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Abstract. The dot-depth hierarchy is a classification of star-free languages. It
is related to the quantifier alternation hierarchy of first-order logic over finite
words. We consider subclasses of languages with dot-depth 1/2 and dot-depth 1
obtained by prohibiting the specification of prefixes or suffixes. As it turns
out, these language classes are in one-to-one correspondence with fragments of
alternation-free first-order logic without min- or max-predicate, respectively. For
all fragments, we obtain effective algebraic characterizations. Moreover, we give
new proofs for the decidability of the membership problem for dot-depth 1/2 and
dot-depth 1.
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1 Introduction
The dot-depth hierarchy Bn for n ∈ N + {1/2, 1} has been introduced by Cohen and
Brzozowski [3]. A very similar hierarchy is the Straubing-Thérien hierarchy Ln, see [21, 24].
Both hierarchies are strict [2] and they exhaust the class of star-free languages. A classical
result of McNaughton and Papert is that a language is star-free if and only if it is definable
in first-order logic [12]. Thomas [26] has tightened this result by showing that there is a
one-to-one correspondence between the dot-depth hierarchy (and also between the Straubing-
Thérien hierarchy) and the quantifier alternation hierarchy of first-order logic. More precisely,
the dot-depth hierarchy is related to the quantifier alternation hierarchy over the signature
[<,+1,min,max], whereas the Straubing-Thérien hierarchy corresponds to the quantifier
alternation hierarchy over the signature [<].

Schützenberger has shown that a language is star-free if and only if its syntactic semigroup
is aperiodic [18]. The latter property is decidable. Together with the result of McNaughton
and Papert, this yields a decision procedure for definability in first-order logic. Effectively
determining the level of a language in the dot-depth hierarchy, or equivalently in the quantifier
alternation hierarchy of first-order logic, is one of the most challenging open problems in
automata theory. For n ∈ N, Straubing has shown that membership in Bn is decidable if and
only if membership in Ln is decidable [22]. This result has been extended to the half-levels
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by Pin and Weil [17]. Simon has shown that the class of piecewise testable languages L1 is
decidable [19]. Later, Knast [9] gave an effective algebraic characterization of B1. Decidability
of L1/2 was shown by Pin [14], and the levels B1/2 and L3/2 are decidable by a result of Pin
and Weil [16]. The decidability of B3/2 was first shown by Glaßer and Schmitz [5, 6]. Other
proofs were given by Pin and Weil [17] and by Kallas et al. [7]. To date, no other levels are
known to be decidable.
In this paper, we focus on subclasses of B1/2 and B1. For both B1/2 and B1 we give new

proofs for their effective algebraic characterizations. The proof of Pin and Weil [16] for B1/2
is based on factorization forests [20], and the proof of Knast [9] as well as the simplified
version of Thérien [25] for B1 are based on a generalization of finite monoids, so-called finite
categories [28]. Our proof for B1 is a generalization of Klíma’s proof [8] for L1. The main
advantage of our proofs for B1/2 and B1 over previous ones is that the constants involved
in finding language descriptions for given algebraic objects are more explicit (and therefore
smaller).
The main original contributions of this paper are effective algebraic characterizations of

fragments of alternation-free first-order logic over the signatures [<,+1,min] without max-
predicate, [<,+1,max] without min, and [<,+1] without min and max. These fragments also
admit language characterizations in terms of subclasses of B1/2 and B1. The corresponding
language classes are obtained by prohibiting the specification of prefixes or suffixes. A more
detailed overview of our results can be found in the summary in Section 7.

2 Preliminaries
Words and languages Let A be a finite nonempty alphabet. The set of finite words is
A∗. By 1 we denote the empty word and A+ = A∗ \ {1} is the set of finite nonempty
words. A word v ∈ A∗ is a prefix (resp. suffix, resp. factor) of u if u ∈ vA∗ (resp. u ∈ A∗v,
resp. u ∈ A∗vA∗). The length of a word u ∈ A∗ is |u| and its alphabet is alph(u) =
{a ∈ A | u ∈ A∗aA∗}. Similarly, alphk(u) =

{
v ∈ Ak

∣∣ u ∈ A∗vA∗} is the set of all factors
of u of length k. A quotient of L ⊆ A+ is a language of the form u−1L = {v ∈ A+ | uv ∈ L}
or Lu−1 = {v ∈ A+ | vu ∈ L} for u ∈ A∗. A language L is a monomial of degree m if
L = w1A

∗w2 · · ·A∗wn for some w1, . . . , wn ∈ A∗ with |w1 · · ·wn| = m. A language has
dot-depth one if it is a Boolean combination of monomials. Throughout this paper, Boolean
operations are complementation, finite union, and finite intersection. Positive Boolean
operations are finite union and finite intersection.

