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Automatic monoids

Idea: Multiplication with generators can be defined by automata.
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Automatic monoids

Idea: Multiplication with generators can be defined by automata.

Let M = (M, o) be a finitely generated monoid.
Then, M is automatic, if there exists a finite generating set I for

M with:
@ There exists a regular language L C '™ such that
@ the canonical morphism ' — M restricted to L is a bijection
and

@ for every generator a € I, the relation
{(u,v) € L x L| h(u) o a= h(v)} is synchronized rational.

Markus Lohrey Decidability and Complexity in Automatic Monoids



Synchronized Rational Relations

A binary synchronized rational relation: In order to accept a pair
(u,v) € £* X L* a two-tape automaton operates as follows:

%4 bo b1 b2 ce bm—l bm # o #

u ao ai an cee dm—1| dm |9m+1 e an
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Synchronized Rational Relations

A binary synchronized rational relation: In order to accept a pair
(u,v) € £* X L* a two-tape automaton operates as follows:

qo
v| bo | b1 | b2 bm—1| bm | # | - #
ujl a | a1 | a2 Am—1| dm |9m+1[ - -- an
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Synchronized Rational Relations

A binary synchronized rational relation: In order to accept a pair
(u,v) € £* X L* a two-tape automaton operates as follows:

q1
1% bg by by T bm-1| bm # U #
u ao al an cee dm—1| dm |9m+1 e an
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Synchronized Rational Relations

A binary synchronized rational relation: In order to accept a pair
(u,v) € £* X L* a two-tape automaton operates as follows:

g2
% bg by by T bm-1| bm # U #
u ao ai an cee dm—1| dm |9m+1 e an
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Synchronized Rational Relations

A binary synchronized rational relation: In order to accept a pair
(u,v) € £* X L* a two-tape automaton operates as follows:

dm
% bg by by T bm-1| bm # U #
uj d [ dr | a2 <o am—1| am lam+1| --- an
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Synchronized Rational Relations

A binary synchronized rational relation: In order to accept a pair
(u,v) € £* X L* a two-tape automaton operates as follows:

dm+1
% bg by by T bm-1| bm - U #
u | ao ai an 200 dm—1| aAm |9m+1 coc an
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Synchronized Rational Relations

A binary synchronized rational relation: In order to accept a pair
(u,v) € £* X L* a two-tape automaton operates as follows:

Gn
% bg by by T bm-1| bm # U #
uj d [ dr | a2 <o am—1| am |@m+1| --- o
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Word problems

Let M be a monoid, finitely generated by the set I'.

The word problem for M is the following computational problem:
INPUT: Two words u,v € T'*

QUESTION: Do u and v represent the same monoid element of
the monoid M?
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Word problems

Let M be a monoid, finitely generated by the set I'.

The word problem for M is the following computational problem:
INPUT: Two words u,v € T'*

QUESTION: Do u and v represent the same monoid element of
the monoid M?

Well-known: For every automatic monoid, the word problem can
be solved in quadratic time.
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Complexity of the word problem

There exists a fixed automatic monoid with a P-complete word
problem.
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Complexity of the word problem

There exists a fixed automatic monoid with a P-complete word

problem.

Proof: Let M be a Turing-machine with a P-complete acceptance
problem.
W.l.o.g. assume that:

@ The tape is #0000 --[0% when M terminates.

@ M operates in a zick-zack way:
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Complexity of the word problem

There exists a fixed automatic monoid with a P-complete word

problem.

Proof: Let M be a Turing-machine with a P-complete acceptance
problem.
W.l.o.g. assume that:

@ The tape is #0000 --[0% when M terminates.

@ M operates in a zick-zack way:

qo
+# ao ai ar as aq as $
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Complexity of the word problem

There exists a fixed automatic monoid with a P-complete word

problem.

Proof: Let M be a Turing-machine with a P-complete acceptance
problem.
W.l.o.g. assume that:

@ The tape is #0000 --[0% when M terminates.

@ M operates in a zick-zack way:

q1

# | bo| a |3 |a|a|a|$
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Complexity of the word problem

There exists a fixed automatic monoid with a P-complete word

problem.

Proof: Let M be a Turing-machine with a P-complete acceptance
problem.
W.l.o.g. assume that:

@ The tape is #0000 --[0% when M terminates.

@ M operates in a zick-zack way:

92
# | bo | by | @2 |3 | a | a | §
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Complexity of the word problem

There exists a fixed automatic monoid with a P-complete word

problem.

