Decidability and Complexity in Automatic Monoids

Markus Lohrey

University of Stuttgart, Germany

Developments in Language Theory 2004

Idea: Multiplication with generators can be defined by automata.

Let $\mathcal{M} = (\mathcal{M}, \circ)$ be a finitely generated monoid. Then, \mathcal{M} is **automatic**, if there exists a finite generating set Γ for \mathcal{M} with:

- There exists a regular language $L \subseteq \Gamma^*$ such that
- \bullet the canonical morphism $\Gamma^* \to \mathcal{M}$ restricted to L is a bijection and
- for every generator $a \in \Gamma$, the relation $\{(u, v) \in L \times L \mid h(u) \circ a = h(v)\}$ is synchronized rational.

<ロ> (四) (四) (注) (注) (注) (三)

Idea: Multiplication with generators can be defined by automata.

Let $\mathcal{M} = (\mathcal{M}, \circ)$ be a finitely generated monoid. Then, \mathcal{M} is automatic, if there exists a finite generating set Γ for \mathcal{M} with:

- There exists a regular language $L \subseteq \Gamma^*$ such that
- \bullet the canonical morphism $\Gamma^* \to \mathcal{M}$ restricted to L is a bijection and
- for every generator $a \in \Gamma$, the relation $\{(u, v) \in L \times L \mid h(u) \circ a = h(v)\}$ is synchronized rational.

v	b_0	b_1	b ₂	 b_{m-1}	b _m	#	 #
и	<i>a</i> 0	a ₁	a ₂	 a _{m-1}	a _m	a_{m+1}	 a _n

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三三 - のへで

			q 2				
v	b_0	b_1	<i>b</i> ₂	 b_{m-1}	b _m	#	 #
и	a ₀	a ₁	a 2	 a _{m-1}	a _m	a _{m+1}	 a _n

◆□▶ ◆□▶ ◆目▶ ◆目▶ 三三 - のへで

 q_m b_{m-1} v b_0 b_2 . . . # b_1 . . . # b_m a_1 a_{m-1} am a_{m+1} и a_0 a_2 an

v	<i>b</i> 0	b_1	<i>b</i> ₂	•••	b_{m-1}	b _m	#	•••	#
и	<i>a</i> 0	a ₁	a ₂		a _{m-1}	a _m	a _{m+1}		a _n

 q_{m+1}

(日) (문) (문) (문) (문)

							q_n
v	<i>b</i> 0	b_1	<i>b</i> ₂	 b_{m-1}	b _m	#	 #
и	<i>a</i> 0	a ₁	a ₂	 a _{m-1}	a _m	a _{m+1}	 a _n

(日) (四) (三) (三) (三)

Let \mathcal{M} be a monoid, finitely generated by the set Γ .

The word problem for \mathcal{M} is the following computational problem: INPUT: Two words $u, v \in \Gamma^*$ QUESTION: Do u and v represent the same monoid element of the monoid \mathcal{M} ?

Well-known: For every automatic monoid, the word problem can be solved in quadratic time.

(D) (A) (A) (A)

Let \mathcal{M} be a monoid, finitely generated by the set Γ .

The word problem for \mathcal{M} is the following computational problem: INPUT: Two words $u, v \in \Gamma^*$ QUESTION: Do u and v represent the same monoid element of the monoid \mathcal{M} ?

Well-known: For every automatic monoid, the word problem can be solved in quadratic time.

There exists a fixed automatic monoid with a P-complete word problem.

Proof: Let M be a Turing-machine with a P-complete acceptance problem.

W.I.o.g. assume that:

- The tape is $\# \Box \Box \cdots \Box$ \$ when *M* terminates.
- *M* operates in a zick-zack way:

(日) (四) (三) (三)

There exists a fixed automatic monoid with a P-complete word problem.

Proof: Let M be a Turing-machine with a P-complete acceptance problem.

W.I.o.g. assume that:

- The tape is $\# \Box \Box \cdots \Box$ \$ when *M* terminates.
- *M* operates in a zick-zack way:

There exists a fixed automatic monoid with a P-complete word problem.

Proof: Let M be a Turing-machine with a P-complete acceptance problem.

W.I.o.g. assume that:

- The tape is $\# \Box \Box \cdots \Box$ \$ when *M* terminates.
- *M* operates in a zick-zack way:

There exists a fixed automatic monoid with a P-complete word problem.

Proof: Let M be a Turing-machine with a P-complete acceptance problem.

W.I.o.g. assume that:

- The tape is $\# \Box \Box \cdots \Box$ \$ when *M* terminates.
- *M* operates in a zick-zack way:

There exists a fixed automatic monoid with a P-complete word problem.

Proof: Let M be a Turing-machine with a P-complete acceptance problem.

W.I.o.g. assume that:

- The tape is $\# \Box \Box \cdots \Box$ \$ when *M* terminates.
- *M* operates in a zick-zack way:

There exists a fixed automatic monoid with a P-complete word problem.

Proof: Let M be a Turing-machine with a P-complete acceptance problem.

W.I.o.g. assume that:

- The tape is $\# \Box \Box \cdots \Box$ \$ when *M* terminates.
- *M* operates in a zick-zack way:

There exists a fixed automatic monoid with a P-complete word problem.

Proof: Let M be a Turing-machine with a P-complete acceptance problem.

W.I.o.g. assume that:

- The tape is $\# \Box \Box \cdots \Box$ \$ when *M* terminates.
- *M* operates in a zick-zack way:

There exists a fixed automatic monoid with a P-complete word problem.

Proof: Let M be a Turing-machine with a P-complete acceptance problem.

