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Abstract. We prove that the first-order theory of the one-step rewriting relation associated with
a trace rewriting system is decidable but in general not elementary. This extends known results
on semi-Thue systems but our proofs use new methods; these new methods yield the decidability
of local properties expressed in first-order logic augmented by modulo-counting quantifiers. Using
the main decidability result, we define several subclasses of trace rewriting systems for which the
confluence problem is decidable.

1 Introduction

Various kinds of rewriting systems, like term rewriting systems [60] or semi-Thue
systems [4] (also called string rewriting systems), received a lot of attention in mathe-
matics and theoretical computer science and are still an active field of research. Histor-
ically, rewriting systems were introduced to solve word problems in certain structures
[63]. By the work of Markov [43] and Post [54], this hope vanished as they presented
semi-Thue systems with an undecidable word problem. Despite this result, there are
plenty of rewriting systems with a decidable word problem, the most famous class
being that of confluent and terminating systems [32]. In general, also confluence and
termination are undecidable properties of a semi-Thue system, see [28] for termina-
tion and [1] for confluence. A large amount of research tries to identify sufficient
conditions for confluence/termination of rewriting systems (cf. [60]), or to describe
classes of rewriting systems where confluence/termination is decidable. For instance,
the use of critical pairs [32] and Newman’s Lemma [52] allows to decide confluence
for terminating term rewriting systems.

Confluence and termination are typical properties of the one-step rewrite graph�����
	��
: the set of nodes

�
consists of the objects that are rewritten (e.g., words in case

of a semi-Thue system or terms in case of a term rewriting system), and there exists an
edge  	 �

if  can be rewritten in one step into
�
. In order to express properties of the

one-step rewrite graph
�����
	��

, one may use logics, like for instance first-order logic
(FO-logic) over the structure

������	��
. But for the purpose of expressing properties like



FO-theory of ��������� FO-theory of ���	��
��� MSO-theory of ���	����

term rewriting systems undecidable [65] undecidable undecidable

semi-Thue systems decidable [14, 29] undecidable undecidable

Table 1.

FO-theory of ��������� FO-theory of ���	��
��� MSO-theory of ���	����
ground term rewriting

systems
decidable decidable [14] undecidable [8]

prefix semi-Thue systems decidable decidable decidable [9]

Table 2.

confluence, FO-logic over
�����
	��

is too weak: confluence is a property of the reflexive
transitive closure �

	
of

	
, but the former is in general not first-order definable in�����
	��

. Hence, in order to express confluence, one has to use FO-logic over
������	

�
�

or, alternatively, monadic second-order logic (MSO-logic) over
�����
	��

[26] (which
allows to define the reflexive transitive closure). Known (un)decidability results for the
above mentioned logics in the case of term rewriting systems and semi-Thue systems,
respectively, are collected in Table 1. Hence, most theories are undecidable. Note that
the undecidability of the FO-theory of

�����
�
	��

(and hence the MSO-theory of
�����
	��

)
for term rewriting systems and semi-Thue systems, respectively, follows in fact from
the undecidability of confluence for these systems. On the other hand, Treinen’s result
on the undecidability of the FO-theory of

�����
	��
for a specific term rewriting system

uses a more subtle argument. The decidability result for the FO-theory of
�����
	��

in
case of semi-Thue systems [14, 29] uses the fact that the one-step rewrite relation of a
semi-Thue system can be described by a two-tape automaton which moves its heads
synchronously on both tapes.

To obtain decidable theories from one-step rewrite graphs, one may restrict the po-
sitions where rewrite steps may take place. If only prefixes of strings are allowed to be
rewritten, one obtains prefix semi-Thue systems [6, 9]. Prefix semi-Thue systems can
be generalized from strings to terms, which results in ground term rewriting systems
[5, 33, 14]. Table 2 collects (un)decidability results for these systems. The decidabil-
ity results for ground term rewriting systems use automata theoretic methods similar
to those mentioned in the previous paragraph [14], whereas the decidability of the
MSO-theory of the one-step rewrite graph of a prefix semi-Thue system [9] is based
on Rabin’s tree theorem [57].

This paper investigates the first-order theory of the one-step rewrite graphs of trace
rewriting systems, which generalize semi-Thue systems. Cartier and Foata [7] inves-
tigated the combinatorics of free partially commutative monoids that became later
known as trace monoids. Mazurkiewicz [46] introduced them into computer science.
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They form a mathematically sound model for the concurrent behaviour of systems
of high abstraction. Since trace monoids are a generalization of free monoids, it was
tempting to extend the investigation of free monoids to free partially commutative
monoids. This resulted, e.g., in the extensive consideration of recognizable and ratio-
nal trace languages (cf. [18] for a collection of surveys on this field), trace equations
[20, 44, 17], and trace rewriting systems [15, 16, 38–40].

Our main result states that for any finite trace rewriting system, the first-order the-
ory of the associated one-step rewrite graph is decidable. Because of the non-local
effects of trace rewriting (see Example 3.6), the automata-theoretic techniques from
Dauchet and Tison [14] and Jacquemard [29] are not applicable here and we had to
search for other ideas. The first is an application of Gaifman’s locality theorem: the
validity of a first-order sentence in a structure � depends on first-order properties of
spheres around elements of � . Since this theorem is effective, we were left with the
question how to describe the set of traces that are centers of an � -sphere satisfying a
given first-order formula. Our second idea was to describe the � -sphere around a trace
in the dependence graph of this trace by a sentence of monadic second-order logic.
Note that this logic does not speak about the infinite rewrite graph, but about a sin-
gle finite dependence graph; therefore we refer to this technique as “internalization of
the � -sphere”. We show that this is indeed effectively possible. Hence, by a result of
Thomas [62], this implies that the set of traces that are centers of an � -sphere satisfying
a given first-order formula is recognizable. Taking these two ideas together, we obtain
that the first-order theory of the one-step rewrite graph of any trace rewriting system is
decidable (Corollary 3.9).

We actually show a more general result (cf. Theorem 3.8) since we do not only con-
sider trace rewriting systems, but scattered rewrite rules. The idea is that of a parallel
rewrite step where the intermediate factors of a trace have to satisfy some recognizable
constraints and can be permuted as long as they are independent in the trace monoid.
But the main reason for introducing these systems is that they occur naturally in the
course of our proofs (see, e.g., Lemma 5.4).

The second step in our decidability proof, i.e., the interpretation of the � -sphere
around a trace in the dependence graph of this trace does not only work for first-order
logic, but also for its extension by modulo-counting quantifiers. Thus, we obtain that
local properties of this modulo-counting logic are decidable (Theorem 5.14). The de-
cidability of non-local properties is not answered in this paper, the missing tool is an
analogue of Gaifman’s locality theorem for this logic. Libkin [34–36] and Nurmo-
nen [53] proved generalizations of a version of Gaifman’s Theorem for this and other
counting extensions of first-order logic, but we could not make these generalizations
serve our purposes.

As mentioned above, the first step in our decidability proof is an application of
Gaifman’s Theorem. Gaifman’s translation of a first-order sentence into a Boolean
combination of local sentences is of very high complexity, i.e., our decision procedure
is far from efficient. We also show that one cannot avoid this nonelementary com-
plexity. To this aim, we “externalize” internal first-order properties of a trace into its
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� -sphere. This construction yields a trace rewriting system such that the corresponding
one-step rewrite graph has a nonelementary first-order theory (Theorem 6.3). Thus,
our use of Gaifman’s translation does not lead to an unreasonable inefficiency. We ac-
tually show a slightly stronger result, namely that the set of valid local sentences for a
fixed radius is not elementary. In other words, the complexity of the decision question
is already present when restricting to local sentences.

This nonelementary lower bound is shown for a nontrivial independence alphabet
and the proof does not carry over to semi-Thue systems. The decision procedure for
semi-Thue systems from [14, 29] is not elementary since it uses automata complemen-
tation for any quantifier alternation in a formula. This does of course not imply that
there is no better decision algorithm. We show a lower bound of doubly exponential
nondeterministic time for this problem (Theorem 6.5). Again this lower bound holds
for local sentences for a fixed radius.

In the last section, we return to the confluence problem for trace rewriting systems.
For terminating rewriting systems, confluence and local confluence are equivalent. The
problem with trace rewriting systems is that there can be infinitely many critical pairs
which makes it impossible to check all of them in turn [16]. Even worse, by [51], it
is undecidable whether a length-reducing trace rewriting system is confluent. On the
other hand in [16, 40] several subclasses of terminating trace rewriting systems were
identified for which confluence is decidable. Here we will present new classes with this
property (Theorems 7.4, 7.5, and 7.7). In general, even local confluence is not a first-
order property of the one-step rewrite graph. The classes of trace rewriting systems we
consider in this last section ensure that local confluence is effectively expressible by a
sentence of first-order logic. This allows to apply our main result on the decidability
of these first-order properties and therefore implies the decidability of confluence for
these classes when restricted to terminating systems.

2 General notations

The cardinality of a set
�

is denoted by � � � . The identity relation on
�

is denoted by
Id ����� �  �  � � �� �	�

. Given a binary relation
	 
 ��� �

on
�

and ���� we
define the relation

	��
inductively by

	�� � Id � and
	�� � 	���� �	� 	

. We define	���� ��� ����� ��� 	��
. The reflexive and transitive closure of

	
is �
	 �!� �#"�� 	��

.
Given an alphabet $ , $ � is the set of all finite words over $ , i.e., the free monoid

generated by $ . The empty word is denoted by % . For &'��$ � , �(&)� is the length of & .
The alphabet *,+.-0/ � & � of a word & is the set of all symbols that occur in & . For 1 
 $
we denote by 243 � & � the projection of the word & onto the symbols in 1 .

The notion of a model is defined as usual in logic, see e.g. [27]. For a given model5 � �����76 �78 �
where

6
is a set of operations on

�
and

8
is a set of relations over

�
,

the signature of
5

contains the equality symbol � , and for each 9:� 6
(resp. �;� 8

)
it contains a function symbol of the same arity as 9 (resp. a relation symbol of the
same arity as � ) that we denote without risk of confusion by 9 (resp. � ) as well. Terms,
atomic formulae, and (general) formulae over the signature of

5
are defined as usual.
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For a first-order sentence � over the signature of
5

, i.e., a first-order formula without
free variables, we write

5 � ��� if � evaluates to true in
5

. Finally the first-order theory
of

5
denotes the set of all first-order sentences � over the signature of

5
with

5 � ��� .

3 Rewriting in trace monoids

3.1 Trace monoids and recognizable trace languages

In the following we introduce some notions from trace theory, see [18] for more de-
tails. An independence relation on an alphabet $ is an irreflexive and symmetric rela-
tion � 
 $ � $ , the complementary relation � � � $ � $ ��� � is called a dependence
relation. The pair

� $ � � � (resp.
� $ � � � ) is called an independence alphabet (resp. a

dependence alphabet). Given an independence alphabet
� $ � � � , we define the trace

monoid � � $ � � � as the quotient monoid $ �	��
� where 
� denotes the least congru-
ence relation on $ � that contains all pairs of the form

�  � ���  � for
�  ��� � ��� . An

element of � � $ � � � , i.e., an equivalence class of words, is called a trace. The trace
that contains the word & is denoted by � &�� � . The neutral element of � � $ � � � is the
empty trace �(%�� � which will be denoted by � . Concatenation of traces is defined by� &�� � � ��� � � � &���� � . If we want to speak explicitly of the concatenation as a binary op-
eration over � then we denote it as

�
. A subset of � � $ � � � is also called a trace

language. The concatenation of two trace languages � � � � � 
 � � $ � � � is the trace
language � � � � � ��� &�� � ����� � ��� &�� � ��� � � � ��� � ��� � � .

For the rest of the paper let us fix an independence alphabet
� $ � � � with $ finite and

let � ��� � $ � � � and � � � $ � $ ��� � . Since for all words & � � � $ � , & 
� � implies
�(&)� � � � � and *,+.-0/ � & � � *,+ -0/ � � � , we can define ��� &�� � �0� �(&)� and *,+.-)/ � � &�� � � � *,+ -0/ � & � .
For a trace language � 
 � we define *,+ -0/ � � � � ���! �" *,+.-)/ �$# � . The independence
relation � can be lifted to � by

�$# �&% � �'� if *,+ -0/ �(# � � *�+.-0/ �(% �	
 � . If � �*) then� is isomorphic to the free monoid $ � . On the other hand if � � Id + , then � is
isomorphic to the free commutative monoid ,.- + - .

Traces can be uniquely represented as dependence graphs: the dependence graph�0/ � �21 �	3 �54 �
of a trace � �6�  �87!7!7  � � � �9� , where  � ��:�:�: �  � ��$ , is defined as

follows:

–
1 � �;� ��:�:�: �  � is the set of nodes.

–
3 � � �(< ��= � � <?>@=BA � DC � FE � �G� �

is the edge relation.
–
4 �$< � � DC for �H < H  defines the node labeling function

4JIK1 	 $ .

Then �L/ is well defined in the sense that if we choose another word that represents the
trace � then we obtain an isomorphic graph. Since �M/ is acyclic, the transitive reflexive
closure

3
� of

3
is a partial order. A subset N 
O1

such that
P < ��= �QN P8R � 1SI

if
�(< � R �
� � R ��= � � 3 � then

R �TN
is called a factor of �L/ . Factors of a dependence graph are also called convex sets.
Note that the intersection of two convex sets is again convex. For a convex N 
U1
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there exists a unique
# � � such that the restriction ��/ ��� of �L/ to N is isomorphic to� � and � can be factorized as � ��� � # � � . Vice versa if � can be factorized as � �O� � # � �

then there exists a convex N 
 1
such that ��/ ��� is isomorphic to � � . More generally

given a trace � � � � � � 7!7!7 ��� , where � C �O� , the set of nodes
1

of the dependence
graph �L/ � � 1 �	3 �54 �

can be partitioned into convex sets
1 � ��:�:�: �	1 � 
 1

such that�0/�� is isomorphic to �L/ �
	 � and for all �@H < > = H�� there do not exist  � 1 C ,� � 1 E with
� � �  � � 3

� . Vice versa given a partition of
1

with these properties, the
trace � can be factorized as � �*� � � � 7!7!7 ��� . Hence we call a sequence of convex sets1 � ��:�:�: �51 � 
 1

with the properties above a factorization of �M/ .
Lemma 3.1. Let N � ��:�:�: � N�� and

1 � ��:�:�: �51 � be two factorizations of the dependence
graph �0/ . If � H <?> R H�� and  � =���� � � then

4 � N C�� 1 E � ��4 � N � � 1�� � 
 � .

Proof. Let � H < > R H�� ,  � =���� � � ,  � N C�� 1 E , and � �'N � � 1�� . Suppose
that

�24 �  �
�54 � � � � � � . Hence, by definition of ��/ , either
�  � � � � 3

or
� � �  � � 3

.
However, by the definition of factorization,

< > R
implies that

� � �  � �� 3 � , and
�0>�=

implies that
�  � � � �� 3 � . ��

The following lemma is known as Levi’s Lemma for traces, see e.g. [13]. It can be
easily deduced from Lemma 3.1.

Lemma 3.2. For
# � ��:�:�: �&# � �&% � ��:�:�: �&% � � � ,

# � # � 7!7!7 # ��� % � % � 7!7!7 % � if and only if
there exist � C� E � � ( � H < H�� , �H = H  ) such that

–
# C ��� C� � � C� � 7!7!7 � C� � for every �H < H!� ,

–
% E �"� �  E#� �  E 7!7!7 �$�% E for every � H = H  , and

–
� � C� E � � �  � � �G� if � H <?> R H!� and  � =��&� � � .