First-order logic over words We consider the first-order logic FO = FO[<,+1,min,max]
over nonempty finite words. We view words as sequences of labeled positions which are
linearly ordered by <. Variables are interpreted as positions of a word. For variables x, y
we have the following atomic formulas: x < y says that x is a position smaller than y; and
x = y + 1 is true if x is the immediate successor of y; the formula min(x) (resp. max(x))
holds if x is the first (resp. last) position. Moreover, we always assume that we have an
atomic formula > (for true), equality of positions x = y, and a predicate λ(x) = a specifying
that position x is labeled by a ∈ A. Formulas can be composed using Boolean operations,
existential quantification, and universal quantification. Their semantics is as usual, see
e.g. [4, 23, 27]. A sentence is a formula without free variables. For a sentence ϕ of FO we
write u |= ϕ if u is a model of ϕ and the language defined by ϕ is L(ϕ) = {u ∈ A+ | u |= ϕ}.

2



The fragment Σ1 consists of all FO-formulas in prenex normal form with only one block
of quantifiers and these quantifiers are existential. Let C ⊆ {<,+1,min,max}. By Σ1[C]
we denote the class of formulas in Σ1 which only use predicates in C, equality, and the
label predicate. The fragment of alternation-free formulas over the signature C is BΣ1[C]; it
comprises all Boolean combinations of formulas in Σ1[C].

Finite semigroups and recognizable languages Let S be a semigroup. We always assume
that S is nonempty. The set of idempotents is E(S) = {e ∈ S | e2 = e}. For every finite
semigroup S there exists a number ω ≥ 1 such that for every x ∈ S, the power xω is the
unique idempotent element generated by x. Frequently, we consider words u, v ∈ S∗ where
the alphabet is a semigroup. We write “u = v in S ” if either u = 1 = v or u, v ∈ S+ evaluate
to the same element of S.

Lemma 1 Let S be a finite semigroup. For all x1, . . . , x|S| ∈ S there exist an index i ∈
{1, . . . , |S|} and an idempotent e ∈ E(S) such that x1 · · ·xi = x1 · · ·xie in S.

Proof: Choose some arbitrary element x|S|+1 ∈ S. By the pigeonhole principle there
exist i < j ≤ |S| + 1 such that x1 · · ·xi = x1 · · ·xj in S. In particular i ≤ |S|. Hence,
x1 · · ·xi = x1 · · ·xie in S with e = (xi+1 · · ·xj)ω. �

A subset I ⊆ S is an ideal (resp. right ideal, resp. left ideal) if S1IS1 ⊆ I (resp. IS1 ⊆ I,
resp. S1I ⊆ I). Here, the monoid S1 = S ∪ {1} is obtained by adjoining a new neutral
element. Green’s relations are an important tool in the study of semigroups. They are
defined as follows. Let x ≤J y (resp. x ≤R y, resp. x ≤L y) if there exist s, t ∈ S1 such that
x = syt in S (resp. x = yt in S, resp. x = sy in S). Let x J y (resp. x R y, resp. x L y) if
x ≤J y and y ≤J x (resp. x ≤R y and y ≤R x, resp. x ≤L y and y ≤L x). Therefore, x J y
(resp. x R y, resp. x L y) if and only if x and y generate the same ideal (resp. right ideal,
resp. left ideal) in S. The relations ≤R, ≤L, and ≤J form preorders on S; therefore R, L,
and J are equivalence relations.
Let ≤ be a preorder on S. A set P ⊆ S is a ≤-order ideal if x ≤ y and y ∈ P implies

x ∈ P . Note that every ≤R-order ideal (resp. ≤L-order ideal, resp. ≤J -order ideal) is a right
ideal (resp. left ideal, resp. ideal) and vice versa. An ordered semigroup S is equipped with
a compatible partial order ≤, i.e., if p ≤ q and s ≤ t, then ps ≤ qt. Every semigroup is an
ordered semigroup with equality as partial order. A language L ⊆ A+ is recognized by an
ordered semigroup S if there exists a homomorphism h : A+ → S such that L = h−1(P )
for some ≤-order ideal P . If the order of S is equality, then we obtain the usual notion of
recognition. For a language L ⊆ A+ the syntactic preorder ≤L on A+ is given by x ≤L y if
for all u, v ∈ A∗:

uyv ∈ L implies uxv ∈ L.
The syntactic congruence ≡L is defined by x ≡L y if both x ≤L y and y ≤L x. The equivalence
classes [x]L = {y ∈ A+ | x ≡L y} equipped with the canonical composition constitute the
syntactic semigroup Synt(L) and the preorder ≤L on A+ induces a compatible partial order
on Synt(L). The syntactic homomorphism is hL : A+ → Synt(L) with hL(x) = [x]L. The
syntactic semigroup of L is finite if and only if L is regular. Moreover, every language is
recognized by its syntactic semigroup.
By Jxωyxω ≤ xωK we denote the class of finite ordered semigroups S such that xωyxω ≤

xω for all elements x, y ∈ S. We let B1 be the class of finite semigroups S such that
(exfy)ωexf(tesf)ω = (exfy)ωesf(tesf)ω for all idempotents e, f ∈ E(S) and all elements
s, t, x, y ∈ S.
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Lemma 2 Let (S,≤) be an ordered semigroup such that xωyxω ≤ xω for all x, y ∈ S. Then
S ∈ B1.