W.I.o.g. assume that:

- The tape is $\# \Box \Box \cdots \Box$ \$ when *M* terminates.
- *M* operates in a zick-zack way:

There exists a fixed automatic monoid with a P-complete word problem.

Proof: Let M be a Turing-machine with a P-complete acceptance problem.

W.I.o.g. assume that:

- The tape is $\# \Box \Box \cdots \Box$ \$ when *M* terminates.
- *M* operates in a zick-zack way:

There exists a fixed automatic monoid with a P-complete word problem.

Proof: Let M be a Turing-machine with a P-complete acceptance problem.

W.I.o.g. assume that:

- The tape is $\# \Box \Box \cdots \Box$ \$ when *M* terminates.
- *M* operates in a zick-zack way:

There exists a fixed automatic monoid with a P-complete word problem.

Proof: Let M be a Turing-machine with a P-complete acceptance problem.

W.I.o.g. assume that:

- The tape is $\# \Box \Box \cdots \Box$ \$ when *M* terminates.
- *M* operates in a zick-zack way:

There exists a fixed automatic monoid with a P-complete word problem.

Proof: Let M be a Turing-machine with a P-complete acceptance problem.

W.I.o.g. assume that:

- The tape is $\# \Box \Box \cdots \Box$ \$ when *M* terminates.
- *M* operates in a zick-zack way:

There exists a fixed automatic monoid with a P-complete word problem.

Proof: Let M be a Turing-machine with a P-complete acceptance problem.

W.I.o.g. assume that:

- The tape is $\# \Box \Box \cdots \Box$ \$ when *M* terminates.
- *M* operates in a zick-zack way:

There exists a fixed automatic monoid with a P-complete word problem.

Proof: Let M be a Turing-machine with a P-complete acceptance problem.

W.I.o.g. assume that:

- The tape is $\# \Box \Box \cdots \Box$ \$ when *M* terminates.
- *M* operates in a zick-zack way:

There exists a fixed automatic monoid with a P-complete word problem.

Proof: Let M be a Turing-machine with a P-complete acceptance problem.

W.I.o.g. assume that:

- The tape is $\# \Box \Box \cdots \Box$ \$ when *M* terminates.
- *M* operates in a zick-zack way:

There exists a fixed automatic monoid with a P-complete word problem.

Proof: Let M be a Turing-machine with a P-complete acceptance problem.

W.I.o.g. assume that:

- The tape is $\# \Box \Box \cdots \Box$ \$ when *M* terminates.
- *M* operates in a zick-zack way:

There exists a fixed automatic monoid with a P-complete word problem.

Proof: Let M be a Turing-machine with a P-complete acceptance problem.

W.I.o.g. assume that:

- The tape is $\# \Box \Box \cdots \Box$ \$ when *M* terminates.
- *M* operates in a zick-zack way:

There exists a fixed automatic monoid with a P-complete word problem.

Proof: Let M be a Turing-machine with a P-complete acceptance problem.

W.I.o.g. assume that:

- The tape is $\# \Box \Box \cdots \Box$ \$ when *M* terminates.
- *M* operates in a zick-zack way:

M makes precisely p(n) complete left-right-transversals for an input of size n.

- *R* is terminating and confluent. \Rightarrow IRR(*R*) $\rightleftharpoons \Gamma^*/R$ bijectively
- For every $a \in \Gamma$, the relation $\{(u, v) \mid u, v \in \text{IRR}(R), ua \xrightarrow{*}_{R} v\}$ is synchronized rational.

(ロ) (部) (E) (E) (E)

- R is terminating and confluent. \Rightarrow IRR(R) $\rightleftharpoons \Gamma^*/R$ bijectively
- For every $a \in \Gamma$, the relation $\{(u, v) \mid u, v \in \operatorname{IRR}(R), ua \xrightarrow{*}_{R} v\}$ is synchronized rational.

$$\# q_0 a_0 a_1 a_2 a_3 a_4 a_5 \$ \$ \cdots$$

- R is terminating and confluent. \Rightarrow IRR(R) $\rightleftharpoons \Gamma^*/R$ bijectively
- For every $a \in \Gamma$, the relation $\{(u, v) \mid u, v \in \operatorname{IRR}(R), ua \xrightarrow{*}_{R} v\}$ is synchronized rational.

$$\# \overline{b}_0 q_1 a_1 a_2 a_3 a_4 a_5 \$ \$ \cdots$$

- R is terminating and confluent. \Rightarrow IRR(R) $\rightleftharpoons \Gamma^*/R$ bijectively
- For every $a \in \Gamma$, the relation $\{(u, v) \mid u, v \in \operatorname{IRR}(R), ua \xrightarrow{*}_{R} v\}$ is synchronized rational.

$$\# \overline{b}_0 q_1 a_1 a_2 a_3 a_4 a_5 \$ \$ \cdots$$

- R is terminating and confluent. \Rightarrow IRR(R) $\rightleftharpoons \Gamma^*/R$ bijectively
- For every $a \in \Gamma$, the relation $\{(u, v) \mid u, v \in \operatorname{IRR}(R), ua \xrightarrow{*}_{R} v\}$ is synchronized rational.

$$\# \overline{b}_0 \overline{b}_1 q_2 a_2 a_3 a_4 a_5 \$ \$ \cdots$$

- *R* is terminating and confluent. \Rightarrow IRR(*R*) $\rightleftharpoons \Gamma^*/R$ bijectively
- For every $a \in \Gamma$, the relation $\{(u, v) \mid u, v \in \operatorname{IRR}(R), ua \xrightarrow{*}_{R} v\}$ is synchronized rational.