A clique covering of the dependence alphabet
� $ � � � is a sequence

� 1 � ��:�:�: � 1 � � of
subsets of $ such that $ ��� �C�' � 1 C and ���!� �C�' � 1 C � 1 C . For a fixed clique covering� 1 � ��:�:�: � 1 � � of

� $ � � � we denote with 2 C I � 	 1 �C the canonical lifting of the
projection 243(� I $ �

	 1 �C to � . The following lemma is well known, see e.g. [12].

Lemma 3.3. Let
� 1 � ��:�:�: � 1 � � be a clique covering of the dependence alphabet

� $ � � � .
Then for & � � � $ � we have & 
� � if and only if 2 C � & � ��2 C � � � for all �H < H  .

A tuple
� & � ��:�:�: � & � � �*) �C�' � 1 �C is reconstructible if there exists a trace

# �@� such
that 2 C �$# � � &�C for all

< ���;� ��:�:�: �  � [12]. The following statement is from [20,
Prop. 1.6].

Lemma 3.4. Let
# � � , and let

� 1 � ��:�:�: � 1 � � be a clique covering of the dependence
alphabet

� $ � � � . For all
< ���;� ��:�:�: �  � let 2 C �(# � � &�C ��C be a factorization of 2 C �(# � .

Then
� & � ��:�:�: � & � � and

� � � ��:�:�: � � � � are reconstructible if and only if 2 C � &5E � ��2KE � &�C � for
all
< ��= � �;� ��:�:�: �  � .

A set � 
 � is called recognizable if there exist a (monoid) morphism + I � 	 ,
from � into a finite monoid

,
and a subset

6 
�,
such that � �-+ � � � 6�� . The set of

all recognizable subsets of � is denoted by .0/21 � � �
. The set .3/21 � � �

is effectively
closed under Boolean operations and concatenation of trace languages.1 Furthermore,

1 In these effectiveness statements, a recognizable language is given as a triple ��4 �65��67 � .
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if 1 
 $ then �!�;� � � *�+.-0/ � � �;
 1 �
is recognizable. If it is clear that we want

to denote a subset of � then we denote the latter set by 1 � . Finally, emptiness and
finiteness are decidable for recognizable trace languages, and if ��� .3/21 � � �

is finite
then we can effectively calculate a list of all elements of � .

3.2 Scattered trace rewriting

Let us fix a countably infinite set
�

of (first-order) variables ranging over � for the
rest of this paper. In order to make notations more succinct, we associate with every
first-order variable � � � a recognizable trace language � � � � and require that � ranges
over � � � � , only. We assume that for every ��� .0/ 1 � � �

there is a countably infinite
supply of variables �:� � with � � � � � � . Since .0/21 � � �

is countable, a countable
set
�

of variables suffices for this. The mapping ���	 � � � � will be fixed for the rest
of this paper. For � � � , let *,+ -0/ � � � � *,+ -0/ � � � � � � . On the set

�
we define an

independence relation � by

�'� � � � ��� � � *,+.-)/ � � � � *�+.-0/ ��� � 
 � � � Id 	 .
Let � � ��:�:�: � � � be pairwise different variables from

�
. A pattern 
 over � and the

variables � � ��:�:�: � � � is a sequence
� � � � � � � � 7!7!7 � � where �$E �@� ( � H < H ���O� )

and the function � C�	 � C ( ��H < H � ) is a permutation of ��� � ��:�:�: � � � �
. A pattern 


over the variables � � ��:�:�: � � � is also denoted by 
 � � � ��:�:�: � � � � . Note that in a pattern
a variable occurs precisely once, but the variables may occur in an arbitrary order. If
the variable � C evaluates to

# C �9� , � H < H � , then the trace 
 �$# � ��:�:�: ��# � � �@�
is defined in the obvious way. By ����-�� � 
 � we denote the projection of the pattern

�� � � � � � � � � 7!7!7 � � onto its variables, i.e., � � �� � 
 � � � � � � 7!7!7 � � � 2�	 � 
 � if we
view 
 as a word over the infinite alphabet � � � . A scattered rewrite rule over� and the variables � � ��:�:�: � � � is a pair

� 
 � � � ��:�:�: � � � � ��� � � � ��:�:�: � � � � � where 

and
�

are patterns over � such that ����-�� � 
 � 
�� ����-�� ��� � . The set of all scattered
rewrite rules over � (and an arbitrary sequence of variables) is denoted by � . A scat-
tered rewriting system over � is a finite subset of � . For a scattered rewrite rule� � � 
 � � � ��:�:�: � � � � ��� � � � ��:�:�: � � � � � and & � � � � we write & 	�� � if there exist# � �B� � � � � ��:�:�: �&# � �B� � � � � such that &;� 
 �$# � ��:�:�: �&# � � and � � � �(# � ��:�:�: �&# � � .
For a scattered rewriting system ! we write & 	#" � if & 	�� � for some � �$! .
Note that in a scattered rewriting rule

� 
 � � � ��:�:�: � � � �
�%��� � � ��:�:�: � � � � � we may re-
name the variables � � ��:�:�: � � � into

� � ��:�:�: ��� � as long as � � � C � � � ��� C � for every< � �;� ��:�:�: � � �
.

Example 3.5. Let
� $ � � � be the following independence alphabet:

� �&�'��()�&�&� *�&�'��+
The corresponding dependence alphabet is

,�&�&� � �'�&�-+.�&�&��( :
7



Let � ��� ��� � � such that � � � � ��� � � + � � , � � � � � �  � � � � , and
� � � ( � � . Note that

*,+ -0/ ��� � � *,+.-)/ ��� � 
 � . Hence, � � � �  + � � ( � � � � ( �  + � � is a scattered rewrite
rule. By substituting

� + for � ,  �
� for
�
, and ( for

�
, respectively, we obtain

� +  +  �
� � (.( 	�� � + � (.(  +  � �!:
An important special case of scattered rewriting systems are trace rewriting systems
[15, 16]. A trace rewriting system over � may be defined as a scattered rewriting
system ! over � where all rules � � ! have the form

� � � � � � �
� �

for
� �

�'� � and
� ��� � � with � � � � � � � � � ��� . If � � ) , i.e., � � $ � , then a trace rewriting
system over � is also called a semi-Thue system over $ � , see [30, 4] for more details.
On the other hand if � � � $ � $ ��� Id + , i.e., � � , - + - , then a trace rewriting system
over � is also called a vector replacement system over , - + - . A rule

� � � � � � �
� �

of a
trace rewriting system will be briefly denoted by

� � �
�
�
.

The application of a trace rewriting system (and hence also a scattered rewriting
system) to a trace may have non-local effects. This is demonstrated in the following
example.

Example 3.6. Let $ � �  ��� � + � and �!� � �  � + � � � + �  �7� . Let ! � � ��� � � � � � � ��� � � ,
which is considered as a trace rewriting system over � � $ � � � . Then we have

 � � + � 	�"  � + � � + �  � 	�" + � �  �
for all � �  � , . Since

�
is dependent from  and + , no commutations can take place in

the traces  � � + � and + � �  � , i.e., these two traces behave like words. But the difference
between the words  � � + � and + � �  � cannot be detected in a local way. More formally,
the binary relation � �  � � + � � + � �  � � � � �  � � � is not a synchronized rational relation
in the sense of [24].

Next we will introduce different models, whose domain will be the set � of all traces.
The most general model we will work with is the model

� � � � � � � �  ���  +��
	 ��� � �� ���  ������������ � � 	�� ���  �� � .
The operations of this model are the concatenation of traces

�
plus the constants  �

$$�:�;� � . Furthermore each recognizable language
 ��.0/21 � � �

is put into
�

as
a unary predicate. Instead of

 � � � we write � �  . Finally
�

contains all binary
relations

	 � 
 � � � for � � � .
If � � Id + then the monoid � is isomorphic to the free commutative monoid, - + - , whose first-order theory is decidable [55]. Since any recognizable set in , - + - is

semilinear and hence first-order definable in , - + - , it follows that the unary predicates�� ���  ������������ and the binary predicates
� 	#� � �  �� are all first-order definable in , - + - .

Thus, in case � � Id + the first-order theory of
�

is decidable. Now suppose there are
 ��� � $ with

�  ��� � �T� and  �� �
. Then the structure

� �  � � � � � � � can be interpreted
by a first-order formula in

�
. Since the first-order theory of

� �  ��� � � � � � is undecidable
[56, 42, 21], we get
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Proposition 3.7. The first-order theory of
�

is decidable if and only if � � Id + .

Note that the undecidability arises from the monoid operation. Therefore, we will con-
centrate on reducts of

�
where the signature is restricted to the other relations. For a

scattered rewriting system ! 
 � we define:
������� � � � � �  � �  �� � ����� � � � 	�� ���  �� �� �����" � � � � �  � �  �� � ����� � � � 	�� ���  " �

Note that the constants  � $ � �;� � can be defined in any of these models since the set
�  � is recognizable. Since they do not play any prominent role in our considerations
of
� �����"

(as opposed to those of
�

), we omit them in the signature.
For a scattered rewriting system ! , one may consider the reduct

� � � � 	 � ���  " � of� �����"
(the one-step rewrite graph of ! ) as an edge-labeled directed graph: the relation	��

contains all edges that are labeled with the rule � . Let us end this section with a
brief comparison of these graphs with other well-known classes of (infinite) graphs.

A graph is called context-free if it is the transition graph of a pushdown automaton
[50]. In [9], Caucal gave an alternative characterization using prefix semi-Thue sys-
tems. Let us define a prefix rewriting system over � as a scattered rewriting system
! where all rules in ! have the form

� � � � � � �
� �

with � � � � � �;� � and � � � � ���
(again we abbreviate this rule by

�6� �
�
�
). Thus reductions may only occur in the prefix

of a trace. In case � �O) , prefix rewriting systems are called prefix semi-Thue systems.
Caucal has shown that an edge-labeled directed graph is context-free if and only if it is
isomorphic to a graph

� $ �
� � 	��
� �  " � for a prefix semi-Thue system ! . It follows that

the class of context-free graphs is contained in the class of one-step rewrite graphs of
scattered rewriting systems. Moreover, containment is strict, because the MSO-theory
of a context-free graph is decidable [50], which in general is not the case for one-step
rewrite graphs of semi-Thue systems, see Table 1.

By considering rewriting on trees (terms) instead of words, prefix semi-Thue sys-
tems generalize to ground tree rewriting systems. The one-step rewrite graphs of the
latter class of systems were studied in [14, 8, 37]. The decidability results of Tables
1 and 2 imply that these graphs do not cover the one-step rewrite graphs of semi-
Thue systems, and hence not those of scattered rewriting systems. Another proper
generalization of the class of context-free graphs is the class of prefix-recognizable
graphs [10], see [2] for a variety of different characterizations. The class of prefix-
recognizable graphs is incomparable to the class of one-step rewrite graphs of scat-
tered rewriting systems (as well as to the class of one-step rewrite graphs of ground
tree rewriting systems): the MSO-theory of a prefix-recognizable graph is still de-
cidable; on the other hand, prefix-recognizable graphs may contain nodes of infinite
degree which is not the case for one-step rewrite graphs of scattered rewriting systems.

Prefix-recognizable graphs can be generalized to automatic graphs [31]. Roughly
speaking, a graph is automatic if the nodes can be represented by words from a reg-
ular word language, and the edge relations can be recognized by two-tape automata

9



with synchronously moving heads. Finally, let us mention that automatic graphs were
generalized to rational graphs [48, 49]. They are also defined via two-tape automata
which, in contrast to automatic graphs, are not required to move synchronously. For�'�S) , the one-step rewrite graph of a scattered rewriting system is automatic. In the
general case, we do not even know whether the one-step rewrite graph of a scattered
rewriting system is at least rational.

3.3 The main result

The main result of this paper states that the first-order theory of any structure
� �����

is decidable. Since our decision procedure is uniform in the underlying alphabet, we
obtain

Theorem 3.8. There is an algorithm that, on input of an independence alphabet
� $ � � �

and a first-order sentence � over the signature of the structure

� ����� � � � � �� � �  ������ � ��� � � 	�� � �  �� �
�
decides whether

� ����� � ��� .

The remainder of this section discusses this result and puts it into context. The follow-
ing sections up to Section 5.4 prepare the proof of this theorem which can be found in
Section 5.4.

Since any trace rewriting system is a scattered rewriting system, we obtain the
following corollary of Theorem 3.8:

Corollary 3.9. There is an algorithm that, on input of an independence alphabet
� $ � � � ,

a trace rewriting system ! over � � � � $ � � � , and a first-order sentence � over the
signature of the model

� � �
	 " �
, decides whether

� � �
	 " � � �O� .

This corollary will be used later in Section 7 where we consider confluence problems
for trace rewriting systems. As already mentioned in the introduction, Corollary 3.9
was already shown for semi-Thue systems by using the fact that for a semi-Thue sys-
tem ! the relation

	�"
is a synchronized rational relation [24], i.e., can be recognized

by a two-tape automaton where both heads move synchronously [14, 29]. It is not hard
to see that this method can be generalized to the case that � is a direct product of
free monoids (this covers in particular the case of vector replacement systems), but
there seems to be no way to generalize this approach to arbitrary trace monoids (see
also Example 3.6). Hence in our proof of Theorem 3.8 we will follow a completely
different and new strategy.

Next we show that Corollary 3.9 is a proper generalization of the semi-Thue case.
More precisely, we construct a trace rewriting system ! such that the graph

� � �
	 " �
is not isomorphic to the graph of any semi-Thue system. For this we have to introduce
some notions concerning confluence. Let ! be a trace rewriting system. We say that
! is locally confluent if for all

# ��% � �&% � �J� with
# 	�"9% � and

# 	�"9% � there exists
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� �G� with
% � �

	-" � and
% � �

	-" � . We say that ! is � -confluent, where ���Q, , if
for all

# �&% � �&% � �J� with
# 	 " % � and

# 	�"9% � there exists � �J� with
% � 	 ���" �

and
% � 	 ���" � .

Lemma 3.10. If a semi-Thue system is locally confluent then it is � -confluent for some
� �G, .

Proof. For every semi-Thue system � over $ � there exist finitely many critical pairs�$# � ��% � �
��:�:�: � �$# � �&% � � � $ �
� $ � which result from overlapping left-hand sides. Since

� is locally confluent, for every critical pair
�(# C �&% C � there exists � C � $ � such that# C �

	�� � C and
% C �

	�� � C , see e.g. [4]. Then there exists ��� , such that
# C 	 ����

� C and
% C 	 ���� � C . From the definition of critical pairs and � -confluence, it follows

immediately that � is � -confluent. ��
Theorem 3.11. Let $ � �  ��� � + � , � � � �  � + � � � + �  �7� , and let ! be the trace rewriting
system ! � � � �  � � � � �  � � � � � � + � � � � over � � $ � � � . Then there is no semi-Thue system

� over some alphabet 1 such that the graph
� � � $ � � � �
	#" � is isomorphic to the graph� 1 � �
	�� � .