Proof: Let M be a Turing-machine with a P-complete acceptance
problem.
W.l.o.g. assume that:

@ The tape is #0000 --[0% when M terminates.

@ M operates in a zick-zack way:

g3
+# bo by by a3 d4 ds $
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Complexity of the word problem

There exists a fixed automatic monoid with a P-complete word

problem.

Proof: Let M be a Turing-machine with a P-complete acceptance
problem.
W.l.o.g. assume that:

@ The tape is #0000 --[0% when M terminates.

@ M operates in a zick-zack way:

q4
# | bo| b1 | bp | b3 | s | a | §
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Complexity of the word problem

There exists a fixed automatic monoid with a P-complete word

problem.

Proof: Let M be a Turing-machine with a P-complete acceptance
problem.
W.l.o.g. assume that:

@ The tape is #0000 --[0% when M terminates.

@ M operates in a zick-zack way:

g5
# | bo | b1 | bo | b3 | ba | a5 | $
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Complexity of the word problem

There exists a fixed automatic monoid with a P-complete word

problem.

Proof: Let M be a Turing-machine with a P-complete acceptance
problem.
W.l.o.g. assume that:

@ The tape is #0000 --[0% when M terminates.

@ M operates in a zick-zack way:

de6
# | bo | by | bo | b3 | by | bs | $
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Complexity of the word problem

There exists a fixed automatic monoid with a P-complete word

problem.

Proof: Let M be a Turing-machine with a P-complete acceptance
problem.
W.l.o.g. assume that:

@ The tape is #0000 --[0% when M terminates.

@ M operates in a zick-zack way:

de
# | bo | by | bo | b3 | ba | bs | $
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Complexity of the word problem

There exists a fixed automatic monoid with a P-complete word

problem.

Proof: Let M be a Turing-machine with a P-complete acceptance
problem.
W.l.o.g. assume that:

@ The tape is #0000 --[0% when M terminates.

@ M operates in a zick-zack way:

q7
# | bo | b1 | bo | b3 | ba | 5| $
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Complexity of the word problem

There exists a fixed automatic monoid with a P-complete word

problem.

Proof: Let M be a Turing-machine with a P-complete acceptance
problem.
W.l.o.g. assume that:

@ The tape is #0000 --[0% when M terminates.

@ M operates in a zick-zack way:

as
# | bo| b1 | b | b3 | G| 5| $

Markus Lohrey Decidability and Complexity in Automatic Monoids



Complexity of the word problem

There exists a fixed automatic monoid with a P-complete word

problem.

Proof: Let M be a Turing-machine with a P-complete acceptance
problem.
W.l.o.g. assume that:

@ The tape is #0000 --[0% when M terminates.

@ M operates in a zick-zack way:

99
+# bo by by (6} C4 Cs $
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Complexity of the word problem

There exists a fixed automatic monoid with a P-complete word

problem.

Proof: Let M be a Turing-machine with a P-complete acceptance
problem.
W.l.o.g. assume that:

@ The tape is #0000 --[0% when M terminates.

@ M operates in a zick-zack way:

dio
# | bo| b1 | 2| 63| || §
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Complexity of the word problem

There exists a fixed automatic monoid with a P-complete word

problem.

Proof: Let M be a Turing-machine with a P-complete acceptance
problem.
W.l.o.g. assume that:

@ The tape is #0000 --[0% when M terminates.

@ M operates in a zick-zack way:

gi1
# | b|la|la|a|a|a|$
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Complexity of the word problem

There exists a fixed automatic monoid with a P-complete word

problem.

Proof: Let M be a Turing-machine with a P-complete acceptance
problem.
W.l.o.g. assume that:

@ The tape is #0000 --[0% when M terminates.

@ M operates in a zick-zack way:

qi2
+# (o)) c1 (o)) C3 Cy Cy $
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Complexity of the word problem

There exists a fixed automatic monoid with a P-complete word

problem.

Proof: Let M be a Turing-machine with a P-complete acceptance
problem.
W.l.o.g. assume that:

@ The tape is #0000 --[0% when M terminates.

@ M operates in a zick-zack way:

qi2
+# (o)) c1 (o)) C3 Cy Cy $
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Complexity of the word problem

There exists a fixed automatic monoid with a P-complete word

problem.

Proof: Let M be a Turing-machine with a P-complete acceptance

problem.
W.l.o.g. assume that:

@ The tape is #0000 --[0% when M terminates.