$$\# \overline{b}_0 \overline{b}_1 q_2 a_2 a_3 a_4 a_5 \$ \$ \cdots$$

- *R* is terminating and confluent. \Rightarrow IRR(*R*) $\rightleftharpoons \Gamma^*/R$ bijectively
- For every $a \in \Gamma$, the relation $\{(u, v) \mid u, v \in \operatorname{IRR}(R), ua \xrightarrow{*}_{R} v\}$ is synchronized rational.

$$\# \overline{b}_0 \quad \overline{b}_1 \quad \overline{b}_2 \quad \overline{b}_3 \quad \overline{b}_4 \quad \overline{b}_5 \quad q_6 \quad \$ \quad \$ \quad \$ \quad \cdots$$

- *R* is terminating and confluent. \Rightarrow IRR(*R*) $\rightleftharpoons \Gamma^*/R$ bijectively
- For every $a \in \Gamma$, the relation $\{(u, v) \mid u, v \in \operatorname{IRR}(R), ua \xrightarrow{*}_{R} v\}$ is synchronized rational.

$$\# \overline{b}_0 \overline{b}_1 \overline{b}_2 \overline{b}_3 \overline{b}_4 \overline{b}_5 \overline{q}_6 \$ \$ \cdots$$

- *R* is terminating and confluent. \Rightarrow IRR(*R*) $\rightleftharpoons \Gamma^*/R$ bijectively
- For every $a \in \Gamma$, the relation $\{(u, v) \mid u, v \in \operatorname{IRR}(R), ua \xrightarrow{*}_{R} v\}$ is synchronized rational.

$$\# \overline{b}_0 \overline{b}_1 \overline{b}_2 \overline{b}_3 \overline{b}_4 \overline{b}_5 \overline{q}_6 \$ \$ \cdots$$

- R is terminating and confluent. \Rightarrow IRR(R) $\rightleftharpoons \Gamma^*/R$ bijectively
- For every $a \in \Gamma$, the relation $\{(u, v) \mid u, v \in \operatorname{IRR}(R), ua \xrightarrow{*}_{R} v\}$ is synchronized rational.

$$\# \overline{b}_0 \overline{b}_1 \overline{b}_2 \overline{b}_3 \overline{b}_4 \overline{q}_7 c_5 \$ \$ \cdots$$

- *R* is terminating and confluent. \Rightarrow IRR(*R*) $\rightleftharpoons \Gamma^*/R$ bijectively
- For every $a \in \Gamma$, the relation $\{(u, v) \mid u, v \in \operatorname{IRR}(R), ua \xrightarrow{*}_{R} v\}$ is synchronized rational.

$$\# \overline{b}_0 \quad \overline{b}_1 \quad \overline{b}_2 \quad \overline{b}_3 \quad \overline{b}_4 \quad \overline{q}_7 \quad c_5 \quad \$ \quad \$ \quad \cdots$$

- R is terminating and confluent. \Rightarrow IRR(R) $\rightleftharpoons \Gamma^*/R$ bijectively
- For every $a \in \Gamma$, the relation $\{(u, v) \mid u, v \in \operatorname{IRR}(R), ua \xrightarrow{*}_{R} v\}$ is synchronized rational.

$$\# \overline{b}_0 \quad \overline{b}_1 \quad \overline{b}_2 \quad \overline{b}_3 \quad \overline{q}_8 \quad c_4 \quad c_5 \quad \$ \quad \$ \quad \cdots$$

- R is terminating and confluent. \Rightarrow IRR(R) $\rightleftharpoons \Gamma^*/R$ bijectively
- For every $a \in \Gamma$, the relation $\{(u, v) \mid u, v \in \operatorname{IRR}(R), ua \xrightarrow{*}_{R} v\}$ is synchronized rational.

$$\# \overline{b}_0 \overline{b}_1 \overline{b}_2 \overline{b}_3 \overline{q}_8 c_4 c_5 \$ \cdots$$

- *R* is terminating and confluent. \Rightarrow IRR(*R*) $\rightleftharpoons \Gamma^*/R$ bijectively
- For every $a \in \Gamma$, the relation $\{(u, v) \mid u, v \in \operatorname{IRR}(R), ua \xrightarrow{*}_{R} v\}$ is synchronized rational.

$$\# \overline{q}_{12}$$
 c_0 c_1 c_2 c_3 c_4 c_5 \$ \$...

• *R* is terminating and confluent. \Rightarrow IRR(*R*) $\rightleftharpoons \Gamma^*/R$ bijectively

• For every
$$a \in \Gamma$$
, the relation $\{(u, v) \mid u, v \in \operatorname{IRR}(R), ua \xrightarrow{*}_{R} v\}$ is synchronized rational.

$$\# q_{12} c_0 c_1 c_2 c_3 c_4 c_5 \$ \cdots$$

- *R* is terminating and confluent. \Rightarrow IRR(*R*) $\rightleftharpoons \Gamma^*/R$ bijectively
- For every $a \in \Gamma$, the relation $\{(u, v) \mid u, v \in \operatorname{IRR}(R), ua \xrightarrow{*}_{R} v\}$ is synchronized rational.

$$\# q_{12} c_0 c_1 c_2 c_3 c_4 c_5 \$ \$ \cdots$$

Then we have:

• An input w of length n is accepted by the machine M if and only if

$$\#q_0w\Box^{n-p(n)}\$^{p(n)} \stackrel{*}{\leftrightarrow}_R \#q_f\Box^{p(n)}$$

- Thus the word problem for Γ^*/R is P-complete.
- For every symbol a, the relation
 {(u, v) | u, v ∈ IRR(R), ua ^{*}→_R v} is synchronized rational.

