
| :---: | :---: | :---: | :---: |

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

$\# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# \quad v_{4} \quad v_{5} \quad v_{6} \quad v_{7}$

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

$\# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \quad v_{4} \quad v_{5} \quad v_{6} \quad v_{7}$

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 & \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma \\
&
\end{array}
$$

$\# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \quad v_{4} \quad v_{5} \quad v_{6} \quad v_{7}$

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

	$v_{5} v_{6} v_{7}$
$b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \#$	$b \$ c_{0}^{6} \$ c_{2} \$ c_{1} \$$

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

\square
$\begin{array}{lll}v_{5} & v_{6} & v_{7}\end{array}$
$\# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \#$
$b \$ c_{0}^{6} \$ c_{2} \$ c_{1} \$$

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

$\# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# \quad v_{5} \quad v_{6} \quad v_{7}$

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

	$v_{5} v_{6} v_{7}$
$b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \#$	$\triangleright c_{0}^{6} \$ c_{2} \$ c_{1} \$$

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

$\# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# \quad v_{6} v_{7}$

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

$\# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# \quad v_{6} v_{7}$

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

$\# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# \quad v_{6} v_{7}$

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

$\# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \# \quad v_{6} v_{7}$

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

$\# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \quad v_{6} v_{7}$

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

$\# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{7} \quad v_{6} v_{7}$

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

$\# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{6} \quad 0 \$ c_{1} \$$

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 & \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma
\end{array}
$$

$\# b^{7} \# b^{7} \# b^{7} \# b^{7} \# b^{6} \quad 0 \$ c_{1} \$$

Lower bound

$$
\begin{array}{lll}
b c_{0} \rightarrow \varepsilon & b \$ \rightarrow \triangleright & \triangleright c_{i} \rightarrow \triangleright \text { for } i \in\{0,1,2\} \\
\triangleright \$ \rightarrow \$ & \# \$ \rightarrow \varepsilon & b c_{2} \rightarrow 0 \\
0 x \rightarrow 0 \text { for } x \in \Gamma & x 0 \rightarrow 0 \text { for } x \in \Gamma &
\end{array}
$$

Lower bound

Main property: $w(G, U) \xrightarrow{*}_{R} 0 \Leftrightarrow \exists u \in U: u$ reachable from v_{1} in G.

Lower bound

Main property: $w(G, U) \xrightarrow{*}_{R} 0 \Leftrightarrow \exists u \in U: u$ reachable from v_{1} in G.
Consequence: $L=\left\{w \in \Gamma^{*} \mid w \xrightarrow{*}_{R} 0\right\}$ is logspace-hard.

Lower bound

Main property: $w(G, U) \stackrel{*}{\rightarrow}_{R} 0 \Leftrightarrow \exists u \in U: u$ reachable from v_{1} in G.
Consequence: $L=\left\{w \in \Gamma^{*} \mid w \xrightarrow{*}_{R} 0\right\}$ is logspace-hard.
Let \mathcal{A} be a fixed deterministic linear bounded automaton with a PSPACE-complete acceptance problem. Let s be an input for \mathcal{A}.

Lower bound

Main property: $w(G, U) \stackrel{*}{\rightarrow}_{R} 0 \Leftrightarrow \exists u \in U: u$ reachable from v_{1} in G.
Consequence: $L=\left\{w \in \Gamma^{*} \mid w \xrightarrow{*}_{R} 0\right\}$ is logspace-hard.
Let \mathcal{A} be a fixed deterministic linear bounded automaton with a PSPACE-complete acceptance problem. Let s be an input for \mathcal{A}.

Let G be the configuration graph of \mathcal{A}, restricted to configurations of size $|s|$ - it has size $2^{\mathcal{O}(|s|)}$.

Lower bound

Main property: $w(G, U) \stackrel{*}{\rightarrow}_{R} 0 \Leftrightarrow \exists u \in U: u$ reachable from v_{1} in G.
Consequence: $L=\left\{w \in \Gamma^{*} \mid w \xrightarrow{*}_{R} 0\right\}$ is logspace-hard.
Let \mathcal{A} be a fixed deterministic linear bounded automaton with a PSPACE-complete acceptance problem. Let s be an input for \mathcal{A}.

Let G be the configuration graph of \mathcal{A}, restricted to configurations of size $|s|$ - it has size $2^{\mathcal{O}(|s|)}$.

By adding a binary counter, we can enforce that G is a directed forest.

Lower bound

Main property: $w(G, U) \stackrel{*}{\rightarrow}_{R} 0 \Leftrightarrow \exists u \in U: u$ reachable from v_{1} in G.
Consequence: $L=\left\{w \in \Gamma^{*} \mid w \xrightarrow{*}_{R} 0\right\}$ is logspace-hard.
Let \mathcal{A} be a fixed deterministic linear bounded automaton with a PSPACE-complete acceptance problem. Let s be an input for \mathcal{A}.

Let G be the configuration graph of \mathcal{A}, restricted to configurations of size $|s|$ - it has size $2^{\mathcal{O}(|s|)}$.