@ M operates in a zick-zack way:

di2
#[o]alalaalals]

@ M makes precisely p(n) complete left-right-transversals for an
input of size n.
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Complexity of the word problem

We simulate M with a semi-Thue system (string rewriting system)
R over an alphabet I" such that:
@ R is terminating and confluent. = IRR(R) =T"/R
bijectively
@ For every a €T, the relation
{(u,v) | u,v € IRR(R), ua =g v} is synchronized rational.
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Complexity of the word problem

do

7# ao ai ar as aq as $

We simulate M with a semi-Thue system (string rewriting system)
R over an alphabet I" such that:
@ R is terminating and confluent. = IRR(R) =T"/R
bijectively
@ For every a €T, the relation
{(u,v) | u,v € IRR(R), ua =g v} is synchronized rational.

#|l G a|a1 a a3 a4 a § $ §$
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Complexity of the word problem

a1

# | bo| 21 | @2 | a3 | a4 [ a5 | §

We simulate M with a semi-Thue system (string rewriting system)
R over an alphabet I" such that:
@ R is terminating and confluent. = IRR(R) =T"/R
bijectively
@ For every a €T, the relation
{(u,v) | u,v € IRR(R), ua =g v} is synchronized rational.

#lby 1| a2 a3 a a § § $
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Complexity of the word problem

a1

# | bo| 21 | @2 | a3 | a4 [ a5 | §

We simulate M with a semi-Thue system (string rewriting system)
R over an alphabet I" such that:
@ R is terminating and confluent. = IRR(R) =T"/R
bijectively
@ For every a €T, the relation
{(u,v) | u,v € IRR(R), ua =g v} is synchronized rational.

# bo| N a|a a3 a a § 0§ $
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Complexity of the word problem

qz
# | bo| b1 | @2 | a3 | a4 | a5 | §

We simulate M with a semi-Thue system (string rewriting system)
R over an alphabet I" such that:
@ R is terminating and confluent. = IRR(R) =T"/R
bijectively
@ For every a €T, the relation
{(u,v) | u,v € IRR(R), ua =g v} is synchronized rational.

# by| by 92|32 a3 a a § $ $
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Complexity of the word problem

qz
# | bo| b1 | @2 | a3 | a4 | a5 | §

We simulate M with a semi-Thue system (string rewriting system)
R over an alphabet I" such that:
@ R is terminating and confluent. = IRR(R) =T"/R
bijectively
@ For every a €T, the relation
{(u,v) | u,v € IRR(R), ua =g v} is synchronized rational.

# by by |92 a2|a3 a a § § $
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Complexity of the word problem

de
# | bo | by | bo | b3 | by | bs | $

We simulate M with a semi-Thue system (string rewriting system)
R over an alphabet I" such that:
@ R is terminating and confluent. = IRR(R) =T"/R
bijectively
@ For every a €T, the relation
{(u,v) | u,v € IRR(R), ua =g v} is synchronized rational.

#Eo El EQ 53 E4 55 %6 $ $ $
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Complexity of the word problem

de
# | bo | by | bo | b3 | by | bs | $

We simulate M with a semi-Thue system (string rewriting system)
R over an alphabet I" such that:
@ R is terminating and confluent. = IRR(R) =T"/R
bijectively
@ For every a €T, the relation
{(u,v) | u,v € IRR(R), ua =g v} is synchronized rational.

#Eo El EQ 53 E4 55 66 $ $
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Complexity of the word problem

[3
# | bo | by | bo | b3 | by | bs | $

We simulate M with a semi-Thue system (string rewriting system)
R over an alphabet I" such that:
@ R is terminating and confluent. = IRR(R) =T"/R
bijectively
@ For every a €T, the relation
{(u,v) | u,v € IRR(R), ua =g v} is synchronized rational.

#Eo El EQ 53 E4 55 66 $ $
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Complexity of the word problem

qr
# | bo | br | bo | b3 | ba | 5| $

We simulate M with a semi-Thue system (string rewriting system)
R over an alphabet I" such that:
@ R is terminating and confluent. = IRR(R) =T"/R
bijectively
@ For every a €T, the relation
{(u,v) | u,v € IRR(R), ua =g v} is synchronized rational.