(日) (四) (王) (王) (王)

$$\begin{array}{ll} q \ a \rightarrow \overline{b} \ p & \text{if } \hline \begin{array}{c} q \\ a \ \ast \end{array} \xrightarrow{p} M \ \begin{array}{c} b \\ b \ \ast \end{array} \end{array} } & \overline{a} \ \overline{q} \rightarrow \overline{p} \ b & \text{if } \hline \begin{array}{c} q \\ \ast \ a \end{array} \xrightarrow{p} M \ \begin{array}{c} p \\ \ast \ b \end{array} } \\ q \ \$ \rightarrow \overline{q} & \text{for all states } q & \# \ \overline{q} \rightarrow \# \ q \ \text{for all states } q \end{array}$$

Then we have:

• An input w of length n is accepted by the machine M if and only if

$$\#q_0w\Box^{n-p(n)}\$^{p(n)} \stackrel{*}{\leftrightarrow}_R \#q_f\Box^{p(n)}$$

Thus the word problem for Γ^*/R is P-complete

• For every symbol *a*, the relation $\{(u, v) \mid u, v \in IRR(R), ua \stackrel{*}{\rightarrow}_R v\}$ is synchronized rational.

・ロト ・ 日 ・ ・ ヨ ・ ・ モ ト ・

$$q a \to \overline{b} p$$
 if $\begin{bmatrix} q \\ a * \Rightarrow_M & b^P \\ a * \Rightarrow_M & b^R \end{bmatrix}$ $\overline{a} \overline{q} \to \overline{p} b$ if $\begin{bmatrix} q \\ * & a \Rightarrow_M & P \\ * & b \end{bmatrix}$
 $q \$ \to \overline{q}$ for all states q $\# \overline{q} \to \# q$ for all states q

Then we have:

• An input w of length n is accepted by the machine M if and only if

$$\#q_0w\Box^{n-p(n)}\$^{p(n)} \stackrel{*}{\leftrightarrow}_R \#q_f\Box^{p(n)}$$

Thus the word problem for Γ^*/R is P-complete.

• For every symbol *a*, the relation $\{(u, v) \mid u, v \in IRR(R), ua \stackrel{*}{\rightarrow}_R v\}$ is synchronized rational.

(日) (四) (王) (王) (王)

$$q a \to \overline{b} p$$
 if $\begin{bmatrix} q \\ a * \Rightarrow_M & b^P \\ a * \Rightarrow_M & b^R \end{bmatrix}$ $\overline{a} \overline{q} \to \overline{p} b$ if $\begin{bmatrix} q \\ * & a \Rightarrow_M & P \\ * & b \end{bmatrix}$
 $q \$ \to \overline{q}$ for all states q $\# \overline{q} \to \# q$ for all states q

Then we have:

 An input w of length n is accepted by the machine M if and only if

$$\#q_0w\Box^{n-p(n)}\$^{p(n)} \stackrel{*}{\leftrightarrow}_R \#q_f\Box^{p(n)}$$

Thus the word problem for Γ^*/R is P-complete.

• For every symbol *a*, the relation $\{(u, v) \mid u, v \in IRR(R), ua \stackrel{*}{\rightarrow}_R v\}$ is synchronized rational.

$$\begin{array}{ll} q \ a \to \overline{b} \ p & \text{if } \hline \begin{array}{c} q \\ a \ \ast \end{array} \xrightarrow{p} M \begin{array}{c} b \\ b \ \ast \end{array} \end{array} \xrightarrow{p} M \begin{array}{c} p \\ \ast \end{array} \xrightarrow{p} M \begin{array}{c} p \\ \end{array} \xrightarrow{p} M \begin{array}{c} p \\ \ast \end{array} \xrightarrow{p} M \begin{array}{c} p \\ \xrightarrow{p} M \begin{array}{c} p \\ \end{array} \xrightarrow{p} M \begin{array}{c} p \\ \end{array}$$

Then we have:

 An input w of length n is accepted by the machine M if and only if

$$\#q_0w\Box^{n-p(n)}\$^{p(n)} \stackrel{*}{\leftrightarrow}_R \#q_f\Box^{p(n)}$$

Thus the word problem for Γ^*/R is P-complete.

• For every symbol *a*, the relation $\{(u, v) \mid u, v \in IRR(R), ua \xrightarrow{*}_{R} v\}$ is synchronized rational.

・ロト ・(用)ト ・(日)ト ・(日)ト

$$\begin{array}{ll} q \mathrel{a} \to \overline{b} \mathrel{p} & \text{if} \boxed{\begin{array}{c} q \\ a \mathrel{*} \end{array} \xrightarrow{p} M \ \begin{array}{c} b \end{array} \xrightarrow{p} \end{array}} & \overline{a} \mathrel{\overline{q}} \to \overline{p} \mathrel{b} & \text{if} \boxed{\begin{array}{c} q \\ \ast \mathrel{a} \end{array} \xrightarrow{p} M \ \begin{array}{c} p \\ \ast \mathrel{b} \end{array}} \\ q \mathrel{\$} \to \overline{q} & \text{for all states } q & \# \mathrel{\overline{q}} \to \# \mathrel{q} \text{ for all states } q \end{array}$$

For every symbol *a*, the relation $\{(u, v) \mid u, v \in \text{IRR}(R), ua \xrightarrow{*}_{R} v\}$ is synchronized rational.