By adding a binary counter, we can enforce that G is a directed forest.
Order nodes of G, i.e., configurations of \mathcal{A} lexicographically: v_{1}, v_{2}, \ldots, w.l.o.g. $v_{1}=$ intial configuration for input s.

Lower bound

Main property: $w(G, U) \stackrel{*}{\rightarrow}_{R} 0 \Leftrightarrow \exists u \in U: u$ reachable from v_{1} in G.
Consequence: $L=\left\{w \in \Gamma^{*} \mid w \stackrel{*}{\rightarrow}_{R} 0\right\}$ is logspace-hard.
Let \mathcal{A} be a fixed deterministic linear bounded automaton with a PSPACE-complete acceptance problem. Let s be an input for \mathcal{A}.

Let G be the configuration graph of \mathcal{A}, restricted to configurations of size $|s|$ - it has size $2^{\mathcal{O}(|s|)}$.

By adding a binary counter, we can enforce that G is a directed forest.
Order nodes of G, i.e., configurations of \mathcal{A} lexicographically: v_{1}, v_{2}, \ldots, w.l.o.g. $v_{1}=$ intial configuration for input s.

Main technical property: The word $w(G$, \{final configurations $\}$) can be generated by a straight-line program H of size $\mathcal{O}(|s|)$.

Lower bound

Main property: $w(G, U) \stackrel{*}{\rightarrow}_{R} 0 \Leftrightarrow \exists u \in U: u$ reachable from v_{1} in G.
Consequence: $L=\left\{w \in \Gamma^{*} \mid w \stackrel{*}{\rightarrow}_{R} 0\right\}$ is logspace-hard.
Let \mathcal{A} be a fixed deterministic linear bounded automaton with a PSPACE-complete acceptance problem. Let s be an input for \mathcal{A}.

Let G be the configuration graph of \mathcal{A}, restricted to configurations of size $|s|$ - it has size $2^{\mathcal{O}(|s|)}$.

By adding a binary counter, we can enforce that G is a directed forest.
Order nodes of G, i.e., configurations of \mathcal{A} lexicographically: v_{1}, v_{2}, \ldots, w.l.o.g. $v_{1}=$ intial configuration for input s.

Main technical property: The word $w(G$, \{final configurations $\}$) can be generated by a straight-line program H of size $\mathcal{O}(|s|)$.

Thus, $\operatorname{unfold}(H) \in L \Leftrightarrow \mathcal{A}$ accepts s.

Further results from the paper

- For every language in $\mathrm{AC}[k](k \in \mathbb{N})$, the compressed word problem is on the k-th level of the polynomial time hierarchy.

Further results from the paper

- For every language in $\mathrm{AC}[k](k \in \mathbb{N})$, the compressed word problem is on the k-th level of the polynomial time hierarchy.
- For every $k \in \mathbb{N}$ there exists a language L in $\mathrm{AC}[k]$ such that the compressed word problem for L is complete for the k-th level of the polynomial time hierarchy.

Further results from the paper

- For every language in $\mathrm{AC}[k](k \in \mathbb{N})$, the compressed word problem is on the k-th level of the polynomial time hierarchy.
- For every $k \in \mathbb{N}$ there exists a language L in $\mathrm{AC}[k]$ such that the compressed word problem for L is complete for the k-th level of the polynomial time hierarchy.
- For every language in NC, the compressed word problem is in PSPACE.

Further results from the paper

- For every language in $\mathrm{AC}[k](k \in \mathbb{N})$, the compressed word problem is on the k-th level of the polynomial time hierarchy.
- For every $k \in \mathbb{N}$ there exists a language L in $\mathrm{AC}[k]$ such that the compressed word problem for L is complete for the k-th level of the polynomial time hierarchy.
- For every language in NC, the compressed word problem is in PSPACE.
- There exists a fixed language L in NC ${ }^{1}$ such that the compressed word problem for L is PSPACE-complete.

Further results from the paper

- For every language in $\mathrm{AC}[k](k \in \mathbb{N})$, the compressed word problem is on the k-th level of the polynomial time hierarchy.
- For every $k \in \mathbb{N}$ there exists a language L in $\mathrm{AC}[k]$ such that the compressed word problem for L is complete for the k-th level of the polynomial time hierarchy.
- For every language in NC, the compressed word problem is in PSPACE.
- There exists a fixed language L in NC ${ }^{1}$ such that the compressed word problem for L is PSPACE-complete.
- The compressed word problem for the free group of rank 2 is P -complete.

Further results from the paper

- For every language in $\mathrm{AC}[k](k \in \mathbb{N})$, the compressed word problem is on the k-th level of the polynomial time hierarchy.
- For every $k \in \mathbb{N}$ there exists a language L in $\mathrm{AC}[k]$ such that the compressed word problem for L is complete for the k-th level of the polynomial time hierarchy.
- For every language in NC, the compressed word problem is in PSPACE.
- There exists a fixed language L in NC^{1} such that the compressed word problem for L is PSPACE-complete.
- The compressed word problem for the free group of rank 2 is P-complete.
- There exists a fixed context-sensitive language with an EXPSPACE-complete compressed word problem.