Proof. In [40, Example 2.2] the second author has shown that ! is locally confluent.
We claim that there is no � � , such that ! is � -confluent; this proves the theorem by
Lemma 3.10. Note that for all  � � we have

�  + � � 	�" + � � and
�  + � � � � + �  � 	�"� + � , but there is no � H  �B� and no trace � such that + � � 	 ���" � and

� + � 	 ���" � .
Hence there is no �:�G, such that ! is � -confluent. ��
We remark that the one-step rewrite graph of the trace rewriting system ! from The-
orem 3.11 is even not isomorphic to the one-step rewrite graph of an arbitrary term
rewriting system. The reason is that Lemma 3.10 can be easily generalized to term
rewriting systems, because also term rewriting systems have only finitely many criti-
cal pairs [60].

One might try to extend Theorem 3.8 into two directions: by allowing more rewrit-
ing systems or by considering more expressive logics. The rest of this section shows
boundaries beyond which this programme cannot be carried out.

First we show that omitting the restriction ����-�� � 
 � 
�� ����-�� ��� � for a scattered
rewrite rule

� 
 �%� � yields graphs with undecidable first-order theories. In order to see
this let us call a permutation rewrite rule over � a pair

� 
 �%� � with the same properties
as a scattered rewrite rule except that ��� -�� � 
 � 
*� ����-�� � � � need not hold. A rewrite
step & 	 � � , where � is a permutation rewrite rule, is defined exactly in the same way
as it was done for scattered rewrite rules. Again a permutation rewriting system

�
over� is a finite set of permutation rewrite rules over � , and the relation

	��
is defined

as usual.

Theorem 3.12. There exists a fixed permutation rewriting system ! over $ � for some
finite alphabet $ such that the first-order theory of the model

� $ �
� � 	�� � �  " � is un-

decidable. Furthermore we may assume that for every variable � that occurs in some� � ! we have � � � � �!*,+.-)/ � � � � .
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Proof. By [43, 54] there exists a fixed semi-Thue system � over some 1 � with an
undecidable word problem, i.e., it is undecidable for given words & � � � 1 � whether or
not & �� � � , where �� � denotes the transitive and symmetric closure of

	 �
.

Let $ � 1 ��� � ����� where
� ��� �� 1 . Define semi-Thue rules (i.e, elements

of a semi-Thue system) � � � � � � � � , and � � for �� 1 , by � � � ��� ��� �
, � � � � � ��� �

,� � � ��� � ��� � �
, and � � � ���  ��� � for  � 1 . For a word &	� & � & � 7!7!7 & � with &�C � 1 ,

let ��� denote the following formula with one free variable � :

��� � � � 
 	 � � 	���
 � �JA��# � 7!7!7 ��# �
���� ���
� 	�� � # � A�
� � � � �

�(# � � � 	������ #�� � A
# � 	�� � # �

�����
���

A word � � $ � satisfies this formula if and only if � � � � � � � � 7!7!7 � � � � � � �
with � C �!1 � and there exists ��H = > R

such that � E � & . Next choose variables
� ��� � � � ��� � � � � �%� � � � with � � � � � � ��� � � $ � and � � � � � � � � � � � � � ��� � � �� � � � � � 1 � and define the scattered rewrite rule ��� � � � � � � � � � � � � � � � � � � � � � �
and the permutation rewriting system

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � �

� � � � � � � � � �
� � � or

�
�
� � � � �

�
.

Then for given words & � �:� 1 � such that & �� � we have & �� � � if and only if� �	� ��� � � �SA � / � � � A P % � � 	�����% � % 	��O% � �
. The important fact is that� # � %!� 	��"� # � %!�

for
# �&% � 1 � if and only if

# � �L% . ��
Next, we consider more expressive logics. The undecidability results for semi-Thue
systems in Table 1 imply that we cannot generalize Corollary 3.9 to monadic second-
order logic. By the next theorem, also the decidability of the monadic second-order
theory of the one-step rewrite graph of a prefix semi-Thue system [9], see Table 2,
does not generalize to prefix rewriting systems over trace monoids (as defined in Sec-
tion 3.2). In fact, already reachability is undecidable in these graphs:

Theorem 3.13. There exists a fixed prefix rewriting system ! over a trace monoid� � � � $ � � � and a trace � such that the following is undecidable:
INPUT: A trace &	� � .
QUESTION: Does & �

	-" � hold?

Proof. Let # be a universal deterministic 2-counter machine. Then # can be easily
simulated by a prefix rewriting system ! over �  ��� � � � � + � ( � � : the configuration� � � � �  � of # , where � �G, is the current state (we assume w.l.o.g. that the set of states
of # is a finite subset of , ) and � (resp.  ) is the content of the first (resp. second)
counter, is coded by the pair

� �$ �  � � � + � ( � . Let � � be the initial state of # and �&%
be the final state of # . Hence, it is undecidable for given � �  � , whether or not�  $ 
 �  � � � + � ( � �

	�" �  $�' �
� � ( � . ��
If ! is the prefix rewriting system from the above proof, then Theorem 3.13 implies
that the model

� � �
�
	�" � � � � /  � � has an undecidable first-order theory (which cannot

happen for prefix semi-Thue systems).
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4 An excursion to word and trace equations

In this section we will prove some results concerning equations in trace monoids.
These results will be used in Section 5 where we prove Theorem 3.8. They state that
certain equations (with recognizable constraints) are equivalent (in the model

�
) to

Boolean combinations of recognizable constraints. It is important to note that these
equivalences are effective in the sense that starting from an equation (with recognizable
constraints) that satisfies certain restrictions we can effectively construct an equivalent
Boolean combination of recognizable constraints. This fact is not stated explicitly in
the following lemmas, but it can always be checked easily. A similar remark applies to
the results of Section 5.

Lemma 4.1. For & � � � $ � , the set � # � $ � ��& # � # � � is recognizable.

Proof. By [41, Prop. 1.3.4], we have & # � # � if and only if there exist words � and
�

such that & � � � , � � � � , and
# � � ��� � � � . Thus, the set in question equals� ��� � � � � � �,& � � � � � � � � �;:

Since & and � are finite words, this union is finite proving the lemma. ��
The next lemma generalizes the previous lemma to the case of several variables.

Lemma 4.2. Let & � ��:�:�: � & ��� � � � � ��:�:�: � ����� � � $ � . Then the formula

& � � � & � 7!7!7 � � & ��� � �B� � � � � � 7!7!7 � � ����� � (1)

is equivalent in the model
� $ �

� � � �  ���  + � �� � �  �������� + 
 � � to a Boolean combination of
formulae of the form � C �G� with ��� .3/21 � $ �

�
.

Proof. We prove the lemma by an induction on � . The case � � � is trivial. So
assume that � � � . If neither & � is a prefix of � � nor � � is a prefix of & � then (1) is
equivalent to the truth value false. Now assume w.l.o.g. that & � � � � & . By cancelling� � we obtain the equation & � � & � 7!7!7 � � & ��� � � � � � � 7!7!7 � � ����� � . If & � % then we can
also cancel the variable � � which allows us to apply the induction hypothesis. Now
assume that & ���% . We can guess the position in � � � � 7!7!7 ��� � � ����� � where & � � ends.
More precisely, the word equation & � � & � 7!7!7 � � & ��� � �$� � � � 7!7!7 � � ����� � is equivalent
to the finite disjunction of all formulae of one of the following two forms:

– & � � � � � � � � � 7!7!7 ��C � � � C � � ��� A & � � � &�� 7!7!7 � � & ��� � � ��� � � C ��C�� � 7!7!7 � � ����� � where	 H < H!��
 � and ��C � � � � � � (i.e., & � � ends in � C )
–
� � � �� � C � � �QA & � � � � � � � 7!7!7 � C � � ��C � A

& � � � &�� 7!7!7 � � & ��� � � � ��C�� � � C�� � ��C�� � 7!7!7 � � ����� ��� where
	 H < H � , and

� and
�

are new variables (i.e., & � � ends in � C where
< � 	

because of & ��!% ).
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It suffices to show that each of these formulae is equivalent to a Boolean combination
of recognizable constraints. For this let us consider a formula of the second type, the
first type can be dealt with similarly. If we substitute � � for � C we obtain the formula

� � � � � � C � � ��A & � � � � � � � � � 7!7!7 ��C � � � C � � ��C � A
& � � � &�� 7!7!7 � C � � &�C � � &�C�� � � C � �87!7!7 & � � � & ��� � � � ��C�� � � C�� � ��C � � 7!7!7 � � ����� ��� , (2)

see also the following picture.

� C� � � � 7!7!7 ��C � � ��C�� � 7!7!7 � � ����� �& � � & � � � 7!7!7 � � & ��� �
Note that for every solution of the equation & � � � � � � � 7!7!7 � C � � ��C � , i.e., for every
tuple

�(# � �&# � ��:�:�: �&# C � � ��# � with & # � � # � � � 7!7!7 # C � � ��C # , the length constraint �(&)� �
� � � # � 7!7!7 ��C � � # C � � ��C # � holds. But there are only finitely many tuples

�$# � ��:�:�: �&# C � � ��# �
that satisfy this constraint. Hence we can take the finite disjunction over all tuples�$# � ��:�:�: ��# C � � �&# � with � &0� � � � � # � 7!7!7 ��C � � # C � � ��C # � where each single disjunctive sub-
formula results from substituting in (2)

# C for � C and
#

for � . Let
�$# � ��:�:�: ��# C � � �&# � be

one of these tuples and define
% � � � # � 7!7!7 ��C � � # C � � ��C # and � � & � # � 7!7!7 &�C � � # C � � &�C # .

It suffices to show that the formula

� � �� � � C � #�� A & � � � � � %QA �
� � E � C � � �KE � � # E � A

� � &�C�� � � C � � 7!7!7 & � � � & ��� � � � ��C�� � � C�� � 7!7!7 ��� � � ����� �
� �
�

is equivalent to a Boolean combination of recognizable constraints. By Lemma 4.1
we can replace the equation & � � � � � % by a formula of the form � � � � � where� � � .0/21 � $ �

�
. Furthermore the induction hypothesis2 implies that the equation

� � &�C�� � � C�� � 7!7!7 & � � � & ��� � � � ��C�� � � C � � 7!7!7 ��� � � ����� � (3)

is equivalent to a finite disjunction of formulae of the form
� �  A �

C � � � E � � �KE �G� E
where

 � � C�� � ��:�:�: � � � � .3/21 � $ �
�
. In this way we obtain a finite disjunction of

formulae of the form

� � � � C � #���A � � ��� � A �
� � E � C � � �KE � � # E � A � �  A �

C � � � E � � �KE �G� E�� .

But this formula is equivalent to the formula

� � ��� � A �
� � E � C � � �KE � � # E � A � C � #  A �

C�� � � E � � �KE ��� E .
This concludes the proof of the lemma. ��

2 Note that because of ����� , (3) contains 	�
��������	 many variables.
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Next we will generalize Lemma 4.2 from words to traces. For this we need the follow-
ing simple lemma.

Lemma 4.3. Let
� 1 � ��:�:�: � 1 � � be a clique covering of the dependence alphabet

� $ � � � .
For �BH < H  let � C � .0/21 � 1 �C � . Then the set of all traces

# �*� such that
2 C �(# � �G� C for � H < H  is recognizable.

Proof. We define a morphism 2 I � 	 1 �� � 7!7!7 � 1 �� by 2 �$# � � � 2 � �(# �
��:�:�: � 2 � �$# � � .
Since � � � 7!7!7 � � � ��.3/21 � 1 �� � 7!7!7 � 1 �� � and recognizable languages are closed
under inverse morphisms [23], the language � # ��� � 2 � �$# � �T� � ��:�:�: � 2 � �(# � �T� � �
is recognizable. ��
Lemma 4.4. Let 
 � � � ��:�:�: � � � � and

��� � � ��:�:�: � � � � be patterns such that ����-�� � 
 � 
,�����-�� ��� � . 3 Then the formula�
� � C � � � C ���

� � C � A 
 � � � ��:�:�: � � � � � ��� � � ��:�:�: � � � � (4)

is equivalent in
�

to a Boolean combination of formulae � C � � with ��� .0/21 � � �
.

Proof. Let
� 1 � ��:�:�: � 1 � � be an arbitrary clique covering of the dependence alphabet� $ � � � . For all

< � �;� ��:�:�: � � �
and all

= � �;� ��:�:�: �  � let � C� E be a new variable
which will represent the projection of � C onto the clique 1 E . Since � C is restricted to the
set � � � C � 
 *,+ -0/ � � C � � , we can replace the variable � C� E by the empty word % in case
*,+ -0/ � � C � �'1 E �O) . For this we define for every

= � �;� ��:�:�: �  � a substitution � E by

��E �  � � 2KE �  � for ;� $ and ��E � � C � �
�
% if *,+.-)/ � � C � � 1 E ��)
� C� E otherwise.

Thus, the pattern ��E � 
 � represents the projection of the pattern 
 onto the clique 1 E .
We claim that ����-�� � ��E � 
 � � � ����-�� � ��E � � � � for all

= ���;� ��:�:�: �  � . Since ����-�� � 
 � 
,�����-�� ��� � , it suffices to prove that � E � ��� � ����E ��� � � for variables
� � � ����� � ��:�:�: � � � �

with
��� � � � ��� . Let

� � ��� � �-� . If 1 E is a clique then we cannot have *,+.-0/ � � � � 1 E ��) ��!*,+.-)/ ��� � � 1 E , since this contradicts
� � ��� � � � . Thus either � E � � � �!% or ��E � � � �!% ,

which implies ��E � ��� � ����E � �'� � .
By Lemma 3.3, the equation 
 � � � ��:�:�: � � � � � ��� � � ��:�:�: � � � � is satisfied by traces

� C �T� � � C � 
 *,+ -0/ � � C � � for � H < H�� if and only if their projections � C� E ��2KE � � C � �� *�+.-0/ � � C � � 1 E � � satisfy the equations � E � 
 � ����E ��� � for all �GH = H  . But since
1 E is a clique of

� $ � � � this holds if and only if the projections � C� E satisfy a Boolean
combination of recognizable constraints by Lemma 4.2. By transforming this Boolean
combination into disjunctive normal form and using the closure of .3/21 � 1 �E � under
Boolean operations, we obtain an equivalent finite disjunction of conjunctions of the
form �

� � C � � � C� E ��� C� E
3 Note that this means that ��� ��� �	��
 .
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where � C� E � .0/21 � 1 �E � . Hence (4) is satisfied for traces � � ��:�:�: � � � �Q� if and only
if � � ��:�:�: � � � satisfy a finite disjunction of formulae of the form�

� � C � � � C � � # � � � 2 � �$# � ��� C� � ��:�:�: � 2 � �(# � ��� C� � � � � � � C �

with � C� E � .0/21 � 1 �E � . By Lemma 4.3 the sets appearing in this formula are recogniz-
able which concludes the proof. ��

5 Decidability of scattered rewriting

In this section we will prove Theorem 3.8. A remark similar to that at the beginning
of the previous section applies: all existence and equivalence results in this section are
effective. This fact is not stated explicitly in the following lemmas, but it can always
be checked easily.