Let e.g. $a = \overline{q}$ for a state q, and $u = u' \overline{a}_1 \overline{a}_2 \cdots \overline{a}_n$ with n maximal. • u' does not end with #: Then $u \overline{q} = u' \overline{a}_1 \overline{a}_2 \cdots \overline{a}_n \overline{q} \stackrel{*}{\to}_R u' \overline{p} b_1 b_2 \cdots b_n \in \text{IRR}(R)$ • u' = u'' #: Then $u \overline{q} = u'' \# \overline{a}_1 \overline{a}_2 \cdots \overline{a}_n \overline{q} \stackrel{*}{\to}_R u'' \# \overline{p} b_1 b_2 \cdots b_n$

$$\begin{array}{ll} q \ a \to \overline{b} \ p & \text{if } \boxed{\begin{array}{c} q \\ a \ \ast \end{array}} \xrightarrow{p} M \ \begin{array}{c} b \\ b \ \ast \end{array} \xrightarrow{p} b & \text{if } \boxed{\begin{array}{c} q \\ \ast \ a \end{array}} \xrightarrow{p} M \ \begin{array}{c} p \\ \ast \ b \end{array} \xrightarrow{p} b \\ q \ \end{array} \xrightarrow{p} b & \text{if } \boxed{\begin{array}{c} q \\ \ast \ a \end{array}} \xrightarrow{p} M \ \begin{array}{c} p \\ \ast \ b \end{array} \xrightarrow{p} b \\ \# \ \overline{q} \ \to \# \ q \ \text{for all states } q \end{array}$$

For every symbol *a*, the relation $\{(u, v) \mid u, v \in \text{IRR}(R), ua \xrightarrow{*}_{R} v\}$ is synchronized rational.

Let e.g. $a = \overline{q}$ for a state q, and $u = u' \overline{a_1} \overline{a_2} \cdots \overline{a_n}$ with n maximal. • u' does not end with #: Then $u \overline{q} = u' \overline{a_1} \overline{a_2} \cdots \overline{a_n} \overline{q} \stackrel{*}{\to}_R u' \overline{p} b_1 b_2 \cdots b_n \in \text{IRR}(R)$ • u' = u'' #: Then $u \overline{q} = u'' \# \overline{a_1} \overline{a_2} \cdots \overline{a_n} \overline{q} \stackrel{*}{\to}_R u'' \# \overline{p} b_1 b_2 \cdots b_n$

$$\begin{array}{ll} q \mathrel{a} \to \overline{b} \mathrel{p} & \text{if} \boxed{\begin{array}{c} q \\ a \mathrel{*} \end{array} \Rightarrow_{M} \underset{b}{\overset{p}{\overset{p}{\ast}}}}{p } & \overline{a} \mathrel{\overline{q}} \to \overline{p} \mathrel{b} & \text{if} \boxed{\begin{array}{c} q \\ \ast \mathrel{a} \end{array} \Rightarrow_{M} \underset{\ast}{\overset{p}{\overset{p}{\ast}}}{p } \\ q \mathrel{\$} \to \overline{q} & \text{for all states } q & \# \mathrel{\overline{q}} \to \# \mathrel{q} \text{ for all states } q \end{array}$$

For every symbol *a*, the relation $\{(u, v) \mid u, v \in \text{IRR}(R), ua \xrightarrow{*}_{R} v\}$ is synchronized rational.

Let e.g. $a = \overline{q}$ for a state q, and $u = u' \overline{a_1} \overline{a_2} \cdots \overline{a_n}$ with n maximal. • u' does not end with #: Then $u \overline{q} = u' \overline{a_1} \overline{a_2} \cdots \overline{a_n} \overline{q} \stackrel{*}{\to}_R u' \overline{p} b_1 b_2 \cdots b_n \in \text{IRR}(R)$ • u' = u'' #: Then $u \overline{q} = u'' \# \overline{a_1} \overline{a_2} \cdots \overline{a_n} \overline{q} \stackrel{*}{\to}_R u'' \# \overline{p} b_1 b_2 \cdots b_n$

$$\begin{array}{ll} q \mathrel{a} \to \overline{b} \mathrel{p} & \text{if} \boxed{\begin{array}{c} q \\ a \mathrel{*} \end{array} \Rightarrow_{M} \underset{b}{\overset{p}{\overset{p}{\ast}}}}{p } & \overline{a} \mathrel{\overline{q}} \to \overline{p} \mathrel{b} & \text{if} \boxed{\begin{array}{c} q \\ \ast \mathrel{a} \end{array} \Rightarrow_{M} \underset{\ast}{\overset{p}{\overset{p}{\ast}}}{p } \\ q \mathrel{\$} \to \overline{q} & \text{for all states } q & \# \mathrel{\overline{q}} \to \# \mathrel{q} \text{ for all states } q \end{array}$$

For every symbol *a*, the relation $\{(u, v) \mid u, v \in \text{IRR}(R), ua \xrightarrow{*}_{R} v\}$ is synchronized rational.

Let e.g. $a = \overline{q}$ for a state q, and $u = u' \overline{a}_1 \overline{a}_2 \cdots \overline{a}_n$ with n maximal. • u' does not end with #: Then $u \overline{q} = u' \overline{a}_1 \overline{a}_2 \cdots \overline{a}_n \overline{q} \xrightarrow{*}_R u' \overline{p} b_1 b_2 \cdots b_n \in \text{IRR}(R)$ • u' = u'' #: Then $u \overline{q} = u'' \# \overline{a}_1 \overline{a}_2 \cdots \overline{a}_n \overline{q} \xrightarrow{*}_R u'' \# \overline{p} b_1 b_2 \cdots b_n$ $\rightarrow_R u'' \# p b_1 b_2 \cdots b_n$ $\xrightarrow{*}_R u'' \# \overline{c}_1 \overline{c}_2 \cdots \overline{c}_n r \in \text{IRR}(R)$

$$\begin{array}{ll} q \mathrel{a} \to \overline{b} \mathrel{p} & \text{if} \boxed{\begin{array}{c} q \\ a \mathrel{*} \end{array} \Rightarrow_{M} \underset{b}{\overset{p}{\overset{p}{\ast}}}}{p } & \overline{a} \mathrel{\overline{q}} \to \overline{p} \mathrel{b} & \text{if} \boxed{\begin{array}{c} q \\ \ast \mathrel{a} \end{array} \Rightarrow_{M} \underset{\ast}{\overset{p}{\overset{p}{\ast}}}{p } \\ q \mathrel{\$} \to \overline{q} & \text{for all states } q & \# \mathrel{\overline{q}} \to \# \mathrel{q} \text{ for all states } q \end{array}$$

For every symbol *a*, the relation $\{(u, v) \mid u, v \in \text{IRR}(R), ua \xrightarrow{*}_{R} v\}$ is synchronized rational.