Proof: We have f ≥ fy(exfy)ω−1esf for all s, x, y ∈ S and all idempotents e, f ∈ E(S).
Hence (exfy)ωexf(tesf)ω ≥ (exfy)ωex(fy(exfy)ω−1esf)(tesf)ω = (exfy)ωesf(tesf)ω. By
symmetry (exfy)ωexf(tesf)ω ≤ (exfy)ωesf(tesf)ω. �

Lemma 3 Let S ∈ B1 and let u, v ∈ S with u = ue and v = ve for some idempotent
e ∈ E(S). If u R v, then u = v.

Proof: Let x, y ∈ S such that v = ux and u = vy. The B1-equation yields v =
u(exey)ωexe(eeee)ω = u(exey)ωeee(eeee)ω = u. �

3 Dot-Depth 1/2

A language L ⊆ A+ has dot-depth 1/2 if it is a positive Boolean combination of monomials
w1A

∗w2 · · ·A∗wn with wi ∈ A∗. By a result of Thomas [26], a language has dot-depth 1/2
if and only if it is definable in existential first-order logic Σ1[<,+1,min,max]. Pin and
Weil [16] have shown that L has dot-depth 1/2 if and only if Synt(L) ∈ Jxωyxω ≤ xωK. In
this section, we give a new proof of these equivalences. The key step in the proof is to show
that if L ⊆ A+ is recognized by some semigroup in Jxωyxω ≤ xωK, then L is a union of
monomials w1A

∗w2 · · ·A∗wn. The main advantage of the proof given here is that the degree
|w1 · · ·wn| is polynomially bounded (Proposition 1), whereas in the proof of Pin and Weil,
the bound is exponential.

Theorem 1 (Pin/Weil [16], Thomas [26]) Let L ⊆ A+. The following assertions are
equivalent:

1. L is definable in Σ1[<,+1,min,max].
2. L is a finite union of monomials w1A

∗w2 · · ·A∗wn.
3. L is a positive Boolean combination of monomials w1A

∗w2 · · ·A∗wn.
4. Synt(L) ∈ Jxωyxω ≤ xωK.

The remainder of this section is devoted to the proof of the above theorem.

Lemma 4 Let L ⊆ A+ be definable by a sentence in Σ1[<,+1,min,max] with m variables.
Then L is a finite union of languages w1A

+w2 · · ·A+wn with |w1 · · ·wn| ≤ m. In particular,
L is a finite union of monomials of the form w1A

∗w2 · · ·A∗wn of degree at most 2m+ 1.

Proof: Let L = L(ϕ) for some Σ1[<,+1,min,max]-sentence ϕ. We can write

ϕ = ∃x1 · · · ∃xm : ψ(x1, . . . , xm)

such that ψ(x1, . . . , xm) is quantifier free. Suppose u |= ϕ, i.e., there exist positions j1, . . . , jm
of u such that u |= ψ(j1, . . . , jm). The latter notation means that ψ is true on u when every xi
is interpreted by ji. We say that a position j of u is marked if j = ji for some i. Assume
that the first and the last position of u are marked. Let u = w1u1w2 · · ·un−1wn for ui ∈ A+

such that the factors wi consist of the marked positions. Now, for Pu = w1A
+w2 · · ·A+wn

we have |w1 · · ·wn| ≤ m and u ∈ Pu. Moreover, Pu ⊆ L(ϕ) since the satisfying assignment
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of u can be adapted to all v ∈ Pu. Suppose now that the first position is marked but the last
position is not marked and let u = w1u1 · · ·wnun for ui ∈ A+ such that the factors wi consist
of the marked positions. For the language Pu = w1A

+ · · ·wnA
+ we have |w1 · · ·wn| ≤ m

and u ∈ Pu ⊆ L(ϕ). In case the last position is marked but the first position is not,
we take the language Pu = A+w1 · · ·A+wn and if both positions are not marked we take
Pu = A+w1 · · ·A+wnA

+. It follows L(ϕ) =
⋃

u|=ϕ Pu and this union is finite since there are
only finitely many languages of the form w1A

+w2 · · ·A+wn with |w1 · · ·wn| ≤ m.
Every monomial w1A

+ · · ·wn−1A
+wn is a union of monomials of the form

w1a1A
∗ · · ·wn−1an−1A

∗wn

for a1, . . . , an−1 ∈ A. The worst case here is w1 = 1 = wn and wi ∈ A for 1 < i < n. �

Lemma 5 Let P = w1A
∗w2 · · ·A∗wn for w1, . . . , wn ∈ A+ and let m = |w1 · · ·wn|.

1. P is definable by a Σ1[<,+1,min,max]-sentence with m variables.
2. PA∗ is definable by a Σ1[<,+1,min]-sentence with m variables.
3. A∗PA∗ is definable by a Σ1[<,+1]-sentence with m variables.

Proof: The proof is straightforward. For variable vectors x = (x1, . . . , xk) and y = (y1, . . . , y`)
we use the shortcuts ∃x for ∃x1 · · · ∃xk, and min(x) for min(x1) and max(x) for max(xk),
and x < y means xk < y1. Moreover, λ(x) = a1 · · · ak is a shortcut for∧

1≤j≤k

λ(xj) = aj ∧
∧

1≤j<k

xj+1 = xj + 1.

