Implementing Luby’s Algorithm on the Cray
T3E

Jiirgen Gross, Markus Lohrey

Universitat Stuttgart, Institut fiir Informatik
Breitwiesenstr. 20-22, 70565 Stuttgart, Germany
lohreyms@informatik.uni-stuttgart.de
jngross@gmx.de

Abstract. We present an implementation of Luby’s algorithm for the calculation
of maximal independent sets in graphs on the Cray T3E.

1 Introduction

Due to the increasing practical availability of powerful parallel architectures,
the investigation of parallel algorithms has become a major research topic in
the field of theoretical computer science. A widely used model for the high
level description of parallel algorithms is the PRAM-model, see e.g. [8]. A
computational problem is considered to be efficiently solvable in parallel, if
it can be solved in polylogarithmic time, i.e., time O(log*(n)) for a fixed
k > 0, with polynomially many processors on a PRAM. The class of all
these computational problems is called NC, see e.g. [16]. The development of
NC-algorithms for practically and theoretically relevant problems is a major
research field in theoretical computer science.

In this paper we consider the problem of calculating a maximal indepen-
dent set in a given graph, briefly MIS problem. A maximal independent set
in a graph is a set I of nodes such that two arbitrary nodes of I are not
connected by an edge, but every node which does not belong to I is con-
nected with a node in I. The MIS problem is of practical interest since many
problems in computational geometry can be reduced to the MIS problem, see
e.g. [12,10,4]. But also from a theoretical point of view the MIS problem is
very important. There exists a trivial sequential linear time algorithm for the
MIS problem, but for some time all attempts in designing an NC-algorithm
for this problem failed. In fact it was even conjectured that the MIS problem
does not belong to NC [17]. The first NC-algorithm for the MIS problem
was presented in [9], but especially Luby’s algorithm from [13] received a
lot of attention. It was the first example of the so called derandomization
technique [6,2], see [1,3,15,5] for further applications. Roughly speaking the
derandomization technique is based on the transformation of a randomized
NC-algorithm (which is easier to design) into a deterministic NC-algorithm
by simulating the randomized algorithm in parallel for several possible out-
comes of its random variables. Usually there are exponentially many different

outcomes for these random variables, but under certain conditions (pairwise
independence of the random variables) it is sufficient to simulate the algo-
rithm only for a polynomially large subset of the set of all possible outcomes.

To the knowledge of the authors at present there is not very much expe-
rience in the implementation of derandomized parallel algorithms on parallel
architectures. In this paper we present an implementation of the randomized
and a (partially) derandomized version of Luby’s algorithm on the Cray T3E.
We think that the experimental results obtained from our implementation
may also serve as a guideline for the implementation of other derandomized
algorithms. In Section 2 we give some theoretical background on Luby’s al-
gorithm. In Section 3 we give an overview of our implementation on the Cray
T3E. Finally in Section 4 we present our experimental results. This work is
based on the Masters thesis of the first author [7].

2 Luby’s algorithm randomized and derandomized

In this section we briefly explain Luby’s algorithm and the necessary prelim-
inaries. Our outline follows the excellent exposition in [11], where also the
necessary prerequisites are explained in more detail.

Graphs In this paper a graph G is a pair (V, E), where V is a finite set of
nodes and F is a set of edges of the form {u, v}, where u,v € V, v # v. Thus
we consider undirected graphs without loops and multiple edges. For a set
I CV,with N(I) we denote the set of all nodes that are incident with a node
in I. The degree d(v) of a node v is the number of nodes that are incident
with v.

Probabilities A set of events A (in some probability space) is called inde-
pendent if for every B C A we have

Prob (()8) = [Prob(4).

AeB

The set of events A is called pairwise independent if for all A, B € A with
A # B we have Prob(A N B) = Prob(A) - Prob(B).