5.1 Reduction to local properties

The main tool in this section is Gaifman’s locality theorem for first-order logic [25].
We will only need the special case of Gaifman’s Theorem where the signature contains
only unary and binary relation symbols which makes the definitions a little bit easier.
Let us consider a model of the form

5 � ����� N ��� � where N is a set of unary relations,
and

�
is a set of binary relations. For  � � � �

we define (�� �  ��� � as the length of a
shortest undirected path in the graph

����� ���  �� 3 � from  to
�
. For �;� � and  � �

,
the � -sphere 
 � �

�  � around  is 
 � �
�  � � � � � � � (�� �  ��� � H �

�
. There exists

a first-order formula over the signature of
5

with two free variables that expresses
the fact that (	� � � ��� � H � , i.e., the � -sphere around  is definable. Now let � be a
first-order formula over the signature of

5
and let � be a variable. Then the first-

order formula ��
 ��  � � results from � by relativizing all quantifiers to 
 � �
� � � . It can

be defined inductively, for instance
� � � A � � � 
 ���  � � 
 � 
 ��  � �� A � 
 ���  � �� ,

��� � � � 
 ���  � � 
� � � ( � � ��� � H �
A ��
 ��  � � � (where

�
has to be renamed into a fresh variable if

� �
� ), and �

� � � ��:�:�: � � � � 
 ��  � � 
 �
� � � ��:�:�: � � � � for atomic formulae. It is allowed that

the formula � contains the variable � free. Moreover, the formula ��
 ���  � � certainly
contains � free if � contains at least one quantifier. Now Gaifman’s Theorem states the
following [25].

Theorem 5.1. Let � be a first-order sentence over the signature of the model
5

. Then� is logically equivalent to a Boolean combination of sentences of the form

� � � 7!7!7 � � �
� �
� � C�� E � � (

� � C � �KE �$� 	 �
A �

� � C � �
� � � C � 
 ���  � � � �

where
� � � � is a first-order formula over the signature of

5
that contains at most � free

and
� � � C � results from

� � � � by replacing every free occurrence of � by � C .
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Since
� �����

contains all scattered rewrite rules, we get (��������
�$# �&% � H � for any two

traces
#

and
%
. Hence for the treatment of the structure

� �����
, Theorem 5.1 is of no

immediate use. But any first-order sentence � over the signature of
� �����

mentions
only finitely many scattered rewrite relations

	 �
. Hence,

� ����� � � � if and only if� �����" � � � where ! 
 � is finite and contains the set of rewrite rules mentioned in� . Thus, in order to prove the decidability of the first-order theory of
� �����

, it suffices
to prove the decidability of the first-order theory of

� �����"
for any finite set of rewrite

rules ! . Therefore, for our further considerations, we fix some finite set ! 
 � of
scattered rewrite rules.

In order to use Gaifman’s Theorem for decidability purposes, we will need a “use-
ful” description of the set of all traces � � � with

� �����" � � � � � � 
 ��  � � � � � . We will show
that this set is recognizable and that it is indeed a “useful” description (cf. Section 5.4).
The following two sections prepare the proof of the recognizability.

5.2 Reduction to 1-spheres

The aim of this section is to show that, by enlarging the set ! , it suffices to restrict
to the case � � � in Theorem 5.1. For the rest of Section 5, � (resp.

�
) will always

denote the repetition-free sequence � � ��:�:�: � � � (resp.
� � ��:�:�: �%� � ) of variables from

�
.

We assume that � and
�

do not contain common variables. Furthermore we use the
formula � �G� � � � as an abbreviation for the formula

� � � C � � � C ��� � � C � , and similarly
for
�
. The following lemma follows immediately from Lemma 3.2.

Lemma 5.2. Let
� � � � and N � � � be patterns with ����-�� ��� � � � � 7!7!7 � � and ����-�� � N � �� � 7!7!7 � � . Then the equation

��� � � � N � � � is equivalent in
�

to a finite disjunction of
formulae of the form

� � �  � � $ ��  � 7!7!7 � � �2 � � $ ��% �
���� ���

�
� � C � � � C � N C ��� C� � ��:�:�: � � C� � �?A�
� � E ���

� E � � E ��� �  E ��:�:�: ��� �% E �
�����
���

where ��� -�� � � E � � � �  E � �  E 7!7!7 � �2 E , ����-�� � N C � � � C� � � C� � 7!7!7 � C� � , and the alphabets $ C� E
satisfy $.C� E � $ �  � 
 � whenever �H < > R H!� and  � = � � � � .
Lemma 5.3. Let 
 � � � be a pattern, and let � � .3/21 � � �

. Then the formula ���

 � � �JA � ��� is equivalent in

�
to a finite disjunction of formulae of the form

� � 
 � � � A �
� � C � � � C ��� C

where � C � .3/21 � � �
and *�+.-0/ � � C � 
 *�+.-0/ � � � .

Proof. By renaming the variables if necessary, we may assume w.l.o.g. that 
 �
� � & � � � 7!7!7 & � � � � � . Let + I � 	 ,

be a morphism into a finite monoid
,

and let
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6 
 ,
such that � � + � � � 6�� . In order to construct the desired formula let us take

a finite disjunction over all sequences � � � � � ��:�:�: � � � of elements from
,

such that� � + � & � � � � 7!7!7 + � & � � � � � � � 6
. For such a sequence we write down the formula

� � 
 � � �JA �
� � C � � � C � +

� � � � C � .
It is easy to see that the resulting disjunction is equivalent in

�
to our original formula.

Note that every trace � �-+ � � � � C � is a factor of some & �O� . Thus *,+.-)/ � + � � � � C � �;

*,+ -0/ � � � . ��
Let � � and � � be scattered rewrite rules. Then the following lemma implies easily that
there exists a finite scattered rewriting system

�
such that � 	 � �

is equivalent to� � I � 	�� � � 	�� � � , for all traces � and
�
.4 In general,

�
consists of more than just

one rule. The lemma will allow us to describe the � -sphere around a trace � as the� -sphere of another, larger, but still finite, scattered rewriting system (cf. Lemma 5.5).

Lemma 5.4. Let
� 
 � � � ��� � � � �
� � N � � � �	1 � � � � � � . The formula

� � 
 � � � A � �G� � � � A ��� � � � N � � �A � � 1 � � � A � ��� � � � (5)

is equivalent in
�

to a finite disjunction of formulae of the form

� � �  � ��� � � �  � � 7!7!7 � � �% � � � ��� �% � �

��������� ��������

� � �
� � �  � ��:�:�: ��� �% � � A�

� � C � � � C � N C ��� C� � ��:�:�: ��� C� � � A�
� � E ���

� E � � E ��� �  E ��:�:�: ��� �% E � A
� � 8 ��� �  � ��:�:�: ��� �% � �

� ��������
��������

where N C � � C� � ��:�:�: ��� C� � � and
� E ��� �  E ��:�:�: ��� �% E � are patterns and

�
�
�78 �

is a scattered
rewrite rule over the variables

� �  � ��:�:�: ��� �% � .

Proof. By renaming the variables if necessary, we may assume w.l.o.g. that ����-�� ��� � �
� � 7!7!7 � � and ����-�� � N � � � � 7!7!7 � � . By Lemma 5.2 the formula (5) is equivalent in

�
to a finite disjunction of formulae of the form

� � �  � � $ ��  � 7!7!7 � � �% � � $ ��2 �

��������� ��������

� � 
 � � �JA � ��� � � �?A�
� � C � � � C � N C ��� C� � ��:�:�: ��� C� � � A�
� � E ���

� E � � E � � �  E ��:�:�: � � �2 E �?A
� � 1 � � � A � ��� � � �

� ��������
��������

(6)

4 The corresponding statement for ordinary trace rewriting systems is not true. This is our main reason for gener-
alizing trace rewriting systems to scattered rewriting systems.
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where ��� -�� � � E � � � �  E � �  E 7!7!7 � �% E , ����-�� � N C � � � C� � � C� � 7!7!7 � C� � , and the alphabets $ C� E
satisfy $.C� E � $ �  � 
 � whenever � H < > R H�� and  � = �*� � � . By Lemma 5.3
we can replace the subformulae � C � N C ��� C� � ��:�:�: ��� C� � � A � C �G� � � C � in (6) by a finite
disjunction of formulae of the form

� C � N C � � C� � ��:�:�: ��� C� � �JA �
� � E ���

� C� E �  C� E
where

 C� E �&.0/ 1 � � �
and *,+ -0/ �  C� E � 
 *,+ -0/ � � C � . Similarly, the subformulae

� E �� E � � �  E ��:�:�: � � �2 E � A � E�� � � � E � can be replaced in (6) by a finite disjunction of
formulae of the form

� E � � E � � �  E ��:�:�: � � �2 E � A �
� � C � �

� C� E ��� C� E
where � C� E � .0/21 � � �

and *�+.-0/ � � C� E � 
 *,+ -0/ ��� E � . Altogether we obtain for the vari-
able

� C� E the recognizable constraint
� C� E � $ �C� E �  C� E �?� C� E . We may w.l.o.g. assume that

the variable
� C� E was chosen such that � ��� C� E � � $ �C� E �  C� E��0� C� E . By the independence

properties of the alphabets $ C� E that followed from Lemma 5.2, and by the inclusions
*,+ -0/ �  C� E �'
 *,+.-0/ � � C � and *�+.-0/ � � C� E �'
 *,+ -0/ ��� E � , this implies that

� � C� E ��� �  � � � �
whenever (

<?> R
and

= � �
) or

� � C � � � � � � or
� � E ��� � � � � .

Finally we may replace the pattern 
 by the pattern � � 
 � � C � N C � , which results
from 
 by replacing for all

<
the variable � C by the pattern N C . Similarly, we may replace

the pattern
1

by the pattern
8 � 1 � � E � � E5� . Then syntactically, the resulting formula

has the desired form. It remains to show that ����-�� � � � 
�� ��� -�� � 8 � . Since
��� C� E � � �  � � �

� if
� � C � � � � � � , we have

� ��� -�� � N C �
� ����-�� � N � � � � � whenever
� � C � � � � � � . Since

����-�� � 
 � 
,� ����-�� ��� � � � � 7!7!7 � � it follows that

����-�� � � � 
)� ��� -�� � N � � 7!7!7 ����-�� � N�� � � ��� �  � 7!7!7 � �  � � 7!7!7 � � �2 � 7!7!7 � �2 � � .
Analogously we obtain

����-�� � 8 � 
,� ����-�� ��� � � 7!7!7 ����-�� ��� � � � ��� �  � 7!7!7 � �% � � 7!7!7 � � �  � 7!7!7 � �% � � .
Finally, since

��� C� E ��� �  � � � � if
< > R

and
= � �

, we have
� � �  � 7!7!7 � �  � � 7!7!7 � � �2 � 7!7!7 � �% � � 
)� ��� �  � 7!7!7 � �% � � 7!7!7 � � �  � 7!7!7 � �% � � �

which implies ����-�� � � � 
,� ����-�� � 8 � . ��
Lemma 5.5. For � ��� and a scattered rewriting system ! , there exists a scattered
rewriting system ! � over � such that, for all & � � � � , we have ( � ��� ��

� & � � � H � if
and only if & 	 " � � .
Proof. Let

� 
 � � � �%��� � � � � � N � � �
�51 � � � � � � . The formula
� � I � 	 � 
  � � � 	 � �  	 � � is

equivalent to the formula� � � � ��� � 
 � � �JA � � � � � �JA ��� � � ��N � � � A � � 1 � � � A � ��� � � �7� ,
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which is the formula (5) from Lemma 5.4, except that the variables � C and
� E are quan-

tified existentially. Hence, by Lemma 5.4 it is equivalent in
�

to a finite disjunction
of formulae of the form

� � � � � � �  � ��� ��� �  � � 7!7!7 � � �% � ��� ��� �% � �

��������� ��������

� � �
��� �  � ��:�:�: � � �2 � � A�

� � C � � � C � N C ��� C� � ��:�:�: ��� C� � �?A�
� � E ���

� E � � E � � �  E ��:�:�: � � �2 E �?A
� � 8 ��� �  � ��:�:�: ��� �2 � �

����������
��������
:

Any of those is, in
�

, equivalent to

� � �  � ��� ��� �  � � 7!7!7 � � �2 � ��� � � �2 � �
� � � �

��� �  � ��:�:�: � � �2 � �?A� � 8 ��� �  � ��:�:�: � � �2 � � � ,

i.e., � 	 ���  � � � where
�
�
�78 � � � .

Now we can prove the lemma inductively. Let ! � � � � � � � �7� , where � � � � �O� .
Assume that ! � � � is already defined. Define the scattered rewriting system ��� ! �
� � 
 � 8 � � � 8 � 
 � � ! �

. Then ( � ������
� � ��� � H � if and only if

� 	�" ��� � ���� � I � 	�" ��� � ��	�� � :
From the discussion in the previous paragraph it follows that

� ��I � 	 " ��� � � 	�� �
is equivalent in

�
to � 	 �	� � for some scattered rewriting system � � . Thus, we can

define ! � � ! � � � � � � . ��
Before we proceed let us first state the following simple consequence of Lemma 4.4
and Lemma 5.4, which will be useful in the next section.

Lemma 5.6. Let
� 
 � � � ��� � � � �
� �21 � � � � N � � � � � � . The formula

� ��� � � � A 
 � � � 	 � 	  � � ��� � � (7)

is equivalent in
�

to a Boolean combination of formulae � C � � with ��� .0/21 � � �
.

Proof. First note that (7) is equivalent in
�

to the formula� � � � ��� � 
 � � � A � �G� � � � A ��� � � � N � � � A � � 1 � � � A � ��� � � �7� :
Similarly to the proof of Lemma 5.5 we can apply Lemma 5.4 to this formula (with
��� � in Lemma 5.4). We obtain an equivalent finite disjunction of formulae of the
form

� � �  � � � ��� �  � � 7!7!7 � � �% � ��� ��� �% � �
��� �� �

��� �  � ��:�:�: � � �2 � � � 8 ��� �  � ��:�:�: � � �2 � �?A�
� � C � � � C � N C ��� C� � ��:�:�: � � C� � �

� ��
��
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where ����-�� � � � 
,� ��� -�� � 8 � . Hence, by Lemma 4.4 this formula is equivalent in
�

to
a finite disjunction of formulae of the form

� � �  � ��� ��� �  � � 7!7!7 � � �2 � �G� � � �2 � � �
� � C � �

�
� C � N C ��� C� � ��:�:�: ��� C� � � A �

� � E ���
� C� E �G� C� E��

where � C� E � .0/21 � � �
. Since the patterns N C and N E are defined over disjoint sets of

variables for
< �� =

, this formula is equivalent to�
� � C � � � C � � N C �$# � ��:�:�: ��# � � � # � � � C� � �J� � � C� � �
��:�:�: �&# � ��� C� � � � � � C� � �7�;:

By the closure properties of .3/21 � � �
and since in every pattern N C each variable

occurs at most once, the sets in the formula above are recognizable. ��
5.3 Internalizing the 1-sphere

As a major tool in our further considerations we will use monadic second-order logic
(MSO logic) over dependence graphs. Formulae in this logic are interpreted over de-
pendence graphs

� 1 �&3 �54 �
of traces. This logic has first-order variables � ��� ��� ��:�:�:

ranging over elements of
1

and second-order variables � ��� ��� ��:�:�: ranging over sub-
sets of

1
. Atomic formulae are of the form

,�� � � � , ��� � , and � �	� where � and�
are first-order variables, � is a second-order variable, and

, �
is a unary relation

symbol for every  � $ . The interpretation of
, � � � � is

4 � � � �  whereas �
� �
is interpreted as

� � ��� � � 3
� . From atomic formulae, MSO-formulae are constructed

using Boolean connectives and quantification over first-order and second-order vari-
ables. For an MSO-formula

�
and a trace � �G� we write ��/ � � �

if the dependence
graph �L/ satisfies the formula

�
.