For every i ∈ {1, . . . , n} we introduce a variable vector xi = (xi,1, . . . , xi,|wi|). Now, the
monomial A∗PA∗ is defined by the following sentence ϕ

∃x1 · · · ∃xn :
∧

1≤i≤n

λ(xi) = wi ∧
∧

1≤i<n

xi < xi+1

where the first term of the conjunction ensures that each xi corresponds to a factor wi, and
the second term ensures that the factors wi occur in the correct order. The sentence for PA∗
is ϕ ∧min(x1) and the sentence for P is given by ϕ ∧min(x1) ∧max(xn). �

Lemma 6 Let L ⊆ A+ be a positive Boolean combination of monomials w1A
∗w2 · · ·A∗wn.

Then Synt(L) ∈ Jxωyxω ≤ xωK.

Proof: Consider P = w1A
∗w2 · · ·A∗wn and let m ≥ max {|w1| , . . . , |wn|}. Let x, y ∈ A+ and

u, v ∈ A∗ be such that uxmv ∈ P . Let i be maximal such that uxm ∈ w1A
∗ · · ·wiA

∗ = Qi

and let j be minimal such that xmv ∈ A∗wj · · ·A∗wn = Rj . By the choice of m we have
j ≤ i+ 1. Therefore, uxmyxmv ∈ QiRj ⊆ P .
Let L be a positive Boolean combination of monomials w1A

∗w2 · · ·A∗wn. Choose m ≥ 0
large enough such that each wi has length at most m and such that all m-th powers are
idempotent in Synt(L). The above observation yields that uxmv ∈ L implies uxmyxmv ∈ L.
This shows Synt(L) ∈ Jxωyxω ≤ xωK. �

5



Lemma 7 Let S be a finite semigroup. For every w ∈ S+ there exists a factorization
w = x1w1y1 · · ·xmwmyms with

1. 0 ≤ m ≤ |E(S)| and |x1y1 · · ·xmyms| < 2 |S| · |E(S)|+ |S|,
2. wi, s ∈ S∗, xi, yi ∈ S+, |yi| ≤ |S|,
3. there exist e1, . . . , em ∈ E(S) such that xi = xiei in S and yi = yiei in S.

Proof: For w ∈ S∗ let E(w) be the set of all e ∈ E(S) such that there exists a factor
x ∈ S+ of w with |x| ≤ |S| and xe = x in S. We prove the existence of the factorization by
induction on |E(w)| with the stronger assertions that m ≤ |E(w)| and |x1y1 · · ·xmyms| <
2 |S| · |E(w)| + |S| instead of condition “1”. Suppose |E(w)| = 0. By Lemma 1 we have
|w| < |S|. Hence, we can choose m = 0 and s = w.

If |E(w)| ≥ 1, then Lemma 1 yields a nonempty prefix x of w with |x| ≤ |S| such that xe = x
in S for some idempotent e ∈ E(S). Write w = xw′. We have to distinguish two cases. The
first case is e 6∈ E(w′). By induction, there exists a factorization w′ = x1w1y1 · · ·xmwmyms
with m ≤ |E(w′)| < |E(w)| and |x1y1 · · ·xmyms| < 2 |S| · |E(w′)|+ |S| satisfying conditions
“2” and “3”. If m ≥ 1, then w = (xx1)w1y1 · · ·xmwmyms is a desired factorization of w. If
w′ = s, then the factorization is w = xs with m = 0.
The second case is e ∈ E(w′). Let w′ = w0y0w

′′ such that y0 ∈ S+, |y0| ≤ |S|, y0e = y0
in S and e 6∈ E(w′′), i.e., we take y0 as the last short factor of w′ which is stabilized
by e. By induction, there exists a factorization w′′ = x1w1y1 · · ·xmwmyms. Now, w =
x0w0y0 · · ·xmwmyms with x0 = x is a factorization of w of the desired form. �

Proposition 1 Let L ⊆ A+ be recognized by S ∈ Jxωyxω ≤ xωK. Then L is a finite union
of monomials w1A

∗w2 · · ·A∗wn with degree |w1 · · ·wn| < 2 |S|3 + |S|2 and n ≤ |S|2.

Proof: Let h : A+ → S be a homomorphism recognizing L. The order ideal of S generated
by a subset P ⊆ S is ↓P = {x ∈ S | x ≤ y for some y ∈ P}. We define the depth of the
word u ∈ A+ as d(u) = |{s ∈ S | h(u) ≤R s}|. For every u ∈ A+ we are going to construct
a language Pu = w1A

∗w2 · · ·A∗wn with n ≤ d(u) |S| and |w1 · · ·wn| < 2d(u) |S|2 + d(u) |S|
such that u ∈ Pu ⊆ h−1

(
↓h(u)

)
. With this claim, L =

⋃
u∈L Pu is a finite union since there

are only finitely many monomials of degree less than 2 |S|3 + |S|2.
Write u = vw with v ∈ A∗ and w ∈ aA∗ such that h(va) R h(u) and either v = 1

or h(v) >R h(va). By Lemma 7 we find a factorization w = x1w1y1 · · ·xmwmyms such
that |x1y1 · · ·xmyms| < 2 |S|2 + |S| and for all i ∈ {1, . . . ,m} there exists an idempotent
ei with h(xi)ei = h(xi) and h(yi)ei = h(yi). Using Lemma 2 and Lemma 3 we see that
h(u) = h(vw) = h(vx1 · · ·xms).