Luby’s algorithm Luby’s algorithm is executed in stages. Each stage finds
an independent set I of nodes in parallel. Then the set U N (I) and all edges
incident to I U N(I) are deleted from the graph. This process is repeated
until the graph is empty. The final independent set is the union of all the
independent sets I found in each stage. In the randomized version of the
algorithm a random process is used for the selection of an independent set.
More precisely a stage of the randomized Luby’s algorithm consists of the
following steps, where V and E are the current sets of nodes and edges,
respectively, before the execution of the stage, and n = |V|, m = |E|:

1. Create a set S C V of candidates as follows: In parallel for each vertex
v € V include v into S with probability ﬁ(«;)' This can be seen as a
biased coin flip, where the outcome v € S corresponds to heads and
v € S corresponds to tails.

2. In parallel for each edge {u,v} € E, if both u and v are in S remove
the node with the lower degree from S (ties are resolved arbitrary). The

resulting set of nodes is I.

It can be shown that the expected number of edges that are removed from the
graph after a stage is at least 75. This has the effect that the expected value
of the total number of executed stages is logarithmic in the initial number of
edges.

Of course in order to generate the n biased coin flips in step 1 of a stage
we need n independent random bits if we require that these coin flips are in-
dependent. Therefore we say that the above version of Luby’s algorithm uses
long random numbers. However the analysis of Luby’s algorithm shows that
independence of the coin flips is not really necessary, but the weaker condi-
tion of pairwise independence is already sufficient. Now Luby has shown that
that in order to generate n pairwise independent coin flips only O(log(n))
(independent) random bits are sufficient. This leads to a (deterministic) NC-
algorithm for the MIS problem. One stage of the algorithm consists of the
following steps: In parallel consider all possible 20U°&(m) = nO(M) bt strings
of length O(log(n)) that represent all possible outcomes of O(log(n)) ran-
dom bits. Each such bit string can be used in order to generate n pairwise
independent coin flips for which a stage of Luby’s algorithm can be simu-
lated. Since we expect to remove 73 many edges, in one of the polynomially
many simulations at least that many edges must be deleted. Now pick such
a simulation and disregard the others.

We conclude this section with a brief outline on how to generate n pairwise
independent biased coin flips with O(log(n)) random bits. Let p be a prime
number with n < p < 2n. We assume that the nodes of our graph are elements
of the field F, with p elements. Now for each vertex v let a, be an arbitrary

integer with 0 < a, < p such that the fraction %” is as close as possible to

#(v). Let A, any subset of F, of size a,. In order to simulate the biased coin

flip for the node v we choose elements x and y uniformly at random from
F,. For this we need only 2log(p) = O(log(n)) random bits. Now we declare
the flip for vertex v to be heads if x + v -y € A, and otherwise tails. Then
the probability for heads is sufficiently close to #(v) (the exact value #(v)
is not necessary). Furthermore it can be shown that pairwise independence
of the coin flips is guaranteed. We say that the above version of Luby’s
algorithm uses short random numbers. In the next section we will present
an implementation of Luby’s algorithm with short random numbers. Finally
note that a completely derandomized version of Luby’s algorithm with short
random numbers would need O(p?) = O(n?) many simulations at each stage.
For large graphs this is not feasible.

3 An implementation on the Cray T3E

For details on the architecture of the Cray T3E see [14]. For efficiency rea-
sons we did not use the MPI interface of the Cray T3E for the implementa-
tion of Luby’s algorithm on the Cray T3E but used an macro extension of
C++ for the Cray T3E by some parallel programming constructs and data
types. These extensions build directly on the Cray T3E operating system
UNICOS/mk. Let us briefly discuss these extensions.