Let e.g. $a = \overline{q}$ for a state q, and $u = u' \overline{a}_1 \overline{a}_2 \cdots \overline{a}_n$ with n maximal. • u' does not end with #: Then $u \overline{q} = u' \overline{a}_1 \overline{a}_2 \cdots \overline{a}_n \overline{q} \xrightarrow{*}_R u' \overline{p} b_1 b_2 \cdots b_n \in \text{IRR}(R)$ • u' = u'' #: Then $u \overline{q} = u'' \# \overline{a}_1 \overline{a}_2 \cdots \overline{a}_n \overline{q} \xrightarrow{*}_R u'' \# \overline{p} b_1 b_2 \cdots b_n$ $\rightarrow_R u'' \# p b_1 b_2 \cdots b_n$ $\xrightarrow{*}_R u'' \# \overline{c}_1 \overline{c}_2 \cdots \overline{c}_n r \in \text{IRR}(R)$

$$\begin{array}{ll} q \mathrel{a} \to \overline{b} \mathrel{p} & \text{if} \boxed{\begin{array}{c} q \\ a \mathrel{*} \end{array} \Rightarrow_{M} \underset{b}{\overset{p}{\overset{p}{\ast}}}}{p } & \overline{a} \mathrel{\overline{q}} \to \overline{p} \mathrel{b} & \text{if} \boxed{\begin{array}{c} q \\ \ast \mathrel{a} \end{array} \Rightarrow_{M} \underset{\ast}{\overset{p}{\overset{p}{\ast}}}{p } \\ q \mathrel{\$} \to \overline{q} & \text{for all states } q & \# \mathrel{\overline{q}} \to \# \mathrel{q} \text{ for all states } q \end{array}$$

For every symbol *a*, the relation $\{(u, v) \mid u, v \in \text{IRR}(R), ua \xrightarrow{*}_{R} v\}$ is synchronized rational.

Let e.g. $a = \overline{q}$ for a state q, and $u = u' \overline{a}_1 \overline{a}_2 \cdots \overline{a}_n$ with n maximal. • u' does not end with #: Then $u \overline{q} = u' \overline{a}_1 \overline{a}_2 \cdots \overline{a}_n \overline{q} \xrightarrow{*}_R u' \overline{p} b_1 b_2 \cdots b_n \in \text{IRR}(R)$ • u' = u'' #: Then $u \overline{q} = u'' \# \overline{a}_1 \overline{a}_2 \cdots \overline{a}_n \overline{q} \xrightarrow{*}_R u'' \# \overline{p} b_1 b_2 \cdots b_n$ $\rightarrow_R u'' \# p b_1 b_2 \cdots b_n$ $\xrightarrow{*}_R u'' \# \overline{c}_1 \overline{c}_2 \cdots \overline{c}_n r \in \text{IRR}(R)$

Open problem: Is there an automatic group with a P-complete word problem.

Important subclass of automatic groups: hyperbolic groups.

Cai, 1982: For every hyperbolic group, the word problem belongs to NC².

Theorem

For every hyperbolic group, the word problem belongs to $LOGCFL \subseteq NC^2$.

Proof: Every hyperbolic group can be presented as Γ^*/R for a semi-Thue system R that is length-reducing and confluent on ε : $u \stackrel{\leftrightarrow}{\mapsto}_R \varepsilon \Leftrightarrow u \stackrel{\leftrightarrow}{\to}_R \varepsilon$. The language $\{u \in \Gamma^* \mid u \stackrel{\leftrightarrow}{\to}_R \varepsilon\}$ is growing context-sensitive and hence belongs to LOGCFL (Dahlhaus, Warmuth) a, $\langle z \rangle$, $\langle z \rangle$

Open problem: Is there an automatic group with a P-complete word problem.

Important subclass of automatic groups: hyperbolic groups.

Cai, 1982: For every hyperbolic group, the word problem belongs to NC².

Theorem

For every hyperbolic group, the word problem belongs to $LOGCFL \subseteq NC^2$.

Proof: Every hyperbolic group can be presented as Γ^*/R for a semi-Thue system R that is length-reducing and confluent on ε : $u \stackrel{*}{\leftrightarrow}_R \varepsilon \Leftrightarrow u \stackrel{*}{\rightarrow}_R \varepsilon$. The language $\{u \in \Gamma^* \mid u \stackrel{*}{\rightarrow}_R \varepsilon\}$ is growing context-sensitive and hence belongs to LOGCFL (Dahlhaus, Warmuth), ε , ε , ε , ε , ε

Open problem: Is there an automatic group with a P-complete word problem.

Important subclass of automatic groups: hyperbolic groups.

Cai, 1982: For every hyperbolic group, the word problem belongs to NC^2 .

Theorem

For every hyperbolic group, the word problem belongs to $LOGCFL \subseteq NC^2$.