If v = 1, then we set Pu = x1A
∗y1 · · ·xmA∗yms. The degree of Pu is less than 2 |S|2 + |S|.

By construction, we have u = w ∈ Pu. Consider w′ ∈ Pu with w′ = x1w
′
1y1 · · ·xmw′myms.

Since ese ≤ e for all s ∈ S and all e ∈ E(S) we see that h(xi) = h(xi)ei ≥ h(xi)eih(w′iyi)ei =
h(xiw

′
iyi). Therefore, h(u) = h(x1 · · ·xms) ≥ h(w′). This shows Pu ⊆ h−1

(
↓h(u)

)
.

Let now v 6= 1. Then d(v) < d(u) and thus, by induction, there exists a monomial Pv

with v ∈ Pv ⊆ h−1(↓h(v)) of degree less than 2d(u) |S|2 + d(u) |S| − 2 |S|2 − |S|. We set
Pu = Pv x1A

∗y1 · · ·xmA∗yms. The degree of Pu is less than 2d(u) |S|2 + d(u) |S|. Note that
u ∈ Pu. Suppose v′w′ ∈ Pu with v′ ∈ Pv and w′ = x1w

′
1y1 · · ·xmw′myms. Then we have

h(v′) ≤ h(v) and as before we see that h(xi) ≥ h(xiw
′
iyi). Therefore, h(x1 · · ·xms) ≥ h(w′)

and h(u) = h(vx1 · · ·xms) ≥ h(v′w′). �

We are now ready to prove Theorem 1.
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Proof (Proof of Theorem 1): “1⇒ 2”: This is Lemma 4. “2⇒ 1” follows from property “1”
of Lemma 5 and the fact that Σ1[<,+1,min,max] is closed under union. The implication
“2⇒ 3” is trivial, and “3⇒ 4” is Lemma 6. Finally, “4⇒ 2” follows immediately from
Proposition 1. �

4 Existential First-Order Logic without min or max
At higher levels of the quantifier alternation hierarchy, it is possible to specify the prefix and
the suffix of a word by using successor +1 as the only numerical predicate. At the level Σ1,
the min-predicate is required to determine prefixes, and max is required for suffixes. We
have the following inclusions:

Σ1[<]

Σ1[+1]
Σ1[<,+1]

Σ1[<,+1,min]

Σ1[<,+1,max]
Σ1[<,+1,min,max]

(

(
( (
( (

Pin [14, 15] has given effective characterizations for the classes of languages definable
in Σ1[<] and Σ1[+1]. For Σ1[<,+1,min,max], decidability follows by a result of Pin and
Weil [16] (or alternatively by Theorem 1). In this section, we characterize the languages
definable in the remaining fragments and we show that definability within these fragments is
decidable. The proofs easily follow from Theorem 1.

Theorem 2 Let L ⊆ A+. The following assertions are equivalent:
1. L is definable in Σ1[<,+1,min].
2. L is a finite union of monomials w1A

∗ · · ·wnA
∗.

3. Synt(L) ∈ Jxωyxω ≤ xωK and hL(L) is a right ideal of Synt(L).

Proof: “1⇒ 2”: Let L = L(ϕ) for ϕ ∈ Σ1[<,+1,min]. By Theorem 1, the language L is a
finite union of monomials w1A

∗w2 · · ·A∗wn. Let u |= ϕ. Then for every v ∈ A∗ the same
assignment of the variables which makes ϕ true on u also satisfies ϕ on uv. Therefore,
LA∗ ⊆ L. Since (P ∪Q)A∗ = PA∗ ∪QA∗, it follows that L is a finite union of monomials
w1A

∗w2 · · ·A∗wnA
∗. Assertion “2” in Lemma 5 yields “2⇒ 1”.

“2⇒ 3”: We have Synt(L) ∈ Jxωyxω ≤ xωK by Theorem 1. The language L is a right ideal
of A+. Since the image of a right ideal under a surjective homomorphism is again a right
ideal, hL(L) is a right ideal of Synt(L).
“3⇒ 2”: By Theorem 1, the language L is a union of monomials of the form P =

w1A
∗w2 · · ·A∗wn. Suppose P ⊆ L. Since right ideals are closed under inverse homo-

morphisms, we see that PA∗ ⊆ L. Hence, L is a union of monomials of the form
w1A

∗w2 · · ·A∗wnA
∗. �

Of course, there also is a left-right dual of the above theorem: A language L is definable
in Σ1[<,+1,max] if and only if L is a union of monomials of the form A∗w1 · · ·A∗wn if and
only if Synt(L) ∈ Jxωyxω ≤ xωK and hL(L) is a left ideal of Synt(L). The following theorem
is the analogue of Theorem 2 with neither min nor max predicates.