We use the following terminology in order not to get confused by the different
types of variables we have to deal with. First-order variables that range over elements
of the model

�
are called external first-order variables. Second-order variables that

range over subsets of an underlying dependence graph are called internal second-order
variables. Internal first-order variables that range over single nodes of the dependence
graph will not occur very much in our further considerations. Similarly, first-order
formulae that speak about the infinite structure

�
(consisting of all traces) will be

called external first-order formulae, whereas MSO-formulae that are interpreted over
a single (finite) dependence graph are called internal MSO-formulae.

Thomas has shown in [62] that MSO logic precisely characterizes recognizable
trace languages:

Theorem 5.7. A set � 
 � is recognizable if and only if there exists an MSO-
sentence � such that � � �!� � � � �L/ � ��� �

.

This result has been extended to other logics [62, 19] and to infinite traces [22].
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We will need the following internal MSO-formulae. The MSO-formula conv
� � �

defined by

conv
� � � 
 P � P � P � � � � � � � � A � � � � � � 	 � � � �

holds if and only if � is a convex subset of the dependence graph. Recall that if �
is convex then the restricted dependence graph �M/ � � is isomorphic to a dependence
graph � � for a unique trace

# � � . In the following, ��/ � � will be also used in order to
denote this trace

#
. For a pattern 
 � � � & � � � 7!7!7 & � � � � � we define an MSO-formula

� *�� � 

� � � � � ��:�:�: � � � �

which expresses for a dependence graph ��/ � � 1 �&3 �54 �
the following facts:

– � � � � ��:�:�: � � � are convex and �L/ � � � ��� � � C � for �H < H�� .
– There exist convex sets

� � ��:�:�: ��� � � � 
 � of �L/ such that the trace represented by�0/ ��� � is &�C and that the sequence � � ��� � � � � ��� � ��:�:�: ��� � � � � � � is a factorization
of �0/ � � (according to the definition before Lemma 3.1).

Note that both points can be expressed in MSO logic. Finally we will use in MSO-
formulae several times a constant

1
which denotes the whole set of nodes of the un-

derlying dependence graph. Of course this constant can be easily defined in MSO
logic.

Let � �T, , let � be an external first-order formula over the signature of the model� �����"
and let � be a variable. By induction on the structure of � we will construct

an internal monadic second-order sentence ��� � � � � such that, for � � � , we obtain� � �O��
 ��  � � � � � if and only if �L/ � �	�
� � � � � . Thus an external first-order property of the
� -sphere around a trace � will be translated into an internal property of the dependence
graph of the central trace � . Due to Lemma 5.5 we may, by replacing the system ! by
! � , restrict ourselves to � -spheres. Let us first explain this process with an example.

Example 5.8. Let � 
 � ��I � 	 " �
. By Lemma 5.5, � 
 ��  � � is equivalent to

� ��I
� 	�"

�
� 	�" �

. This property can be expressed as follows. There exists a rule� 
 � � � ��:�:�: � � � � �%��� � � ��:�:�: � � � � � � ! � and there exist traces
# � � � � � � �
��:�:�: �&# � �� � � � � such that � � 
 �$# � ��:�:�: �&# � � and

� �(# � ��:�:�: �&# � � 	�"$���$# � ��:�:�: �&# � � . The ex-
istential quantification over all rules from ! � can be replaced by a finite disjunc-
tion since ! � is finite. Moreover, by Lemma 5.6, the statement

���$# � ��:�:�: ��# � � 	�"
���$# � ��:�:�: ��# � � is equivalent to a Boolean combination � of recognizable constraints
for the factors

# C . Now the internalization of the resulting formula is the following:
there exists a rule

� 
 � � � ��:�:�: � � � � �%��� � � ��:�:�: � � � � � � ! � and there exist convex subsets� � ��:�:�: � � � 
 1
(where

� 1 �	3 �54 �
is the dependence graph of the central trace � ) such

that
� *�� � 


�21 � � � ��:�:�: � � � � and � holds. Here � results from the Boolean combina-
tion � by replacing every recognizable constraint

# C �B� by an MSO-formula which
expresses the fact that the restriction of the dependence graph

�21 �	3 �54 �
to the con-

vex set �MC satisfies some MSO-sentence defining � � .0/21 � � �
which is possible by

Theorem 5.7.
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For our further considerations we may w.l.o.g. assume that for some number  every
rule in the scattered rewriting system ! � is defined over exactly  variables. This may
be assumed since we always can add dummy variables

�
with � � � � � �;� � to the end

of the left- and right-hand side of a rule.
In the following theorem we have to include additional free variables

� � ��:�:�: ��� � in
order to be able to treat an existential quantifier inductively.

Theorem 5.9. Let � � � ��� � ��:�:�: �%� � � be an external first-order formula with free vari-
ables among ��� �%� � ��:�:�: �%� ��� such that for any subformula of the form

� � �
, the formula�

has the form � 	�" �
� A � � for some formula

� � .5 Further let
� 
 � �%� � � � ���#� � be a

tuple of rules from ! � . Then there exists an internal MSO-formula

�
� � � � � � � 
 � �%� � � � ��� � � �
with free second-order variables among � � C� � � H R H � � � H < H  � such that for
all dependence graphs �L/ � � 1 �	3 �54 �

and sets
� C� 
 1

( �LH R H � � �0H < H! ) with�0/ � � � * � � 
 �
� 1 � � �� ��� �� ��:�:�: ��� �� � , the following are equivalent:

– �0/ � �	��� � � � � � � 
 � ��� � � � ��� � � �
–
� �����"

� � �O� � � �&# � �&# � ��:�:�: �&#�� � where
# � � � � � �0/ ��� �� � �0/ ��� �� ��:�:�: � �0/ � ���

�
�
.

Note that in the theorem above, we assume that
� C� is a convex subset of

1
since�0/ � � � * � � 
 �

� 1 � � �� ��� �� ��:�:�: ��� �� � . Note also that � 	 � 
 �  � � � # � in the theorem above.
We start the proof of Theorem 5.9 with a few preprocessing steps:

1. First we may replace � � � �%� � ��:�:�: ��� � � by � � � ��� � ��:�:�: ��� � � A � � � C � � � 	�"
�
� C ,

because in Theorem 5.9 the free variables
� C will be only interpreted by direct	�"

� -successors of the central trace � .
2. For � � .0/ 1 � � �

let us define the scattered rewrite rule � " � ��� " ��� " � with� ��� " � � � . Then we may replace any atomic subformula of the form
� ��� by� 	��

�
�

(formally we also have to add � " to ! � ).
3. Finally, any atomic subformula of the form

� 	#� �
can be replaced by the formula� � � � 	�" �

� A-� 	�� � A � 	��
�
� �

where
�

is a new variable (note that
� 	#�

�
�

if and only if
� � � ). Here we can restrict the new variable

�
to
	 "

� -successors
of the central trace � , because by the first step, every free variable

� C has to satisfy
� 	�" �

� C , and also every quantification in � is restricted to direct
	 "

� -successors
of � .

Thus, in the following we will only deal with subformulas of the form
� 	 � �

where
the variables

�
and
�

are distinct, with Boolean connectives, and with existential quan-
tifications over

	 "
� -successors of � . These considerations can be found in the fol-

lowing three claims that collectively prove Theorem 5.9.

Claim 1. Theorem 5.9 holds for the formula � 
 ��� � 	��.� � � where � � � is a scattered
rewrite rule.

5 W.l.o.g. we may assume that 	 does not contain universal quantifiers.
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Proof. Fix two rules
� 
 � �%� � � � ! � (

R � � � 	 ) and let
� 
 � �%� � � be defined over the

variables
� �� ��:�:�: ������ . Let 
 � � � ��  �� � ��  �� 7!7!7 ���� . For the construction of

�
� � � � � 	�� � � � � � 
 � �%� � � � � 
 � �%� � � �
we will use all patterns N C � � C� � ( C� � � C� � ( C� � 7!7!7 � C� � and

1 C � � �  C � �  C � �  C � �  C 7!7!7 � �  C ( �0H< H  ) such that

( C� E is a factor of  E � , ��C� E is a factor of  C � , � ��� C� E � �!*,+ -0/ � � C� E � � , and

� � � C� E �����  $ � � �$<?>  and
= � � � or

��� C� ��� � � � � � or
��� E� ��� $� � � � � 
 � . (8)

Because of the restriction of these patterns to length  and since all the traces men-
tioned in N C and

1 C are factors of some  E � , there are only finitely many patterns satis-
fying (8) up to renaming of variables.

Let � � � with �L/ � �21 �	3 �	4 �
, and let

� C� 
 1
( � H < H  ,

R � � � 	 ) such that

�0/ � � �
� ' �  �

� * � � 
 �
� 1 � � �� ��� �� ��:�:�: ��� �� � : (9)

Let
# � � � � � �0/ � � �� � �0/ � � �� ��:�:�: � �0/ � ���

�
�
. We have to translate the statement

# � 	�� # �
into an equivalent MSO-property of the sets

� C� ( �H < H  ,
R � � � 	 ).

Claim 1.1. There exist patterns N C and
1 C ( � H < H  ) satisfying (8) and there exist sets� C� E 
 1

such that

�0/ � � �
� � C ���

� * � � � � � � C� ��� C� � ��� C� � ��:�:�: ��� C� � � A �
� � C ���

� * � � 	 � � � C� ��� �  C ��� �  C ��:�:�: ��� �  C � . (10)

In order to prove Claim 1.1, note that (9) implies that there exist convex sets
� C � 
�1

such that �L/ � � � � represents the trace  C � for �TH < H  ,
R � � � 	 , and the sequence� �� � � �� ��� �� � � �� ��:�:�: � � �� is a factorization of �L/ for

R � � � 	 . Define
� C� E � � C � � � E � for � H < ��= >  �
�0C� E � � C� � � E � for � H < H  � �H = >  �3 C� E � � C � � � E� for �H <?>  � �H = H  �� C� E � � C� � � E� for � H < ��= H  :

The situation can be visualized by the following diagram. The rows represent the fac-
tors

� C� and
� C � and the columns the factors

� C� and
� C � .� �� � � � � � � � �  � � �  � . . .
� �  �

...
...

...
...

...
...

...� � � 3 �  � � �  � 3 �  � � �  � . . .
3 �  �� �� � �  � � �  � � �  � � �  � . . .
� �  �� �� 3 �  � � �  � 3 �  � � �  � . . .
3 �  �� �� � �  � � �  � � �  � � �  � . . .
� �  �� �� � �� � �� � �� . . .
� ��
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The sequence
� C� � � �LC� � ��� C� � � �0C� � ��:�:�: ��� C� � (resp.

� �  C �	3 �  C ��� �  C �	3 �  C ��:�:�: ��� �  C ) is a fac-
torization of �L/ � � �� (resp. �L/ � � �� ).

For � H < ��= H  , let
� C� E be an external first-order variable with *�+.-0/ � � C� E � � 4 � � C� E �

and � ��� C� E � ��*,+.-)/ ��� C� E � � . Since
4 � � C� E � 
�4 � � C� � � 4 � � E� � 
 *,+ -0/ ��� C� � � *�+.-0/ � � E � � and4 � � C� E � ��4 � � �  $ � 
 � whenever
<?>  and

= � � (see Lemma 3.1), we obtain

� � � C� E �����  $ � � �(< >  and
= � � � or

� � C� ��� � � � � � or
��� E� ��� $� � � � � 
 � :

Furthermore let �L/ � � ��� � (resp �0/ � � ��� � ) represent the trace (DC� E � � (resp. ��C� E;�@� ).
Then the patterns

N C � � C� � (DC� � � C� � ( C� � 7!7!7 � C� � and
1 C � � �  C � �  C � �  C � �  C 7!7!7 � �  C

for ��H < H  satisfy (8). Finally from the diagram above we can easily deduce (10).
This proves Claim 1.1.

Let us fix patterns N C �51 C ( ��H < H  ) satisfying (8) and sets
� C� E 
 1

satis-
fying (10). Thus, ��/ � � �� � N C � �0/ � � ��� � � �L/ ��� ��� � ��:�:�: � �0/ � � ��� � � , which has to be read
as an identity between traces. Let the pattern

� � � � C� � N C � (resp.
� � � � C� � 1 C � ) result from� � (resp.

� � ) by substituting for all � H < H  the pattern N C (resp.
1 C ) for the

variable
� C� (resp.

� C� ). With
# � � � � � �0/ ��� �� � �0/ ��� �� ��:�:�: � �0/ � ���� � , we obtain

# � �� � � � C� � N C � � �0/ � � � � � ��:�:�: � �0/ ��� � � � � . The equation
# � � � � � � C� � 1 C � � �L/ ��� � � � ��:�:�: � �0/ � � � � � �

follows similarly. Since we can take a finite disjunction over all patterns N C �51 C ( �GH< H  ) satisfying (8) followed by an existential quantification over all sets
� C� E 
*1

satisfying (10), it suffices to translate the statement
� � � � C� � N C � � �0/ � � � � � ��:�:�: � �0/ ��� � � � � 	�� � � � � C� � 1 C � � �L/ � � � � � ��:�:�: � �0/ � � � � � � (11)

into an equivalent MSO-property. The definition of the patterns
� � � � C� � N C � , � � � � C� � 1 C �

and (8) imply that ����-�� ��� � � � C� � N C � � 
)� ����-�� ��� � � � C� � 1 C � � .6 From (10) we get �L/ � � ��� � �� ��� C� E � . Thus we can apply Lemma 5.6, which tells us that (11) is equivalent to a
Boolean combination of formulae of the form �M/ ��� ��� �;�B� for some � ��.3/21 � � �

.
By Theorem 5.7, this Boolean combination of external first-order formulae � / � � ��� � ���
can be translated into an equivalent Boolean combination of internal MSO-formulae� ��� ��� � , where

� ��� ��� � results from an MSO-sentence
�

defining � by restricting all quan-
tifications in

�
to
� C� E . ��

Claim 2. Theorem 5.9 holds for the formulas � 
 � � � 	�� � � and � 
 � � 	 �.� � � .
Proof. Let ��� � � � � 	�� � � � � 
 � �%� � � � be� � � � � *�� � 
 � � 1 � � � � A ��� � � � � 	�� � � � � � 
 � �%� � � � � 
 � �%� � � � �
where

� � is the sequence of variables
� �� ��:�:�: ��� �� and

� 
 � �%� � � � � � . The formula
�
� � � � 	�� � � � � � 
 � �%� � � � can be defined analogously. This gives a reduction to Claim 1.

6 This can be shown completely analogously to the equality ���
	�� ������������
	�� ��� � in the proof of Lemma 5.4.
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Claim 3. If Theorem 5.9 holds for the formulae � and
�

, then it holds for the formulae� A �
, 	 � and

� � � � 	 " �
�A � � .

Proof. Conjunction and negation are easy:

�
� � � � A � � � � 
 � �%� � � � ��� � � � 
 �
� � � � � � � 
 � �%� � � � ��� � � � A �
� � � � � � � 
 � �%� � � � ��� � � � �
�
� � � 	 � � � � 
 � �%� � � � ��� � � � 
 	 � ��� � � � � � � 
 � �%� � � � ��� � � � �5:

In order to define ��� � ��� � � � 	 "
�
� A � � � � 
 � �%� � � � ��� � � � � , let � � � ��� � ��:�:�: ��� � � be an

external first-order formula whose free variables are contained in ��� �%� � ��:�:�: ��� ��� and
let w.l.o.g.