#Eo El EQ 53 E4 q7 G |'$ $
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Complexity of the word problem

qr
# | bo | br | bo | b3 | ba | 5| $

We simulate M with a semi-Thue system (string rewriting system)
R over an alphabet I" such that:
@ R is terminating and confluent. = IRR(R) =T"/R
bijectively
@ For every a €T, the relation
{(u,v) | u,v € IRR(R), ua =g v} is synchronized rational.

#Eo El EQ 53 E4 q7 | $ $
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Complexity of the word problem

qs
# | bo | b1 | bo | b3 | Ca Cs $

We simulate M with a semi-Thue system (string rewriting system)
R over an alphabet I" such that:
@ R is terminating and confluent. = IRR(R) =T"/R
bijectively
@ For every a €T, the relation
{(u,v) | u,v € IRR(R), ua =g v} is synchronized rational.

#Eo El EQ 53 g G| $ $
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Complexity of the word problem

qs
# | bo | b1 | bo | b3 | Ca Cs $

We simulate M with a semi-Thue system (string rewriting system)
R over an alphabet I" such that:
@ R is terminating and confluent. = IRR(R) =T"/R
bijectively
@ For every a €T, the relation
{(u,v) | u,v € IRR(R), ua =g v} is synchronized rational.

#Eo El EQ 53 g | G § $
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Complexity of the word problem

di12

We simulate M with a semi-Thue system (string rewriting system)
R over an alphabet I" such that:
@ R is terminating and confluent. = IRR(R) =T"/R
bijectively
@ For every a €T, the relation
{(u,v) | u,v € IRR(R), ua =g v} is synchronized rational.

# qu|c a @ a6 a g § %
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Complexity of the word problem

di12

We simulate M with a semi-Thue system (string rewriting system)
R over an alphabet I" such that:
@ R is terminating and confluent. = IRR(R) =T"/R
bijectively
@ For every a €T, the relation
{(u,v) | u,v € IRR(R), ua =g v} is synchronized rational.

# qu2|c0 a & @ a 6§ %
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Complexity of the word problem

qi12

7# (o)) c1 (o)) Cc3 Cy Cy $

We simulate M with a semi-Thue system (string rewriting system)
R over an alphabet I" such that:
@ R is terminating and confluent. = IRR(R) =T"/R
bijectively
@ For every a €T, the relation
{(u,v) | u,v € IRR(R), ua =g v} is synchronized rational.

#|912 co|la & @ a o § §
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Complexity of the word problem

The semi-Thue system R:

ga— bp if g*:>M bf: ag—pb if *g:”\/’f:b
g% — g for all states g #q — # g for all states g
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Complexity of the word problem

The semi-Thue system R:

ga— bp if g*:>M bf: ag—pb if *g:”\/’f:b
g% — g for all states g #q — # g for all states g

Then we have:
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Complexity of the word problem

The semi-Thue system R:

ga— bp if g*:>M bf: ag—pb if *g:”\/’f:b
g% — g for all states g #q — # g for all states g

Then we have:
@ An input w of length n is accepted by the machine M if and
only if
H#qow" PPN X o g 1P(n)
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Complexity of the word problem

The semi-Thue system R:

ga— bp if g*:>M bf: ag—pb if *g:”\/’f:b
g% — g for all states g #q — # g for all states g

Then we have:

@ An input w of length n is accepted by the machine M if and
only if
#qowmnfp(n)yn(n) o #qup(n)

Thus the word problem for ['* /R is P-complete.

Markus Lohrey Decidability and Complexity in Automatic Monoids



Complexity of the word problem

The semi-Thue system R:

ga—bp if| 9, =un bf: ag—pb if *g:”/’f:b

g% — g for all states g #q — # g for all states g

Then we have:

@ An input w of length n is accepted by the machine M if and
only if

#qowmnfp(n)yn(n) o #qup(n)
Thus the word problem for ['* /R is P-complete.

@ For every symbol a, the relation
{(u,v) | u,v € IRR(R), ua g v} is synchronized rational.

Markus Lohrey
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Complexity of the word problem

qa—>5p if g*=>/\// bg ag—pb if *g:ﬂ\//gb
g% — G for all states g #q — # q for all states g

For every symbol a, the relation {(u,v) | u,v € IRR(R), ua =g v}
is synchronized rational.
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Complexity of the word problem

qa—>5p if g*=>/\// bg ag—pb if *g:ﬂ\//gb
g% — G for all states g #q — # q for all states g

For every symbol a, the relation {(u,v) | u,v € IRR(R), ua =g v}
is synchronized rational.