Theorem 3 Let L ⊆ A+. The following assertions are equivalent:
1. L is definable in Σ1[<,+1].
2. L is a finite union of monomials A∗w1 · · ·A∗wnA

∗.
3. Synt(L) ∈ Jxωyxω ≤ xωK and hL(L) is an ideal of Synt(L).
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Proof: The proof is along the same lines as Theorem 2. �

The above characterizations yield the following decidability result.

Corollary 1 Let L ⊆ A+ be a regular language. It is decidable whether L is definable in
Σ1[<,+1] (resp. Σ1[<,+1,min], resp. Σ1[<,+1,max]).

Proof: The syntactic homomorphism hL : A+ → Synt(L) of L is effectively computable.
Hence, one can verify whether property “3” in Theorem 3 (resp. “3” in Theorem 2, resp. the
left-right dual of “3” in Theorem 2) holds. �

5 Dot-Depth One
A language L ⊆ A+ has dot-depth one if it is a Boolean combination of monomials of the
form w1A

∗w2 · · ·A∗wn with wi ∈ A∗. Knast [9] has shown that a language L has dot-depth
one if and only if Synt(L) ∈ B1. Since the latter property is decidable, this yields decidability
of dot-depth one. Later, Thérien [25] gave a simpler proof for Knast’s result. Both proofs
are based on an algebraic concept called finite categories, see [28]. In this section, we give
a new (more combinatorial) proof of this theorem. The same techniques were used by the
authors in order to obtain a characterization for languages of dot-depth one over infinite
words [10]. As for dot-depth 1/2, the main advantage of the current proof is that the bounds
involved are more explicit.

Theorem 4 (Knast [9], Thomas [26]) Let L ⊆ A+. The following are equivalent:
1. L is definable in BΣ1[<,+1,min,max].
2. L is a Boolean combination of monomials w1A

∗w2 · · ·A∗wn.
3. Synt(L) ∈ B1.

As for dot-depth 1/2, the equivalence of BΣ1[<,+1,min,max] and dot-depth one is due to
a result by Thomas [26]. The remainder of this section is devoted to the proof of the above
theorem. The following lemma will serve as the link between the algebraic properties of B1

and the combinatorial properties in Lemma 9 below.

Lemma 8 Let S ∈ B1, let k ≥ |S| + 1, and let a ∈ S and u, v ∈ S+ with |v| ≥ k − 1. If
u R uv >R uva in S, then alphk(v) 6= alphk(va).

Proof: Assume u R uv >R uva and alphk(v) = alphk(va). Let va = v′wa with |wa| = k.
Since wa ∈ alphk(va) = alphk(v) we have v = pwaq for some p, q ∈ S∗. Let x = up, y = uv′,
and wa = a1 · · · ak for ai ∈ S. By Lemma 1 there exist i ∈ {1, . . . , |S|} and e ∈ E(S) such
that a1 · · · ai = a1 · · · aie in S. In particular i ≤ k − 1 and xa1 · · · ai R ya1 · · · ai. Lemma 3
yields xa1 · · · ai = ya1 · · · ai in S. Thus uva = ywa = xwa R u in S, a contradiction. �

Suppose u = u0xu1 = u′0yu
′
1 and v = v0xv1 = v′0yv

′
1 for words x, y ∈ A+ and ui, u′i, vi, v′i ∈

A∗ for i ∈ {0, 1}. Let ∆u = |u| − |u0u′1| and ∆v = |v| − |v0v′1|. We say that the relative order
of x and y is the same in u and v if one of the following conditions applies:
• ∆u > |xy| and ∆v > |xy|, i.e., in each of the words u and v, all positions of x are on

the left of all positions of y,
• ∆u < 0 and ∆v < 0, i.e., in each of the words u and v, all positions of x are on the

right of all positions of y,
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• ∆u = ∆v, i.e., if none of the previous conditions applies, then the occurrences of x and
y have the same overlap in both words u and v.

The following lemma about relative orders is the main combinatorial ingredient for our proof
of Knast’s Theorem. It generalizes an idea of Klíma [8] to factors of words. The determinacy
mechanism is similar to unambiguous interval logic with lookaround [11].

Lemma 9 Let k, ` be positive integers, let xi, yi, ui, u′i, vi, v′i ∈ A+ and uk, vk, u′1, v′1 ∈ A∗,
and let

u = x1u1 · · ·xkuk = u′1y1 · · ·u′`y`
v = x1v1 · · ·xkvk = v′1y1 · · · v′`y`

such that x1u1 · · ·xk (resp. x1v1 · · ·xk) is the shortest prefix of u (resp. v) in x1A+x2 · · ·A+xk,
and y1 · · ·u′`y` (resp. y1 · · · v′`y`) is the shortest suffix of u (resp. v) in y1A

+y2 · · ·A+y`.
If u and v are contained in the same languages w1A

+w2 · · ·A+wn with n ≤ k + ` and
|w1 · · ·wn| ≤ |x1 · · ·xk y1 · · · y`|, then the relative orders of xk and y1 are the same in u and
v.