� � � � . Let
� �

be the sequence of variables
� �� ��:�:�: ��� ��

and set

��� � ��� � � � � 	�" �
� �8A � � � � � 
 � �%� � � � ��� � � � 
�

� 

�  � � �  " �

� � � � � *�� � 
 � �21 � � � � A �
� � � � � � � 
 � �%� � � � ��� � � � � .

Suppose
� C� 
 1

( � H R >&� , � H < H  ) are such that

�0/ � � � * � � 
 �
� 1 � � �� ��� �� ��:�:�: ��� �� � :

If �0/ � �21 �	3 �54 � � � �
� � ��� � � � � 	�"
�
� � A � � � � � 
 � �%� � � � ��� � � � then there is a scat-

tered rewrite rule
� 
 �
����� � � ! � and there are sets

� C� 
 1
( � H < H  ) such

that �L/��� � *�� � 

� � 1 � � � �

and �L/��� �
� � � � � � � 
 � �%� � � � ��� � � � . Inductively we obtain� �����"
� � �O� � � �&# � �&# � ��:�:�: ��# � � where

# � � � � � �L/ ��� �� � �0/ ��� �� ��:�:�: � �0/ � � �
�
�

for �H R H � .
Since � 	 � 


�  � � � #�� , it follows
� �����"

� � � ��� � � � � 	�" �
� �8A � � � � � �&# � �&# � ��:�:�: �&#�� � � � .

On the other hand if
� �����"

� � � ��� � � � � 	�"
�
� � A � � � � � �&# � ��# � ��:�:�: �&#�� � � � for

the traces
# � � � � � �0/ ��� �� � �0/ ��� �� ��:�:�: � �L/ � � �

�
�

( � H R > �
), then there is a rule� 
 ���%� � � �-! � and there are sets

� C� 
 1
( � H < H  ) such that �L/ � � � *�� � 


� �21 � � � �
and
� �����"

� � �O� � � �&# � �&# � ��:�:�: �&#�� � , where
#�� � � � � �0/ ��� �� � �0/ ��� �� ��:�:�: � �0/ � � �� �

. Hence by
induction, the dependence graph �M/ satisfies the formula ��� � � � � � � 
 � �%� � � � ��� � � � , which
finally implies �L/ � �	�
� � ��� � � � � 	�" �

� �8A � � � � � 
 � �%� � � � ��� � � � . ��
This finishes the inductive proof of Theorem 5.9.

Remark 5.10. In the proof of Theorem 5.9 we have translated an external first-order
property into an internal MSO property of the underlying dependence graph. A closer
analysis shows that first-order logic over dependence graphs is in fact sufficient for the
process of internalization. The reason is that we only used second-order quantifications
over convex subsets. But a convex subset can be represented by the tuple of its minimal
and maximal vertices. This tuple consists of at most

	 7 �($ � vertices. Moreover, all
recognizable sets that we have constructed in Section 4 are easily seen to be first-order
definable.
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5.4 Proof of Theorem 3.8

Theorem 5.11. Let � � � and let � � � � be a first-order formula over the signature of� �����"
that contains at most � free. Then the set �!� ��� � � �����" � � � � � � 
 ���  � � � � � � is a

recognizable subset of � .

Proof. Let ! � be the scattered rewriting system from Lemma 5.5 and let � � � be
some trace. By Lemma 5.5,

� �����" � ��� � � � 
 ��  � � � � � if and only if
� �����"

� � �O� � � � 
 � �  � � � � � .7
Note that the formula � � � � 
 � �  � � satisfies the conditions of Theorem 5.9 (if we write
� 	�" �

�
instead of ( � � ��� � H � ) where, in addition, the tuple

� 
 � ��� � � � ��� � � , the sets� C� 
*1
, and the traces

# � disappear. In particular, the MSO-formula �
� � � � � � � 
 � �  � � �
does not contain any free variables, i.e., it is an MSO-sentence. Thus, we obtain
from the external first-order formula � � � � the internal MSO-sentence �
� � � � � � � 
 � �  � � �
such that �L/ � � ��� � � � � � � 
 � �  � � � if and only if

� �����" � � � � � � 
 ��  � � � � � . Hence the set
�!� � � � � �����" � ��� � � � 
 ���  � � � � �7� is defined by the MSO-sentence �
� � � � � � � 
 � �  � � � ; it is
therefore recognizable by Theorem 5.7. ��
We finish this section with the proof of our main result, Theorem 3.8.

Proof of Theorem 3.8. By Gaifman’s Theorem (Theorem 5.1) and the discussion fol-
lowing that theorem, it suffices to decide whether a sentence of the form

� � � 7!7!7 � � �
� �
� � C�� E � � (

� � C � �KE �$� 	 �
A �

� � C � �
� � � C � 
 ���  � � � � (12)

holds in
� �����"

. Here
� � � C � is a first-order formula over the signature of

� �����"
that

results from a formula
� � � � by replacing every free occurrence of � by � C . By Theo-

rem 5.11, the set �:� �!� � � � � �����" � � � � � � 
 ���  � � � � � � is recognizable. Hence we can
check whether � is infinite. If this is the case then � contains traces of arbitrary length.
Since the application of a rewrite rule from the finite system ! can change the length
of a trace only by some fixed amount, there exist infinitely many traces ��C � � ,

< ��, ,
such that ( � ������

� ��C � �$E � � 	 � for
< > =

. Hence (12) is true. On the other hand if � is
finite, then we can enumerate all elements of � and calculate their � -spheres with re-
spect to ! . In this way we can check whether there are at least � traces � � ��:�:�: � ��� ���
such that ( � ��� ��

� ��C � �$E �$� 	 � for
<?>@=

. Hence the decidability follows. ��
5.5 An extension of first-order logic

First-order logic can be extended by modulo counting quantifiers [59]; the resulting
logic is called FO+MOD. Since there is no locality theorem known for this logic,8

our decidability proof for the first-order theory of
� �����

does not work for this more
expressive logic; but the second step of our proof, i.e., the recognizability of the set of

7 Note that 	 ��� �
��� � � ���

is built using the signature of � ��� �� while 	 ��� �
��� � � ���

uses the larger signature of � ��� ��
	 .
8 Libkin [34–36] and Nurmonen [53] proved locality theorems for counting logics including modulo counting,

but not in the form of Theorem 5.1. We could not make them work in our situation.
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traces satisfying some local formula in FO (cf. Theorems 5.9 and 5.7) extends to the
logic FO+MOD. Thus, we obtain the decidability of local properties expressed in the
logic FO+MOD.

The only difference between FO+MOD and FO is that we now have a second type
of quantifiers: if � is a formula of FO+MOD, then

� � �  $ � � � is a formula as well for
 � � � , and  > � . Then

� ����� � � � � �  $ � � � if the number of traces �'� � with� ����� � �O� � � � is finite and congruent  modulo � .

The logic MSO+MOD We will also extend the monadic second-order logic for de-
pendence graphs (MSO) by modulo-counting facilities for both set and first-order
variables. MSO+MOD is the extension of MSO by the quantifiers

� � �  $ � � ��C � C ��� for
a tuple of first-order or second-order variables � C and  � � �*, with  > � . This
quantifier for set variables is only allowed in conjunction with the formula conv

� � �
asserting that � is convex: if � is a formula of MSO+MOD then also the formula� � �  $ � � ��C � C ��� � � C ��� conv

� ��C � A � � and
� � �  $ � � � C � C ��� � belong to MSO+MOD. The re-

striction to convex sets will be assumed implicitly in the following. A dependence
graph �L/ � � 1 �&3 �54 �

satisfies
� � �  $ � � �MC � C ��� � if the number of set tuples

� � C � C ��� with��C 
 1
such that �0/ � � � � � �MC � C ��� � is congruent  modulo � . The interpretation of the

quantifier
� � �  $ � applied to first-order variables is similar. Note that, differently from

FO+MOD, we did not require explicitly the set of witnesses to be finite; this is not
needed since any dependence graph is finite.

We show that any property expressible in MSO+MOD can also be expressed in
monadic second-order logic. The reason for introducing this extension of MSO is that
the analog of Theorem 5.9 is shown much simpler in terms of MSO+MOD.

Lemma 5.12. Let � be a sentence of MSO+MOD. Then there exists a sentence
�

of
MSO such that for any � � � , �L/ � �O� if and only if �L/ � � �

.

Proof. We first eliminate modulo quantifications over tuples of sets by modulo quan-
tifications over single sets: the formula

� � �  $ � � ��C � � � C ��� � holds in the dependence graph

�0/ if and only if for some numbers ��H  C > � with
�
��� C�� $

�(< 7  C � 
 ������ � , we have

�0/ � � �
��� C�� $

� � � �  $ � � � � � C� $ � � � E � � � E ��� � :
Recall that the modular set quantification runs over convex subsets of the underly-
ing dependence graph, only. These convex sets can be encoded by the tuples of their
minimal and maximal elements. In order to count correctly, we have to rule out per-
mutations in these antichains. This is achieved by a linear order � on the set $ of
letters. Let � be the number of letters in $ . Then the convex set � is replaced by the
two � -tuples

� � �C � � � C � � and
� � �C � � � C � � of minimal and maximal elements such that,

for �JH < > � , we have either
4 � � E C ��� 4 � � E C � � � or � E C � � E C�� � � � E C�� � � 7!7!7 � � E �

28



for
= � � � 	 ; this can be expressed by a first-order formula ��� � � � C � � � C � � � . Thus, the

formula
� � �  $ � � �

becomes

� � �  $ � � � E C � ��� � ������ � � �

����� ����
� � A � � � �C � and

� � �C � form antichains
� A

��� � � � �C � � � C � � � A ��� � � � �C � � � C � � � A�
� � C � �

�
� ��� � � �

�C �#� �� A �
� ��� � �

�
� � C � � �

�C �#� ��
� ����
����

In this formula,
� � is obtained from

�
by replacing any subformula of the form � � �

by �
� � C� � � � �

�C �#� �#� �� :
This eliminates all modular quantifications over convex sets by modulo quantification
over tuples of first-order variables. In a second step, these quantifications over tuples
can be eliminated as described above for tuples of set variables. This results in a for-
mula from MSO+MOD where modulo quantification is applied to single first-order
variables, only. These modulo quantifications can be eliminated since any dependence
graph over $ can be covered by � � �($ � chains: the formula

� � �  $ � � � is equivalent to
the formula

� � � 7!7!7 � � � �� � the ��C are mutually disjoint chains that cover the set of verticesA � �
� � C � �

� � � �  $ � � � � � ��C A � � � �
�

where the disjunction runs over all tuples  � �  � ��:�:�: � �� with � H  C > � and �  C 
 � � � � . This formula restricts the modulo quantifiers
� � � �  $ � � to elements of the

chain �MC – these restricted modulo quantifications can be expressed in MSO as any
introductory text on MSO for words explains (see, e.g., [61]). ��
From FO+MOD to MSO+MOD Next, we will prove an analogue of Theorem 5.9
for the logic FO+MOD. By Lemma 5.12, it suffices to reduce a local formula of
FO+MOD to a formula of MSO+MOD. The statement of the following result is iden-
tical to Theorem 5.9 except that first-order logic (resp. MSO) is replaced by FO+MOD
(resp. MSO+MOD).

Theorem 5.13. Let � � � ��� � ��:�:�: ��� � � be an external formula of FO+MOD with free
variables among ��� ��� � ��:�:�: ��� � � such that for any subformula of the form

� � �
or� � �  $ � � � , the formula

�
is of the form � 	#"

�
� A � � for some

� � . Further, let� 
 � �%� � � � ��� � � be a tuple of rules from ! � . Then there exists an internal formula of
MSO+MOD

�
� � � � � � � 
 � �%� � � � ��� � � �
with free second-order variables among � � C� � � H R H � � � H < H  � such that for
all dependence graphs �L/ � � 1 �	3 �54 �

and sets
� C� 
 1

( �LH R H � � �0H < H! ) with�0/ � � � * � � 
 �
� 1 � � �� ��� �� ��:�:�: ��� �� � , the following are equivalent:
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– �0/ � �	��� � � � � � � 
 � ��� � � � ��� � � �
–
� �����"

� � �O� � � �&# � �&# � ��:�:�: �&#�� � where
# � � � � � �0/ � � �� � �0/ � � �� ��:�:�: � �0/ � � �

�
�
.

The proof proceeds along the lines of the proof of Theorem 5.9. Actually, the prepro-
cessing steps and the proofs of Claims 1 to 3 go through verbatim and it only remains
to consider formulae of the form

� � �  $ � � � � 	�" �
��A � � :

Claim 4. If Theorem 5.13 holds for the formula � � � ��� � ��:�:�: ��� � � , then it holds for the
formula

� � �  $ � � � � � 	�" �
� � A � � .

Proof. One might be tempted to follow the proof of Claim 3 where we dealt with
the usual quantifier. There, the existence of a trace

� �
corresponds to the existence

of a tuple of sets
� C� that factor the central trace � in a certain way. The problem we

have to face here is that there is no bijection between these tuples of convex sets and
the elements of the sphere around � . Here, differently from Theorem 5.9, we need a
bijection since we want to count the witnesses of a formula. Therefore, we now define
a linear order on (tuples of) convex sets that is moreover MSO-definable:

Let �'� � and �0/ � �21 �	3 �	4 �
be its dependence graph. Let � � 3

� . Fix an
arbitrary linear order

�
on the alphabet $ . We can lift

�
to a linear order on

	 + by
defining

� � �
(
����� 
 $ ) if and only if

� ;� � � � P � � $ � � �  � � � � � � � � � � �;:
Now assume that � ��� 
�1

are two different convex sets in the dependence graph � / .
We set ���

�
if and only if

–
4 � � � ��4 � � � or

–
4 � � � � 4 � ���

and there is  ��$ such that for all
� �  we have � � 4 � � � � � �� � 4 � � � � � whereas either

� � ����� � � � 4 � � �  � ��� � �
��� � � � 4 � � �  � � or
� � ����� � � � 4 � � �  � � � � �
��� � � � 4 � � �  � � and
�;*
	�� � � � 4 � � �  � ��� � *
	�� � � � 4 � � �  � � .

Then � is a linear order on convex subsets: if � is convex and  ��$ then the set of
all  -labeled nodes in � is an interval within the chain of all  -labeled nodes in � / .
If
4 � � � � 4 � � �

but � �� � then there is a smallest  ��$ such that the intervals of
 -labeled nodes in � and

�
, respectively, are different. We first compare the minimal

nodes in these two intervals and then, if the minimal nodes are equal, the maximal
nodes.