Proof: Every hyperbolic group can be presented as Γ^*/R for a semi-Thue system R that is length-reducing and confluent on ε : $u \stackrel{*}{\leftrightarrow}_R \varepsilon \Leftrightarrow u \stackrel{*}{\rightarrow}_R \varepsilon$. The language $\{u \in \Gamma^* \mid u \stackrel{*}{\rightarrow}_R \varepsilon\}$ is growing context-sensitive and hence belongs to LOGCFL (Dahlhaus, Warmuth), $z \in I$

Open problem: Is there an automatic group with a P-complete word problem.

Important subclass of automatic groups: hyperbolic groups.

Cai, 1982: For every hyperbolic group, the word problem belongs to NC^2 .

Theorem

For every hyperbolic group, the word problem belongs to $LOGCFL \subseteq NC^2$.

Proof: Every hyperbolic group can be presented as Γ^*/R for a semi-Thue system R that is length-reducing and confluent on ε : $u \stackrel{*}{\leftrightarrow}_R \varepsilon \Leftrightarrow u \stackrel{*}{\rightarrow}_R \varepsilon$. The language $\{u \in \Gamma^* \mid u \stackrel{*}{\rightarrow}_R \varepsilon\}$ is growing context-sensitive and hence belongs to LOGCFL (Dahlhaus, Warmuth)

Open problem: Is there an automatic group with a P-complete word problem.

Important subclass of automatic groups: hyperbolic groups.

Cai, 1982: For every hyperbolic group, the word problem belongs to NC^2 .

Theorem

For every hyperbolic group, the word problem belongs to $LOGCFL \subseteq NC^2$.

Proof: Every hyperbolic group can be presented as Γ^*/R for a semi-Thue system R that is length-reducing and confluent on ε : $u \stackrel{*}{\leftrightarrow}_R \varepsilon \Leftrightarrow u \stackrel{*}{\rightarrow}_R \varepsilon$. The language $\{u \in \Gamma^* \mid u \stackrel{*}{\rightarrow}_R \varepsilon\}$ is growing context-sensitive and hence belongs to LOGCFL (Dahlhaus, Warmuth). Let \mathcal{M} be a finitely generated monoid. Let Γ be a finite generating set of \mathcal{M} . Then, the Cayley-graph of \mathcal{M} w.r.t. is the following edge-labeled graph:

$$\mathcal{C}(\mathcal{M}, \Gamma) = (\mathcal{M}, (\{(u, ua) \mid u \in \mathcal{M}\})_{a \in \Gamma})$$

The Cayley-graph of an automatic monoid is an automatic graph (in the sense of Khoussainov, Nerode).

Consequence: The first-order theory of the Cayley-graph of an automatic monoid is decidable.

(□) (□) (Ξ) (Ξ)

Let \mathcal{M} be a finitely generated monoid. Let Γ be a finite generating set of \mathcal{M} . Then, the Cayley-graph of \mathcal{M} w.r.t. is the following edge-labeled graph:

$$\mathcal{C}(\mathcal{M}, \Gamma) = (\mathcal{M}, (\{(u, ua) \mid u \in \mathcal{M}\})_{a \in \Gamma})$$

The Cayley-graph of an automatic monoid is an automatic graph (in the sense of Khoussainov, Nerode).

Consequence: The first-order theory of the Cayley-graph of an automatic monoid is decidable.

Let \mathcal{M} be a finitely generated monoid. Let Γ be a finite generating set of \mathcal{M} . Then, the Cayley-graph of \mathcal{M} w.r.t. is the following edge-labeled graph:

$$\mathcal{C}(\mathcal{M}, \Gamma) = (\mathcal{M}, (\{(u, ua) \mid u \in \mathcal{M}\})_{a \in \Gamma})$$

The Cayley-graph of an automatic monoid is an automatic graph (in the sense of Khoussainov, Nerode).

Consequence: The first-order theory of the Cayley-graph of an automatic monoid is decidable.

First-order logic

Let $G = (V, (E_a)_{a \in \Gamma})$ be an edge-labeled graph. Let Ω be an infinite set of variables ranging over V. The set of all first-order formulas over G is defined as follows:

- x = y and $E_a(x, y)$ are FO-formulas, where $x, y \in \Omega$ and $a \in \Gamma$
- $\bullet~$ If $\phi~{\rm and}~\psi$ are FO-formulas then also

$$\neg \phi, \quad \phi \land \psi, \quad \phi \lor \psi, \quad \exists x : \phi, \quad \forall x : \phi$$

are FO-formulas.

A first-order sentence is a first-order formula without free variables. The first-order theory of G is the set of all first-order sentences that are true in G.

First-order theory of the Cayley-graph

Recall: The first-order theory of the Cayley-graph of an automatic monoid is decidable.

A problem is elementary decidable if it can be solved in time $\mathcal{O}(2^{2^{n}})$, where the height of this tower of exponents is constant.

Theorem

There exists a fixed automatic monoid \mathcal{M} such that the first-order theory of the Cayley-graph of \mathcal{M} is not elementary decidable.

Proof: Construct a fixed automatic monoid \mathcal{M} such that the the theory of all finite words can be reduced to the first-order theory of \mathcal{M} .

(□) (□) (Ξ) (Ξ)

First-order theory of the Cayley-graph

Recall: The first-order theory of the Cayley-graph of an automatic monoid is decidable.

A problem is elementary decidable if it can be solved in time $\mathcal{O}(2^{\cdot})^{2^n}$, where the height of this tower of exponents is constant.

Theorem

There exists a fixed automatic monoid \mathcal{M} such that the first-order theory of the Cayley-graph of \mathcal{M} is not elementary decidable.

Proof: Construct a fixed automatic monoid \mathcal{M} such that the the theory of all finite words can be reduced to the first-order theory of \mathcal{M} .