Proof: Let ∆u = |u| − |x1 · · ·uk−1| − |u′2 · · · y`| and ∆v = |v| − |x1 · · · vk−1| − |v′2 · · · y`|.
First suppose that ∆u > |xky1|. Then x1u1 · · ·xk is a proper prefix of u′1. Thus u ∈
x1A

+ · · ·xkA+y1 · · ·A+y`. This implies v ∈ x1A+ · · ·xkA+y1 · · ·A+y` and ∆v > |xky1|. By
symmetry we conclude that ∆u > |xky1| if and only if ∆v > |xky1|.
Let now 0 ≤ ∆u ≤ |xky1|. We can assume ∆v ≤ |xky1|. Now, u is contained in

P = x1A
+ · · ·xiA+zA+yj · · ·A+v`, where z is the factor of u comprising all xi+1, . . . , xk

which are overlapping with (or adjacent to) y1 and all y1, . . . , yj−1 which are overlapping
with (or adjacent to) xk. Since v ∈ P , we conclude that xk is not further to the right
of y1 in the word u as in the word v, i.e., we have ∆u ≤ ∆v. By symmetry, this shows
that 0 ≤ ∆u ≤ |xky1| if and only if 0 ≤ ∆v ≤ |xky1|. Moreover, if 0 ≤ ∆u ≤ |xky1|, then
∆u = ∆v.

By the above two cases, we also see that ∆u < 0 if and only if ∆v < 0. This shows that
xk and y1 have the same relative order in u and v. �

Lemma 10 Let S ∈ B1 and let u, v, x, s ∈ S and let e, f ∈ E(S) be idempotent. If u R uexf
and esfv L v, then uexfv = uesfv.

Proof: Since u R uexf and v L esfv, there exist y, t ∈ S1 with u = uexfy and v = tesfv. In
particular, u = u(exfy)ω and v = (tesf)ωv. We conclude uexfv = u(exfy)ωexf(tesf)ωv =
u(exfy)ωesf(tesf)ωv = uesfv, where the second equality uses S ∈ B1. �

Proposition 2 Let L ⊆ A+ be recognized by a homomorphism h : A+ → S with S ∈ B1

and let u, v ∈ A+. If u and v are contained in the same languages w1A
+w2 · · ·A+wn with

n ≤ 2 |S| and |w1 · · ·wn| ≤ 4 |S|2 − 2 |S|, then h(u) = h(v).

Proof: This proof was inspired by Klíma’s proof [8] of Simon’s Theorem on piecewise-testable
languages. The outline is as follows. We consider factorizations induced by theR-factorization
of u and the L-factorization of v. Then we transfer the factorization of u to v and vice versa
such that the respective orders of the factors in u and v are the same. Finally, we transform v
into u by a sequence of h-invariant substitutions.
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Consider the R-factorization u = a1u1 · · · akuk with ai ∈ A such that

h(a1u1 · · · ai) R h(a1u1 · · · aiui) >R h(a1u1 · · · aiuiai+1) for all i.

We have k ≤ |S|. Let ji be the position of ai in the above factorization. We color red all
positions of u in all the intervals [ ji − |S| ; ji + |S| − 1 ]. In particular, the ai-positions ji are
red. Moreover in general, there is a neighborhood of size 2 |S| around each ai which contains
only red positions. In the worst case, a1 is the sole exception. Hence, there are at most
2 |S|2−|S| red positions in u. Let Ri be the i-th consecutive factor consisting of red positions.
Then u = R1u

′
1 · · ·Rk′u′k′ for some u′i ∈ A+, i < k′, and u′k′ ∈ A∗. Note that k′ ≤ k because

some intervals could overlap. By Lemma 8, for each i the word R1u
′
1 · · ·u′i−1Ri is the shortest

prefix of u contained in R1A
+ · · ·A+Ri.

Symmetrically, let v = v1b1 · · · v`b` with bi ∈ A be the L-factorization such that

h(bi−1vibi · · · v`b`) <L h(vibi · · · v`b`) L h(bi · · · v`b`) for all i.

Let j′i be the position of bi in the above factorization. We color blue all positions of v in all
the intervals [ j′i − |S|+ 1; j′i + |S| ]. As before, there are at most 2 |S|2 − |S| blue positions.
Let Bi be the i-th consecutive factor of blue positions. Then v = v′1B1 · · · v′`′B`′ for `′ ≤ |S|
and some v′i ∈ A+, i > 1, and v′1 ∈ A∗. As before, Biv

′
i+1 · · · v′`′B`′ is the shortest suffix of v

contained in BiA
+ · · ·A+B`′ .