We denote the lexicographic extension of � to  -tuples of convex sets by � again.
Then one can write down an internal MSO-formula + ���� with free set variables � � ��:�:�: � � �
and

� � ��:�:�: ��� � such that, for � ��� with �L/ � � 1 �&3 �54 �
and �MC ��� C 
 1

convex, we
have �0/ � � + ���� � � � � �

if and only if ���
� :
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Recall that a rule
� 
 �%� � � ! � and a tuple

�
with �L/ � � � *�� � 


�21 � � �
represent a

	 "
� -

successor of the central trace � . Let
�

be an arbitrary linear order on ! � . We can write
an MSO-formula + � * ��� � 
  � �

� � �
stating that

� � � 
 �%� � is the least representative of some	�"
� -successor of � : 9

�
� � � � ��� � �� � � � ��� � � � � �

P � � � *�� � � �21 � � � � 	 ��� � � � � � � � � 
 �%� �
� � N �51�� � � A
P � � � � *�� � 


� 1 � � � A �
� � � � � � � � � 
 �%� � � � 
 �%� � � � � + ���� � � � � �7�
Now the internal equivalent ��� � ��� � �  $ � � � � � 	�" �

� � A � � � � � 
 � �%� � � � ��� � � � of the external
FO+MOD formula

� � �  $ � � � � � 	�" �
� � A � � is the disjunction over all tuples

�  � � �  " �

with � �  " �  � 
  � � � � of the following formula:

�
� ' � 


�  � � �  " �

��� � ���  $ � � � � * � � 
 � �21 � ��� A + � * ��� � 

�  � � � � � � A ��� � � � � � � 
 � ��� � � � ��� � � � � �

The remaining reasoning is similar to that in Claim 3. ��
After having shown Claim 4, Theorem 5.13 follows by induction similarly to Theo-
rem 5.9.

Similarly to the main result Theorem 3.8, we can now show that the FO+MOD-
theory of � -spheres is decidable:

Theorem 5.14. There is an algorithm that, on input of an independence alphabet� $ � � � , a natural number � � � , and a formula � � � � of FO+MOD over the signature
of the structure

� �����
, decides whether there exists � � � with

� ����� � ��� � � � 
 ���  � � � � � .
Proof. By Theorem 5.13 and Lemma 5.12, the set

� � �!� � � � � �����" � ��� � � � 
 ��  � � � � �7�
can be characterized by a sentence of monadic second-order logic. Hence it is recog-
nizable by Theorem 5.7. Since the emptiness of recognizable languages is decidable,
the result follows. ��

6 Complexity issues

Recall that the first step in our decidability proof for Theorem 3.8 was an application
of Gaifman’s Theorem. To the knowledge of the authors all known translations of a
first-order sentence into a Boolean combination of local sentences are not elementary
in the worst case, thus our decision procedure is far from efficient. In this section, we
show that one cannot avoid this nonelementary complexity.

9 We assume that the MSO-formula
	�
 � ������ � has free set variables � � � , where the tuple � (resp. � ) corre-

sponds to � (resp. � ).
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To this aim, we construct an independence alphabet
� $ � � � and a trace rewriting

system ! over � such that the first-order theory of the graph
� � �
	 " �

is not el-
ementary. Thus, our use of Gaifman’s translation does not lead to an unreasonable
inefficiency. We actually show a slightly stronger result, namely that the set of valid
local sentences for a fixed radius is not elementary. In other words, the complexity of
the decision question is already present when restricting to local sentences.

We prove the lower bound by reducing the first-order theory of finite labeled linear
orders. In order to formulate this, we take the MSO-logic over dependence graphs from
Section 5.3 but forbid the use of second-order variables. The resulting formulae are
called first-order formulae over dependence graphs. For our further considerations we
will use this logic only for dependence graphs �M/ where � is in fact a word � � 1 � . In
this case the relation symbol � is interpreted by the usual order on the set �;� ��:�:�: �  � ,
and we speak of first-order formulae over words. For � � 1 � and a first-order sentence
over words � we write � � �O� if ��� � ��� . Throughout this section, let 1 � � � ��� � be
an alphabet with two elements. The first-order theory of 1 � is the set of all first-order
sentences over words � such that � � �O� for all � � 1 � . It is known that the first-order
theory of 1 � is decidable but not elementary. This lower bound was announced in [47]
where it is attributed to Stockmeyer. Stockmeyer’s proof can only be found in his thesis
and the same applies to the sharpening by Führer while Robertson’s independent proof
appeared as an extended abstract, only. Complete proofs can be found for instance in
[11, 45, 58].

In a first step we reduce the first-order theory of 1 � to the first-order theory of
a structure

� � � $ � � � � � � 	�" � � ��� ��� � /  �� � where
6 
 � � $ � � � � � is finite and

� ��� �� �;� is the set of all traces that contain the factor � . We will achieve this by trans-
lating an internal first-order property of a word � ��1 � into an external property of
a small sphere around � with respect to a suitable trace rewriting system. This pro-
ceeding is in some sense inverse to the internalization technique from the previous
section.

Lemma 6.1. There exist an independence alphabet
� $ � � � � � and a trace rewriting sys-

tem ! � over � � $ � � � � � such that the first-order theory of 1 � can be reduced in polyno-
mial time to the first-order theory of

� � � $ � � � � � �
	�" � � ��� ��� � /  �� � for some finite subset6 
 � � $ � � � � � . Moreover the graph
� � � $ � � � � � �
	�" � � is acyclic.

Proof. Let $ � � 1#� 1 � � � ��� , where 1 � � � � � �	� � � is a disjoint copy of 1 . On this
set, we define an independence relation � � by � � � � � ���	� 1 � � � 1 � � ��� � . The trace
rewriting system ! � is

! � � �  	  � �  � 	  � � � ;� 1 �;:
Note that

� � � $ � � � � � �
	�" � � is acyclic. Let
6 � 1 � � � ��� �:� �  � �  ��1 �

. Finally,
let � be a first-order sentence over words. Then it belongs to the theory of 1 � if and
only if every word � satisfies � . Since 1 � �;� ��� 
 6

, the formula
��
  3 � �
	 � � � �� � +�� is

satisfied in
� � � $ � � � � �
�
	�" � � ��� ��� � /  � � by a word � if and only if � is actually a word

over 1 . For such a trace � �  �  � 7!7!7  � , we will now express that it satisfies � .
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First note that the immediate successors of � with respect to the relation
	 " � are of

the form  �  � :�:�:  C � �  �C DC � � 7!7!7  � . Hence there is a bijection - � � from � � � � 	#" � � �
to the set of positions �;� � 	 ��:�:�: � R � in � : - � � �  � 7!7!7  C � �  �C  C�� � 7!7!7  � � � <

. The position
- � � ��� � carries the letter  if and only if

� � �  � � . It remains to express - � � � � � >
- � � � � � . For this, let us fix

� �  � 7!7!7  C � �  �C  C�� � 7!7!7  � and
� �  � 7!7!7 FE � �  �E FE � � 7!7!7  � .

Thus, we have to express
<?>@=

. Let

+ � � � ��� � � � 
 �  � � � �

�� � � 	�" �  	�" � �
A � 	�" � � 	�" � �

A
 � � � � A �

�  3 � � � �  � �
� �
� :

We claim that
<?> =

if and only if + ���� � � ��� � . If
< >@=

then we can take

;�  � 7!7!7  C � �  �C �  C�� � 7!7!7  � �
� �  � 7!7!7  C � �  �C  C�� � 7!7!7 FE � � �  �E  E � � 7!7!7  � �� �  � 7!7!7  C � �  �C  C�� � 7!7!7 FE � �  �E FE � � 7!7!7  � :

On the other hand, assume that + �� � � � ��� � holds. Since
� 	 " �  and �� ��� � we

must have !�  � 7!7!7  C � �  �C �  C�� � 7!7!7  � . Since  	�" � � and � �  3 ��� � �  � � there
exists

� � <
with � �  � 7!7!7  C � �  �C  C�� � 7!7!7  � � � �  ��  � � � 7!7!7  � Finally,

� 	 " � � 	�" � �
implies that

� � = , thus
< > =

.
Recall that � is a first-order formula over words. Let

� � � � , where � is a variable
which does not occur in � , be derived from � by inductively

– replacing any subformula of the form
� ���

by
� � � � 	 " � � A�� � ,

– replacing any subformula of the form
� > �

by + �� � � � ��� � , and
– replacing any subformula of the form

, � � � �
by
� � �  � � .

By our considerations above, for a word � � 1 � we have

� � � $ � � � � �
�
	�" � � ��� ��� � /  � � � � � � � � if and only if � � ��� :
Hence � belongs to the first-order theory of 1 � if and only if

� � � $ � � � � � ��	�" � � ��� ��� � /  �� � � � P �
�� � �
  3 � � 	 � � � ��

� +�� � � � � �
� �
� :

��
Lemma 6.2. Let ! � be a trace rewriting system over � � $ � � � � � such that the graph� � � $ � � � � �
�
	�" � � is acyclic. Let

6�
 � � $ � � � � � be finite. Then there is an indepen-
dence alphabet

� $ � � � and a trace rewriting system ! such that the first-order theory
of

� � � $ � � � � �
�
	�" � � ��� ��� � /  � � can be reduced in polynomial time to the first-order
theory of

� � � $ � � � �
	�" � .
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Proof. Let
6 � �!� � ��:�:�: � � � � . Then define

$ �!$ ������ � R �&< � �G, � �;� H < H  � ��H R > < �
where �� denotes disjoint union. Consider � � 
 $ � � $ � as an independence relation� 
 $ � $ . We consider the following trace rewriting system ! over � � $ � � � :

! � � �!��C 	 � � �&< � �K� H < H  �
� � � R �&< � 	 � � R 
B� � � � � < ��< � �;�H < H  � �LH R > < �;:

Intuitively, the graph
� � � $ � � �
�
	 " � is obtained from the graph

� � � $ � � � � � �
	�" � �
by the addition of cycles of length

<
to any element of

� ��C � . More precisely, we observe
the following:

– A trace � � � � $ � � � contains a letter from $ � $ � if and only if it lies on some
cycle of length at most  . Hence the set of traces � � $ � � � � � 
 � � $ � � � can be
defined in the graph

� � � $ � � � �
	 " � .
– A trace � �J� � $ � � � � � belongs to

� � C � if and only if, in the graph
� � � $ � � �
�
	#" � ,

it has an immediate successor that lies on a cycle of length
<
. Hence, also the set� ��C � 
 � � $ � � � � � can be defined in the graph

� � � $ � � �
�
	#" � . ��
Theorem 6.3. There exist an independence alphabet

� $ � � � and a trace rewriting sys-
tem ! over � � $ � � � such that the first-order theory of

� � � $ � � � ��	 " � is not elemen-
tarily decidable.

Proof. The result follows from the two preceding lemmas and the nonelementary com-
plexity of the first-order theory of 1 � . ��
Note that the proof of Lemma 6.1 required a nontrivial independence alphabet. This
allowed to relate positions

<
and

=
by shifting

�
from position

<
to
=
. Next we want to

prove a lower bound for the first-order theory of semi-Thue systems where this trick is
not available. Note that the procedure from [14, 29] is not elementary since it relies on
the complementation of finite automata for any quantifier alternation. Nevertheless, we
are only able to show an elementary lower bound, namely doubly exponential nonde-
terministic time. This is achieved by reducing the successor theory of 1 � . This theory
is defined in the same way as the first-order theory of 1 � , but the order

>
on �;� ��:�:�: �  �

is replaced by the successor-relation � � � � � �$< �&< 
 � � ��� H < >  � . By [11, Example
8.6], its complexity is at least doubly exponential nondeterministic time.

Lemma 6.4. There exist an alphabet $ � and a semi-Thue system ! � over $ �� such that
the successor theory of 1 � can be reduced in polynomial time to the first-order theory
of
� $ ��

�
	�" � � ��� ��� � /  �� � for some finite set
6 
 $ �� . Moreover the graph

� $ ��
�
	�" � � is

acyclic.

Proof. We can reuse the construction from the proof of Lemma 6.1, except that we
have to set � � � ) . Thus, ! � becomes a semi-Thue system over � � $ � � � � � � $ �� .
Then we have + � � � ��� ��� � if and only if - � � ��� � ��- � � ��� � 
 � . ��
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Theorem 6.5. There exist an alphabet $ and a semi-Thue system ! over $ � such that
any decision procedure for the first-order theory of

� $ �
�
	�" �

requires at least doubly
exponential nondeterministic time.

Proof. Note that in the proof of Lemma 6.2 we only added letters that are dependent
from any other letter. Hence the result follows from Lemma 6.4, Lemma 6.2 and [11,
Example 8.6]. ��

7 Applications to the confluence problem

In this section we will present some applications of Corollary 3.9 to the confluence
problem for trace rewriting systems. Let us fix a trace rewriting system ! over a trace
monoid � � � � $ � � � . We say that ! is confluent if for all

# ��% � �&% � � � with#
�
	-" % � and

#
�
	�"S% � there exists � �O� with

% � �
	�" � and

% � �
	�" � . If for# �J� there does not exist an infinite derivation

# � # � 	�"T# � 	�"T# � 	�" 7!7!7 then
! is called terminating on

#
. If ! is terminating on all

# �J� then ! is terminating.
If ! is terminating then, by Newman’s Lemma [52], ! is confluent if and only if !
is locally confluent, see the definition before Lemma 3.10. We say that ! is length–
reducing if � � � � � � � for every

�6� �
�
� � ! . Obviously, if ! is length reducing then ! is

also terminating. As already noted in the proof of Lemma 3.10 every semi-Thue system
has only finitely many so called critical pairs. In order to check local confluence for
semi-Thue systems, only these critical pairs have to be considered. Thus, Newman’s
Lemma implies that confluence can be decided for terminating semi-Thue systems,
see e.g. [4]. Below we will generalize the notion of a critical pair to trace rewriting
systems. But in contrast to semi-Thue systems, a trace rewriting system has in general
infinitely many critical pairs. This is an unavoidable phenomenon, as the next theorem
from [40] shows. It generalizes a previous result of [51]:

Theorem 7.1. Let
� $ � � � be an independence alphabet. The following problem is de-

cidable if and only if � �O) or � � � $ � $ ��� Id + :
INPUT: A length-reducing trace rewriting system ! over � � $ � � �
QUESTION: Is ! confluent?

Hence in almost all cases confluence is undecidable for length-reducing trace rewriting
systems. On the other hand, in [16, 40] several subclasses of trace rewriting systems
were defined for which confluence becomes decidable. In this section we define a fur-
ther class of trace rewriting systems with a decidable confluence problem. We remark
that this class is not contained in the classes defined in [16, 40]. The main idea is to give
sufficient conditions which imply the equivalence of confluence and � -confluence (see
Section 3.3) for some �

� � that can be calculated effectively. This makes it possible
to apply the following immediate corollary of Corollary 3.9.

Corollary 7.2. The following problem is decidable:
INPUT: A trace rewriting system ! and �:�G, .
QUESTION: Is ! � -confluent?
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Before we present our announced decidability result, we first have to introduce some
notation. For a trace

# � � we define
� �$# � � � �� $ � �  ��# � ��O� � . In [40] the

second author has introduced the following condition for trace rewriting systems: !
satisfies condition (A) if the following holds:

(A1) For all
�6� �

�
� � ! and all ;� $ , if

�  � � � �G� then  � � �  .
(A2) For all  � �  � � � � � � � ��� � �;� � , � � � � � ��� with

�  � � � � � � � � �  � � � � � � � � ! and�  � �  � � � � � � � � � � � � there exist & � � & � � � � � � � �'� such that ��C � &�C ��C , � � &�C � 

� �  C � , and

� � ��C � 
 � � � C � for
< �!� � � .