The data type group A group consists of several processors that run
synchronously, while different groups can work asynchronously. A group is
identified by a unique group number. With the function current_group()
the group object that executes this statement is returned. Let g be an object
of type group. With g.group_size() we can obtain the number of proces-
sors in the group g and g. group_id() gives the group number of g. Fi-
nally the processors that constitute the group g are numbered from 0 to
g.group_size()-1. With g.proc_id() the number of the processors that
executes this statement relatively to the group g is returned. The state-
ment proc_id() is equivalent to current_group() .proc_id() and similarly
for group_size() and group_id(). If a group executes an if-statement then
all processors of the group must evaluate the condition of the if-statement to
the same Boolean value. The same has to hold for the condition of a while-
loop. If this is not guaranteed then the group must be split before into several
single-processor groups. For this the FORK-construct can be used:

The FORK construct With the FORK construct it is possible to split a
group into several groups. There exist three three different variants of this
construct but for our outline we need only two of them. With

FORK (proc_id())
{stmt}
END_FORK

the current group is split into group_size() many one-processor groups
which then can operate asynchronously. More generally with

FORK (proc_id() / {m})
{stmt}
END_FORK

the current groups is split into group_size() / m many groups of size m.
The new group number of a processor is proc_id() mod m .

Shared sets With the declaration sh_set_int M(n) we can declare a subset
of {0,...,n — 1}. After the declaration M is empty. This data type is imple-
mented as a Boolean array, where each processor of the group g that has

generated the object M contains n / g.group_size() many array entries.
Shared sets can be manipulated with the following statements, the first four
of them can only be executed by the group that has generated M and N. The
variable x must be an integer-variable.

M.cardinality() // returns |M|

M = false; /M= {}

M= N; // M :=N

M [=N; // M :=MUN

M -= x; //M =M\ {x}
M = x; // M :=MU {x}
x <=M // returns x € M

In order to execute a statement sequentially for all elements of some inte-
ger set we use iterators. With the declaration sh_set_int::const_iterator
iter the object iter is declared to be an iterator for integer sets. With the
following program we can iterate over all elements of the integer set M.

sh_set_int::const_iterator iter;
FORK (proc_id())
{
iter = M.local_begin();
while(iter != M.local_end())
{ iter++ } // to something with *iter

END_FORK;

This program must be executed by the group that has generated the set M.
With M.local begin() and M.local end() we can calculate the first and
last element of M, respectively, (i.e. the first (last) array entry that is true) on
a particular processor. The FORK-construct is necessary, since each processor
may contain a different number of elements of M and thus the condition of the
while loop may terminate at different time-points on the different processors.

Graphs With the declaration sh_graph ext G we can define an extended
graph G. This data type builds on a simpler data type sh_graph. The set
of nodes and edges of G are G.V and G.E, respectively. Both are of type
sh_set_int. The end points of an edge i € G.E can be calculated with the
procedure G.edge(i,v,w). The degree of the node v is G.degree(v). With
the statement G -= M, where M C G.V, we can remove a set of nodes M and
all incident edges from the graph G. Finally G.Next(I,M) sets M to the set
N(I) of neighbors of I, where I C G.V.

Now we are ready to present our implementation of Luby’s algorithm with
short random numbers. We start with the implementation of a procedure
phase which performs a single phase of Luby’s algorithm. This procedure
gets two short random numbers a and b, which correspond to the numbers z

and y from the end of Section 2, and a prime number p with n < p < 2n (nis
the initial number of nodes). G is the graph that will be reduced and MIS is an
independent set of the initial graph that will be enlarged by an independent
set of G. The procedure phase can only be executed by the group that has
generated G and MIS.

void phase(sh_graph_ext& G, sh_set_int& MIS,
int a, int b, int p)

sh_set_int S(G.V.size());
sh_set_int I(G.V.size());
sh_set_int M(G.V.size());
int d, v, w, A_v;

sh_set_int::const_iterator iter;

// forall v € V pardo: {put v with probability 2Jb0 in S }
S = false; /S = {}
FORK (proc_id())
{
iter = G.V.local_begin();
while(iter !'= G.V.local_end())
{
v = *iter;
d = G.degree(v);
if (d==0)
Sl=v; //S:=8U {v}
else
{
// put node with probability 1/2d(v) into S:
Av=p/ (2%d);
if (((at+b*v)%p) <= A_v)