Let e.g. a = q for astate q, and u = v/ 31 3 - - - 3, with n maximal.
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Complexity of the word problem

qa—>5p if g*=>/\// bg ag—pb if *g:ﬂ\//gb
g% — G for all states g #q — # q for all states g

For every symbol a, the relation {(u,v) | u,v € IRR(R), ua =g v}
is synchronized rational.

Let e.g. a = q for astate q, and u = v/ 31 3 - - - 3, with n maximal.
©  does not end with #: Then

uG=0'313---3,G g U Pb1 by---b, € IRR(R)
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Complexity of the word problem

qa—>5p if g*=>/\// bg ag—pb if *g:ﬂ\//gb
g% — G for all states g #q — # q for all states g

For every symbol a, the relation {(u,v) | u,v € IRR(R), ua =g v}
is synchronized rational.

Let e.g. a = q for astate q, and u = v/ 31 3 - - - 3, with n maximal.
©  does not end with #: Then
uG=0'313---3,G g U Pb1 by---b, € IRR(R)
Q u =u"#: Then
uG=u"#313--3,Gor U #Ppbiby--- by,

Markus Lohrey Decidability and Complexity in Automatic Monoids



Complexity of the word problem

qa—>5p if g*=>/\// bg ag—pb if *g:ﬂ\//gb
g% — G for all states g #q — # q for all states g

For every symbol a, the relation {(u,v) | u,v € IRR(R), ua =g v}
is synchronized rational.

Let e.g. a = q for astate q, and u = v/ 31 3 - - - 3, with n maximal.
©  does not end with #: Then
uG=0'313---3,G g U Pb1 by---b, € IRR(R)
Q u =u"#: Then
uG=u"#313--3,Gor U #Ppbiby--- by,
—rU"#pbiby---by
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Complexity of the word problem

qa—>5p if g*=>/\// bg ag—pb if *g:ﬂ\//gb

g% — G for all states g #q — # q for all states g

For every symbol a, the relation {(u,v) | u,v € IRR(R), ua =g v}
is synchronized rational.

Let e.g. a = q for astate q, and u = v/ 31 3 - - - 3, with n maximal.
©  does not end with #: Then
uG=0'313---3,G g U Pb1 by---b, € IRR(R)
Q u =u"#: Then
uG=u"#313--3,Gor U #Ppbiby--- by,
—rU"#pbiby---by
Sru"#C1Cy---T,r € IRR(R)
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Complexity of the word problem

Open problem: Is there an automatic group with a P-complete
word problem.
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Complexity of the word problem

Open problem: Is there an automatic group with a P-complete
word problem.

Important subclass of automatic groups: hyperbolic groups.
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Complexity of the word problem

Open problem: Is there an automatic group with a P-complete
word problem.

Important subclass of automatic groups: hyperbolic groups.

Cai, 1982: For every hyperbolic group, the word problem belongs
to NC2.
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Complexity of the word problem

Open problem: Is there an automatic group with a P-complete
word problem.

Important subclass of automatic groups: hyperbolic groups.

Cai, 1982: For every hyperbolic group, the word problem belongs
to NC2.

For every hyperbolic group, the word problem belongs to
LOGCFL C NC*.
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Complexity of the word problem

Open problem: Is there an automatic group with a P-complete
word problem.

Important subclass of automatic groups: hyperbolic groups.

Cai, 1982: For every hyperbolic group, the word problem belongs
to NC2.

For every hyperbolic group, the word problem belongs to
LOGCFL C NC*.

Proof: Every hyperbolic group can be presented as [*/R for a
semi-Thue system R that is length-reducing and confluent on e:
u <i>R E < u i>;:3 €s

The language {u € I | u g €} is growing context-sensitive and
hence belongs to LOGCFL (Dahlhaus, Warmuth).
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Cayley-graphs

Let M be a finitely generated monoid.
Let ' be a finite generating set of M.
Then, the Cayley-graph of M w.r.t. is the following edge-labeled
graph:
C(M,T) = (M, ({(u, va) | u € M})acr
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Cayley-graphs

Let M be a finitely generated monoid.
Let ' be a finite generating set of M.
Then, the Cayley-graph of M w.r.t. is the following edge-labeled
graph:
C(M,T) = (M, ({(u, va) | u € M})acr

The Cayley-graph of an automatic monoid is an automatic graph
(in the sense of Khoussainov, Nerode).
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Cayley-graphs

Let M be a finitely generated monoid.
Let ' be a finite generating set of M.
Then, the Cayley-graph of M w.r.t. is the following edge-labeled
graph:
C(M,T) = (M, ({(u, va) | u € M})acr

The Cayley-graph of an automatic monoid is an automatic graph
(in the sense of Khoussainov, Nerode).