Recall: The first-order theory of the Cayley-graph of an automatic monoid is decidable.

A problem is elementary decidable if it can be solved in time $\mathcal{O}(2^{\cdot})^{2^n}$, where the height of this tower of exponents is constant.

Theorem

There exists a fixed automatic monoid \mathcal{M} such that the first-order theory of the Cayley-graph of \mathcal{M} is not elementary decidable.

Proof: Construct a fixed automatic monoid \mathcal{M} such that the the theory of all finite words can be reduced to the first-order theory of \mathcal{M} .

Recall: The first-order theory of the Cayley-graph of an automatic monoid is decidable.

A problem is elementary decidable if it can be solved in time $\mathcal{O}(2^{\cdot})^{2^n}$, where the height of this tower of exponents is constant.

Theorem

There exists a fixed automatic monoid \mathcal{M} such that the first-order theory of the Cayley-graph of \mathcal{M} is not elementary decidable.

Proof: Construct a fixed automatic monoid \mathcal{M} such that the the theory of all finite words can be reduced to the first-order theory of \mathcal{M} .

(日) (四) (三) (三) (三)

First-order theory of the Cayley-graph

A finitely generated monoid \mathcal{M} has finite geometric type if for some constant c, every $x \in \mathcal{M}$ has degree at most c in the Cayley-graph of \mathcal{M} .

Example: Cancellative monoids are of finite geometric type.

Theorem

Let \mathcal{M} be an automatic of finite geometric type. Then the first-order theory of the Cayley-graph of \mathcal{M} is in DSPACE($2^{2^{2^{O(n)}}}$

Proof: The Cayley-graph of an automatic of finite geometric type is an automatic graph of bounded degree. For every automatic graph of bounded degree the first-order theory belongs to DSPACE(2^{2²⁰⁽ⁿ⁾}).

(ロ) (四) (三) (三)

First-order theory of the Cayley-graph

A finitely generated monoid \mathcal{M} has finite geometric type if for some constant c, every $x \in \mathcal{M}$ has degree at most c in the Cayley-graph of \mathcal{M} .

Example: Cancellative monoids are of finite geometric type.

Theorem

Let \mathcal{M} be an automatic of finite geometric type. Then the first-order theory of the Cayley-graph of \mathcal{M} is in DSPACE($2^{2^{2^{O(n)}}}$

Proof: The Cayley-graph of an automatic of finite geometric type is an automatic graph of bounded degree. For every automatic graph of bounded degree the first-order theory belongs to $DSPACE(2^{2^{2^{O(n)}}})$.
First-order theory of the Cayley-graph

A finitely generated monoid \mathcal{M} has finite geometric type if for some constant c, every $x \in \mathcal{M}$ has degree at most c in the Cayley-graph of \mathcal{M} .

Example: Cancellative monoids are of finite geometric type.

Theorem

Let \mathcal{M} be an automatic of finite geometric type. Then the first-order theory of the Cayley-graph of \mathcal{M} is in DSPACE($2^{2^{2^{\mathcal{O}(n)}}}$

Proof: The Cayley-graph of an automatic of finite geometric type is an automatic graph of bounded degree. For every automatic graph of bounded degree the first-order theory belongs to $DSPACE(2^{2^{2^{O(n)}}})$.

First-order theory of the Cayley-graph

A finitely generated monoid \mathcal{M} has finite geometric type if for some constant c, every $x \in \mathcal{M}$ has degree at most c in the Cayley-graph of \mathcal{M} .

Example: Cancellative monoids are of finite geometric type.

Theorem

Let \mathcal{M} be an automatic of finite geometric type. Then the first-order theory of the Cayley-graph of \mathcal{M} is in DSPACE($2^{2^{2^{\mathcal{O}(n)}}}$

Proof: The Cayley-graph of an automatic of finite geometric type is an automatic graph of bounded degree. For every automatic graph of bounded degree the first-order theory belongs to $DSPACE(2^{2^{2^{\mathcal{O}(n)}}})$.

(D) (A) (A)

Undecidable properties of automatic monoids

Theorem

There exists a fixed automatic monoid \mathcal{M} such that for given $u, v \in \mathcal{M}$ it is undecidable whether $\exists x \in \mathcal{M} : ux = v$ in \mathcal{M} .

Reformulation: There exists a fixed automatic monoid \mathcal{M} such that reachability in the Cayley-graph of \mathcal{M} is undecidable.

Proof: Similarly to the P-hardness proof for the word problem.

Undecidable properties of automatic monoids

Theorem

There exists a fixed automatic monoid \mathcal{M} such that for given $u, v \in \mathcal{M}$ it is undecidable whether $\exists x \in \mathcal{M} : ux = v$ in \mathcal{M} .

Reformulation: There exists a fixed automatic monoid \mathcal{M} such that reachability in the Cayley-graph of \mathcal{M} is undecidable.

Proof: Similarly to the P-hardness proof for the word problem.

(周) (王) (王)

Theorem

There exists a fixed automatic monoid \mathcal{M} such that for given $u, v \in \mathcal{M}$ it is undecidable whether $\exists x \in \mathcal{M} : ux = v$ in \mathcal{M} .

Reformulation: There exists a fixed automatic monoid \mathcal{M} such that reachability in the Cayley-graph of \mathcal{M} is undecidable.

Proof: Similarly to the P-hardness proof for the word problem.

- Is there an automatic group with a P-complete word problem?
- Is there a hyperbolic group with a LOGCFL-complete word problem?

(日) (同) (E) (E) (E)

- Is there an automatic group with a P-complete word problem?
- Is there a hyperbolic group with a LOGCFL-complete word problem?