S |= v;
}
iter++; // go to next node
b}
END_FORK;
// forall {v,w} € E dopar:
// if v,w € S then remove node with smaller d(v)

I=25;
FORK (proc_id())
{
iter = G.E.local_begin();
while(iter != G.E.local_end())

{

G.edge(*iter, v, w); // obtain end points of *iter

if (w<=S & w<=98) //if (w € S A we€ESY)

{

if (G.degree(v) <= G.degree(w))

I -=v; // T =1\ {v}
else
I -=w; // T =1\ {w}
}
iter ++; // go to next edge
I

END_FORK;
MIS |= I; // MIS := MIS U I
G.Next(I, M); // M := N(I)
M |=1I; //M:=MUI
G —=M; // G:=G\M

}

The procedure phase must be iterated until the graph is empty. This will be
done by the procedure mis.

void mis(sh_graph_ext G, sh_set_int& MIS, int p)

{

int a,b;

rand_gen prand(12345); // initialize a random generator
MIS = false; // MIS := {}

while(G.V.cardinality() != 0)

{
a = prand(p); // 0 < a
b = prand(p); // 0 <D
phase(G,MIS,a,b,p);

}

}

Under the assumption that a communication between two processors only
needs time O(1), we can estimate the expected theoretical running time of
the procedure mis by

tn,m,p) = c-toglm) (27 +1og(r)) 0

Here c is some constant, n is the initial number of nodes, m is the initial
number of edges, and p is the number of processors. The term c-log(m) is an
upper bound for the number of phases. Since in each phase, the nodes and
edges that are stored on a single processor must be executed sequentially, we
need time O("J“Tm). The additional summand log(p) arises from the internal
implementation of the data type sh_graph ext: In an extended graph, the

20 T 1 T T T
sequentialy extrapolated —e—
parallel —eo—
15 -
t(®)
10 -
5 W —° T
0 / L ! |
1 32 64 128 256 512
p

Fig. 1. Comparison of the sequential and parallel implementation

degree of each node is stored, which can be calculated in time O(T“LT'" +log(p))
with p processors, see [7]. Note that the last statement G -= M; in the the
procedure phase makes a recalculation of the degrees necessary.

Finally let us mention that we also implemented a partially randomized
version of Luby’s Algorithm. In the implementation of this algorithm we run
the procedure phase for several different values of the random numbers a and
b, and choose the simulation that removes the most number of edges. For the
implementation we used a FORK(proc_id() / n_proc) statement where
n_proc is the number of processors that is used in a single simulation. Each
group calculates their own random numbers a and b, see [7] for the details.

4 Experimental results

In Figure 1 we compare our implementation of Luby’s algorithm with a (one-
processor) implementation of a simple sequential algorithm on the Cray T3E
on randomly generated graphs. This sequential algorithm just removes a node
v together with all its neighbors from the graph and adds v to the independent
set. This process is repeated until the graph is empty. In Figure 1 we run our
algorithms on random graphs with 16666 - p nodes and 50000 - p edges, where
p is the number of processors which varies between 1 and 512. Thus on each
processor 16666 nodes and 50000 edges are stored. The experimental results
confirm the theoretical running time in (1). For p > 8 it was not possible to
run the sequential algorithm since the memory of a single processor did not
suffice to store the graphs, Therefore we interpolated the running time of the
sequential algorithm.

8 I T T T
random —e—
6 | star —*— -
t(p)
8
4 -
2 | -
0 L1 1 | | |
1 32 64 128 256 512

Fig. 2. Good and bad graphs

In Figure 2 we consider the running time of the parallel algorithm on
different graphs. The curve “random” is taken from Figure 1. The curve
“star” shows the behavior of the algorithm on a star-shaped graph which
was generated as follows: Each processor contains 16666 nodes. Each node
except the nodes of the first processor are connected with an arbitrary node
of the first processor. Nodes on the same processors are not incident. Since
all processors have to communicate with the first processor, which therefore
becomes a bottle neck, for p > 64 the algorithm shows a poor linear running
time. For p < 64 the running time decreases in a small interval. This is
because if p increases more nodes will be removed in the first few phases.