Consequence: The first-order theory of the Cayley-graph of an
automatic monoid is decidable.
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First-order logic

Let G = (V, (E,)aer) be an edge-labeled graph.
Let Q be an infinite set of variables ranging over V.
The set of all first-order formulas over G is defined as follows:

@ x =y and E,(x,y) are FO-formulas, where x,y € Q and
ael

@ If ¢ and 1) are FO-formulas then also

_'¢7 ¢/\w7 (ﬁ\/¢, 3X:¢a VX:¢

are FO-formulas.

A first-order sentence is a first-order formula without free variables.
The first-order theory of G is the set of all first-order sentences
that are true in G.
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First-order theory of the Cayley-graph

Recall: The first-order theory of the Cayley-graph of an automatic
monoid is decidable.
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First-order theory of the Cayley-graph

Recall: The first-order theory of the Cayley-graph of an automatic
monoid is decidable.

A problem is elementary decidable if it can be solved in time
42n

O(2" ), where the height of this tower of exponents is constant.
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First-order theory of the Cayley-graph

Recall: The first-order theory of the Cayley-graph of an automatic
monoid is decidable.

A problem is elementary decidable if it can be solved in time
42n

O(2" ), where the height of this tower of exponents is constant.

There exists a fixed automatic monoid M such that the first-order
theory of the Cayley-graph of M is not elementary decidable.
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First-order theory of the Cayley-graph

Recall: The first-order theory of the Cayley-graph of an automatic
monoid is decidable.

A problem is elementary decidable if it can be solved in time
42n
O(2" ), where the height of this tower of exponents is constant.

There exists a fixed automatic monoid M such that the first-order
theory of the Cayley-graph of M is not elementary decidable.

Proof: Construct a fixed automatic monoid M such that the the
theory of all finite words can be reduced to the first-order theory of

M.
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First-order theory of the Cayley-graph

A finitely generated monoid M has finite geometric type if for
some constant c, every x € M has degree at most c in the
Cayley-graph of M.
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First-order theory of the Cayley-graph

A finitely generated monoid M has finite geometric type if for
some constant c, every x € M has degree at most c in the
Cayley-graph of M.

Example: Cancellative monoids are of finite geometric type.
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First-order theory of the Cayley-graph

A finitely generated monoid M has finite geometric type if for
some constant c, every x € M has degree at most c in the
Cayley-graph of M.

Example: Cancellative monoids are of finite geometric type.

Let M be an automatic of finite geometric type. Then the

O(n)
first-order theory of the Cayley-graph of M is in DSPACE(222 ).
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First-order theory of the Cayley-graph

A finitely generated monoid M has finite geometric type if for
some constant c, every x € M has degree at most c in the
Cayley-graph of M.

Example: Cancellative monoids are of finite geometric type.

Let M be an automatic of finite geometric type. Then the

O(n)
first-order theory of the Cayley-graph of M is in DSPACE(222 ).

Proof: The Cayley-graph of an automatic of finite geometric type
is an automatic graph of bounded degree.
For every automatic graph of bounded degree the first-order theory

O(n)
belongs to DSPACE(22" ).
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Undecidable properties of automatic monoids

There exists a fixed automatic monoid M such that for given
u,v € M it is undecidable whether 3x € M : ux = v in M.
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Undecidable properties of automatic monoids

There exists a fixed automatic monoid M such that for given
u,v € M it is undecidable whether 3x € M : ux = v in M.

Reformulation: There exists a fixed automatic monoid M such
that reachability in the Cayley-graph of M is undecidable.
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Undecidable properties of automatic monoids

There exists a fixed automatic monoid M such that for given
u,v € M it is undecidable whether 3x € M : ux = v in M.

Reformulation: There exists a fixed automatic monoid M such
that reachability in the Cayley-graph of M is undecidable.

Proof: Similarly to the P-hardness proof for the word problem.
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Open problems

@ Is there an automatic group with a P-complete word problem?
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Open problems

@ Is there an automatic group with a P-complete word problem?

@ Is there a hyperbolic group with a LOGCFL-complete word
problem?
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