The set CS
� ! � of all critical situations of ! is the set of all triples

� � � � � � � � � such that
there exist traces  � �  � � � � � � � � � � � � � � � � � � � � � , &	� � � �;� � with

(CS1)
�  � & � � � � � �
� �  � & � � � � � � � ! ,

(CS2)
�  � �  � � � � � � � � � �
� � � � � � � � � � & � � � � � �
� � � � � � �  � � � � � � �  � � � � �G� , and

(CS3) � �  � � �  � & � � � � � � �& � � �  � & � � � � � � ,10 � � �& � � � � � � � � � � � � �& � � � � � � � � � .
Note that for all

� � � � � � � � � � CS
� ! � , � 	�" � � and � 	�" � � . Furthermore note that a

trace rewriting system has in general infinitely many critical situations.

Lemma 7.3. Let ! satisfy condition (A). Then ! is � -confluent if and only if for every�$# � ��# ��# � � � CS
� ! � there exists

% � � with
# � 	 ���" %

and
# � 	 ���" %

.

Proof. This can be shown precisely as in the proof of [40, Lemma 2.3]. There, an
additional condition is present in the definition of critical situations. This condition is
not needed for our purpose, and it does not influence the proof. ��
For a subalphabet 1 
 $ we define the rewriting system 2 3 � ! � by

2 3 � ! � � � � 2 3 �6� �
� 2 3 � �
� � � �6� � �

� � ! �
.

Theorem 7.4. The following problem is decidable.
INPUT: A trace rewriting system ! over the trace monoid � � $ � � � with the following
properties:

– ! satisfies condition (A) and is terminating.
– For all  � �  � � � � � � � � � � � � � � � , &�� � � �;� � with

�  � & � � � � � �
� �  � & � � � � � � � !
and

�  � �  � � � � � � � � � � �9� , the rewriting system 243 � ! � is terminating on the traces
2 3 �  � � � � � � and 243 �  � � � � � � where 1�� � �  � & � � � � � �  � & � � � 
 $ .

QUESTION: Is ! confluent?

Proof. Let ! be a trace rewriting system which satisfies the conditions from the theo-
rem. We prove the theorem by effectively calculating an �

� � such that ! is confluent
if and only if ! is � -confluent. This allows us to apply Corollary 7.2.

10 Note that the equality of these two factorizations of � follows from the independencies listed in (CS2).
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For all  � �  � � � � � � � � � � � � � � � , & �J� � �;� � with
�  � & � � � � � �
� �  � & � � � � � � � ! and�  � �  � �
� � � � � � � � � � we define a natural number �

�  � �  � � � � � � � � � � � � � � & � by

�
�  � �  � � � � � � � � � � � � � � & � � � *
	

� R �
�
�
�
�

��# � 2 3 �  � � � � � � 	��
��� � " � 2 3 �(# � or

2 3 �  � � � � � � 	��
��� � " � 2 3 �(# � � �

where 1!� � �  � & � � � � � �  � & � � � 
 $ . The assumptions on ! imply that the number
�
�  � �  � � � � � � � � � � � � � � & � can be calculated effectively. Now let

� � � *
	 � � �  � �  � � � � � � � � � � � � � � & �
�
�
�
�

�  � & � � � � � � � �  � & � � � � � � � ! ��  � �  � �
� � � � � � � � �G� � & �� � � .

Also � can be calculated effectively. We claim that ! is confluent if and only if !
is � -confluent. If ! is � -confluent then ! is also locally confluent. Since ! is ter-
minating, ! must be confluent. Now assume that ! is confluent. We claim that !
is � -confluent. By Lemma 7.3 it suffices to consider all critical situations of ! . Let� � � � � � � � � � CS

� ! � . By the definition of critical situations there exist traces  � ,  � , � � ,� � , � � , � � , � � , � � � � , and &	� � � �;� � such that (CS1), (CS2), and (CS3) hold. Since� 	�" � � , � 	�" � � , and ! is confluent, there exist � � � � � � � and a trace
# � � � $ � � �

such that

� � �  � � � � � � � � � 	 �

" #

and � � �  � � � � � � � � � 	 � �" # . (13)

Let 1 � � �  � & � � � � � �  � & � � � . From (CS2) we obtain
� � � �  � & � � �
� � � � �  � & � � � �O� .

Thus 2 3 � � � � � � � 2 3 � � � � . Hence (13) implies

2 3 �  � � � � � � 	 �



� � � " � 2 3 �$# � and 2 3 �  � � � � � � 	 � �� � � " � 2 3 �$# � .
The definition of � and (CS1) and (CS2) implies that � � � � � H � . Finally Lemma 7.3
implies that ! is � -confluent. ��
The decidability criterion from Theorem 7.4 is quite technical. In the following we
will present two less technical decidability criteria which can be deduced from Theo-
rem 7.4. The following theorem can also be found in [38].

Theorem 7.5. The following problem is decidable:
INPUT: A trace rewriting system ! over � � $ � � � such that there exists a clique cov-
ering

� 1 � ��:�:�: � 1 � � of the dependence alphabet
� $ � � � (where ��� � $ � $ � � � ) with

the following properties:

(1) For all rules
�6� �

�
� � ! and all

< ��= � �;� ��:�:�: �  � with
< �� = and 2 C � 2KE �6� � � �!% , we

have 2 C � 2KE � �
� � �!% .

(2) For all
< � �;� ��:�:�: �  � , the semi-Thue system 2 C � ! � � 2 3 � � ! � is terminating.

QUESTION: Is ! confluent?
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Proof. Let ! be a trace rewriting system over � � $ � � � , and let
� 1 � ��:�:�: � 1 � � be a

clique covering of the dependence alphabet
� $ � � � which satisfies (1) and (2) from

the theorem. We will show that ! satisfies the conditions on the input in Theorem 7.4.
Condition (2) obviously implies that ! is terminating. Next we show that ! sat-

isfies condition (A). Let
�

be a left-hand side of a rule in ! . Condition (2) implies
2 C � � � �� % for all

< ���;� ��:�:�: �  � , because otherwise 2 C � ! � would contain a rule of
the form % 	 2 C � �

�
and would therefore not be terminating. Thus there cannot ex-

ist  � $ with
�  � � � � � , i.e., ! satisfies condition (A1). Condition (A2) can be

verified as follows. Let
�  � � � � � � �
� �  � � � � � � � � ! such that � �� �# � �  � � � � � � � � and�  � �  � �
� � � � � � � � �T� . We have to find factorizations � � � & � � � and � � � & � � � such that

� � &	E � 
 � � ;E � and
� � � E � 
 � � � E � for

= ��� � � . First note that for arbitrary traces# �&%
, if

�$# �&% � � � then 2 C �$# � � % or 2 C �(% � � % for every clique 18C . Since furthermore
2 C �  � � � � ��!%����2 C �  � � � � , for all

< � �;� ��:�:�: �  � exactly one of the following two cases
holds:

– case 1. 2 C �  � � ���%��� 2 C � � � � and 2 C �  � � ��% � 2 C � � � �
– case 2. 2 C �  � � ���%��� 2 C � � � � and 2 C �  � � ��% � 2 C � � � �

Now we define for every
< ���;� ��:�:�: �  � a factorization 2 C � � � � � # C % C of the word

2 C � � � � as follows:

–
# C � 2 C � � � � and

% C � % if case 1 holds for
<
.

–
# C ��% and

% C ��2 C � � � � if case 2 holds for
<
.

We claim that the tuples
�$# � ��:�:�: �&# � � and

�(% � ��:�:�: ��% � � are reconstructible (see the defi-
nition before Lemma 3.4). It suffices, by Lemma 3.4, to show that 2 C �(# E � ��2KE �$# C � for
all
< ��= ���;� ��:�:�: �  � with

< �� =
. So let

< ��= ���;� ��:�:�: �  � . If
<

and
=

both satisfy case
1 or

<
and

=
both satisfy case 2, then this holds obviously. Thus w.l.o.g. let us assume

that
<

satisfies case 1 and
=

satisfies case 2. This implies
# C � 2 C � � � � , # E ��% and

2 C �  � � �� % ���2 C � � � �
� 2 C �  � � � % ��2 C � � � � �
2KE �  � � �� % ���2KE � � � � � 2KE �  � � � % ��2KE � � � � .

Therefore 2 C � 2KE �  � � � � � � %	� 2 C � 2KE �  � � � � � . Condition (1) implies that 2 C � 2KE � � � � � �
% ��2 C � 2KE � � � � � . Thus 2 C �(# E � � 2 C � % � � % ��2KE � 2 C � � � � � ��2KE �$# C � . We have shown that
the tuples

�(# � ��:�:�: ��# � � and
�$% � ��:�:�: �&% � � are reconstructible. Thus there exist unique

traces & � and � � with 2 C � & � � � # C and 2 C � � � � � % C for all
< � �;� ��:�:�: �  � . Lemma 3.3

implies � � ��& � � � .
Now assume that :� � � & � � . Thus there exists

= � �;� ��:�:�: �  � such that :��1 E
and

# E � 2KE � & � � �� % . Thus case 1 from the construction of
�(# � ��:�:�: ��# � � holds for=

which implies that 2�E �  � � �� % , i.e., ���� �  � � . Analogously it can be shown that
� � � � � 
 � � � � � . Thus we have constructed the desired factorization of � � . The desired
factorization � � � & � � � of � � can be constructed analogously. Thus ! satisfies condition
(A2) and hence condition (A).

In order to show the second condition from Theorem 7.4, let us consider rules�  � & � � � � � � � �  � & � � � � � � � ! with
�  � �  � � � � � � � � � � ��� and & �� � . Let 1�� � �  � & � � � �
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� �  � & � � � . Because of & �� � there exists a clique 18C with 1 C 
 � � & � 
 1 . Since 2 C � ! �
is terminating, also 243 � ! � is terminating which concludes the proof. ��
Example 7.6. Let ! be a trace rewriting system over a direct product ) �C ' � 1 �C of free
monoids. If each of the semi-Thue systems 2 3 � � ! � is terminating,

< � �;� ��:�:�: �  � , then
we can apply Theorem 7.5 in order to check whether ! is confluent. In particular this is
true if ! is length-reducing in each of its  components. On the other hand, confluence
is undecidable for the class of all rewriting systems over �  ��� � � � � + � � for which all
rules are length-preserving in one component but length-reducing in the other compo-
nent (this follows immediately from the construction given in the proof of [40, Lemma
3.4]). This gives a very sharp borderline between decidability and undecidability for
the case of direct products of free monoids.

The statement of the following theorem is similar to that of Theorem 7.5. A trace� � � is connected if there does not exist a factorization � �B� � � � such that � � �� � ��B� �
and

� � � � � � � �G� .
Theorem 7.7. The following problem is decidable:
INPUT: A trace rewriting system ! over � � $ � � � such that

(1) for all
� � �

�
� � ! the trace

�
is connected, and

(2) there exists a clique covering
� 1 � ��:�:�: � 1 � � of

� $ � � � (where � � � $ � $ ��� � ) such
that for all

< � �;� ��:�:�: �  � the semi-Thue system 2 C � ! � � 2 3(� � ! � is terminating.

QUESTION: Is ! confluent?

Proof. The proof is quite similar to the proof of Theorem 7.5. Let ! be a trace rewrit-
ing system which satisfies condition (1) and (2). Let

� 1 � ��:�:�: � 1 � � be a clique covering
of the dependence alphabet

� $ � � � such that for all
< � �;� ��:�:�: �  � the semi-Thue sys-

tem 2 C � ! � is terminating. Thus ! must be terminating. Analogously to the proof of
Theorem 7.5 it can be shown that ! satisfies the second condition from Theorem 7.4.
Furthermore 2 C �6� � ��!% holds for all left-hand sides

�
of ! and all

< � �;� ��:�:�: �  � . Hence
! also satisfies condition (A1). It remains to show that ! satisfies condition (A2). As-
sume that there exist rules

�  � � � � � � � � �  � � � � � � � � ! such that � ����# � �  � � � � � � � � and�  � �  � �
� � � � � � � � � � . We will deduce a contradiction. Assume that 2 C �  � � �� % for some< � �;� ��:�:�: �  � . Then
�  � �  � � � � implies 2 C �  � � ��% . Thus 2 C � � � � ��2 C �  � � � � �� % .

Finally
� � � � � � � �6� implies 2 C � � � � � % . We have shown that 2 C �  � � �� % implies

2 C � � � � � % for all
< � �;� ��:�:�: �  � . It follows that

�  � � � � � �T� , because otherwise there
would exist a clique 1 E with 2KE �  � � �� % �� 2KE � � � � . But because of  � �� � �� � � this
contradicts the assumption that  � � � is connected. ��
Example 7.8. Let $ � �  ��� � + � ( � and � � � �  � ( � � � ( �  � � ��� � + �
� � + ��� � � . Let ! be the
trace rewriting system � � ( + 	  � over the trace monoid � � $ � � � . A clique covering
of the corresponding dependence alphabet is

� �  ��� � � � � � ( � � � + � ( � � �  � + � � . The trace� ( + is connected and the projection of the rule
� ( + 	  onto any of the four cliques

is terminating. Therefore we can apply Theorem 7.7 in order to check whether !
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is confluent (it is easy to see that ! is confluent). Note that here we cannot apply
Theorem 7.5 because 2 	 �  � � � 2 	 �  
 � � � ( + � � � % and 2 	 �  � � � 2 	 �  
 � �  � � �� % . On the other
hand, in general Theorem 7.7 cannot be applied to trace rewriting systems over direct
products of free monoids which we have considered in Example 7.6.

8 Open questions

In Section 6 we proved a lower bound for the complexity of the first-order theory of the
one-step rewrite graph of a semi-Thue system. There is a huge gap between this doubly
exponential lower and the nonelementary upper bound that follows immediately from
the proofs in [14, 29].

Although our main decidability result is very similar to corresponding results in
[14, 29], our technique is new. It could provide a means to identify term rewriting
systems whose rewrite graph has a decidable first-order theory. So far, this property has
been shown for quite restricted term rewriting systems only, like ground term rewriting
systems [14] and left-linear right-ground systems [64]. On the other hand, Treinen’s
result [65] shows that not much more can be expected.

Semi-Thue systems can be seen as term rewriting systems modulo associativity (it
is a very simple case since there are no further symbols). Similarly, trace rewriting is
term rewriting modulo associativity and partial commutativity. Is it possible to use the
technique developed in this paper to handle other “term rewriting modulo ...” theories?

In Section 5.5, we considered a counting extension of first-order logic. So far, our
technique can deal with local properties of this logic, only. Is the FO+MOD theory
of one-step rewriting in general decidable? In order to answer this question positively,
one would have to develop another Gaifman Theorem for this counting logic.

As already mentioned in the introduction, the decidability of the first-order theory
of the one-step rewrite graph of a semi-Thue system follows from the fact that, in this
case, the one-step rewrite relation can be recognized by a two-tape automaton where
both heads move synchronously. In other words, the one-step rewrite graph of a semi-
Thue system is an automatic graph [31]. It is known that every automatic graph has
a decidable first-order theory [31]. We conjecture that the one-step rewrite graphs of
trace rewriting systems are in general not automatic. This might be a difficult problem,
since there are only few tools for proving that a given graph is not automatic, see [3],11

which seem not to apply in our case.

References

1. G. Bauer and F. Otto. Finite complete rewriting systems and the complexity of the word problem. Acta
Informatica, 21:521–540, 1984.

2. A. Blumensath. Prefix-recognizable graphs and monadic second-order logic. Technical Report 2001-06,
RWTH Aachen, Department of Computer Science, 2001.

11 The main problem is that the underlying alphabet can be chosen arbitrary for an automatic graph.

40
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