In Figure 3 we investigate the dependence of the running time on the
density of the graphs. The density of a graph is the quotient of the number
of nodes and the number of edges. In Figure 3 the sum n +m is the constant
value 512 - 50000. The number n of nodes increases exponentially on the
z-axis. The algorithm was run on 512 processors. Note that for very dense
graphs (n small) the running time decreases. The reason for this is that the
number of executed phases decreases for dense graphs.

Finally in Figure 4 we investigate the number of phases of a partially
derandomized version of Luby’s algorithm. We run this algorithm on a graph
with 10000 nodes and 100000 edges. With s we denote the number of different
simulations that are executed in parallel at each stage and from which the
best one is selected, it varies between 1 and 256. The total number of phases
that are executed by the algorithm is denoted by ¢. It is interesting to note
that for s > 8 the number of executed phases keeps almost constant. Note
that for the fully derandomized algorithm we would need about n? = 108

0 l l l l l
12 14 16 18 20 22 24

log2(n)

Fig. 3. Dense graphs

12 I I I I

1 32 64 128 256

Fig. 4. Reduction of the number of phases

simulations. We conclude that in practice full derandomization is not only
unfeasible but also unnecessary. A small number of parallel simulations of
the randomized algorithm is completely sufficient.

References

1. N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm
for the maximal independent set problem. Journal of Algorithms, 7:567—583,
1986.

2. A. E. Andreev, A. E. F. Clementi, and J. D. P. Rolim. A new general deran-
domization method. Journal of the ACM, 45(1):179-213, January 1998.

3. B. Chor and O. Goldreich. On the power of two—point sampling. Journal of
Complexity, 5:96-106, 1989.

10.

11.
12.

13.

14.

15.

16.
17.

M. Chrobak and M. Yung. Fast algorithms for edge—coloring planar graphs.
Journal of Algorithms, 10:35-51, 1989.

M. T. Goodrich and E. A. Ramos. Bounded-independence derandomization
of geometric partitioning with applications to parallel fixed-dimensional linear
programming. GEOMETRY: Discrete & Computational Geometry, 18, 1997.
K. Gopalakrishnan and D. R. Stinson. Derandomization. In C. J. Colbourn and
J. H. Dinitz (Editors), The CRC Handbook of Combinatorial Designs, pages
558-560. CRC Press, 1996.

J. Gross. Eine Implementierung von Lubys algorithmus fiir die Cray T3E.
Diplomarbeit 1790, Univ. Stuttgart, Fakultdt Informatik, 1999. 62 pages.

J. JaJ4. Parallel Algorithms. Addison Wesley, 1992.

R. M. Karp and A. Wigderson. A fast parallel algorithm for the maximal
independent set problem. Journal of the ACM, 32(4):762-773, 1985.

D. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on
Computing, 12:28-35, 1983.

D. Kozen. The Design and Analysis of Algorithms. Springer, 1992.

R. J. Lipton and R. E. Miller. A batching method for coloring a planar graph.
Information Processing Letters, 7:185-188, 1978.

M. Luby. A simple parallel algorithm for the maximal independent set problem.
SIAM Journal on Computing, 15:1036-1053, 1986.

W. Oed. Technische Dokumentation, Cray Reserach, Massiv-paralleles Prozes-
sorsystem CRAY T3E. Technical report, 1996.

G. E. Pantziou, P. G. Spirakis, and C. D. Zaroliagis. Fast parallel approxima-
tions of the maximum weighted cut problem through derandomization. FST &
TCS: Foundations of Software Technology and Theoretical Computer Science,
9, 1989.

C. H. Papadimitriou. Computational Complezity. Addison Wesley, 1994.

L. Valiant. Parallel computations. In 7th IBM Symposium on Mathematical
Foundations of Computer Science, pages 173-189, 1982.