Next, we transfer the red positions of u to v, and we transfer the blue positions of v
to u. By assumption v ∈ R1A

+ · · ·Rk′A+ and therefore, there exists a factorization
v = R1v

′′
1 · · ·Rk′v′′k′ such that R1v

′′
1 · · · v′′i−1Ri is the shortest prefix of v contained in

R1A
+ · · ·A+Ri. We color the positions of the Ri’s in v red. Similarly, there exists a

factorization u = u′′1B1 · · ·u′′`′B`′ such that Biu
′′
i+1 · · ·u′′`′B`′ is the shortest suffix of u con-

tained in BiA
+ · · ·A+B`′ . We color the positions of the Bi’s in u blue. Now, colored positions

in u and v are either red or blue or both. By Lemma 9, the colored positions in u have the
same order as the colored positions in v. Thus if wi is the i-th consecutive factor of colored
(red or blue) positions, then

u = w1x1 · · ·wn−1xn−1wn,

v = w1s1 · · ·wn−1sn−1wn.

The next step is the construction of idempotent stabilizers near the beginning and near
the end of each wi. We do this from the inside to the outside by considering the first
and the last |S| letters in every word wi: By Lemma 1 and its left-right dual, there
exist idempotents e1, . . . , en−1 ∈ E(S) and f2, . . . , fn ∈ E(S) such that each wi admits a
factorization wi = pir

′
ir
′′
i qi with |pir′i| = |S|, |r′i| ≥ 1 and |qi| ≤ |S| − 1 satisfying

h(r′i) = fi h(r′i) for all 1 < i ≤ n,
h(r′′i ) = h(r′′i ) ei for all 1 ≤ i < n.

In particular, we can assume p1 = 1 = qn. Let x′i = qixipi+1 and s′i = qisipi+1 for 1 ≤ i < n
and let ri = r′ir

′′
i for 1 ≤ i ≤ n. Then

u = r1x
′
1r2 · · ·x′n−1rn,

v = r1s
′
1r2 · · · s′n−1rn.
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By construction, every position of the R-factorization of u lies within some r′′i . We thus have
h(r1x

′
1 · · · ri) R h(r1x

′
1 · · · rix′ir′i+1) = h(r1x

′
1 · · · ri) · eih(x′i)fi+1 · h(r′i+1) for all 1 ≤ i < n.

Therefore, for all 1 ≤ i < n we get

h(r1x
′
1 · · · ri) R h(r1x

′
1 · · · ri) · eih(x′i)fi+1.

A symmetric argument shows

h(ri+1 · · · s′nrn) L eih(s′i)fi+1 · h(ri+1 · · · s′nrn).

By an (n− 1)-fold application of Lemma 10 we obtain

h(v) = h(r1s
′
1r2s

′
2r3 · · · s′n−1rn)

= h(r1x
′
1r2s

′
2r3 · · · s′n−1rn)

= h(r1x
′
1r2x

′
2r3 · · · s′n−1rn)

...
= h(r1x

′
1r2x

′
2r3 · · ·x′n−1rn) = h(u)

Note that the substitution rules s′i → x′i are h-invariant in their respective contexts only
when applied from left to right. �

Corollary 2 Let L ⊆ A+ be recognized by a finite semigroup S ∈ B1 and let u, v ∈ A+.
If u and v are contained in the same monomials w1A

∗w2 · · ·A∗wn with n ≤ 2 |S| and degree
|w1 · · ·wn| < 4 |S|2, then h(u) = h(v).

Proof: Every monomial w1A
+ · · ·wn−1A

+wn is a finite union of monomials of the form
w1a1A

∗ · · ·wn−1an−1A
∗wn for a1, . . . , an−1 ∈ A. Therefore, the claim follows from Proposi-

tion 2. �

Proof (Proof of Theorem 4): “1⇔ 2”: This follows from Theorem 1.
“2⇒ 3”: The syntactic semigroup of every monomial w1A

∗w2 · · ·A∗wn satisfies xωyxω ≤
xω by Lemma 6, and by Lemma 2 it is in B1. Thus L is recognizable by a direct product
S ∈ B1 of such semigroups. Since Synt(L) is a divisor of S, we see that Synt(L) ∈ B1, cf.
[13].
“3⇒ 2”: Let L be recognized by h : A+ → S ∈ B1. We write u ≡ v if u and v are

contained in the same monomials of the form w1A
∗w2 · · ·A∗wn of degree less than 4 |S|2.

We have L = h−1(P ) for P = h(L). Corollary 2 shows that every set h−1(p) is a union
of ≡-classes. Moreover, ≡ has finite index since there are only finitely many monomials
of bounded degree. Every ≡-class is a finite Boolean combination of the required form by
specifying which monomials hold and which do not hold. �

6 Dot-Depth One without min or max
As for existential first-order logic, one cannot define min- or max-predicates in BΣ1[<,+1].
Therefore, the following inclusions hold:
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BΣ1[<]

BΣ1[+1]

BΣ1[<,+1]

BΣ1[<,+1,min]

BΣ1[<,+1,max] BΣ1[<,+1,min,max]

BΣ1[+1,min,max] = FO[+1]

(

(

( (

( (
( (

Simon’s Theorem on piecewise testable languages [19] gives decidability of BΣ1[<]. An
effective characterization of BΣ1[+1] is due to Pin [15]. By a result of Thomas [26], we
have BΣ1[+1,min,max] = FO[+1], i.e., every language definable in full first-order logic with
atomic predicates x = y + 1, λ(x) = a, and x = y is already definable in the alternation-free
fragment BΣ1[+1,min,max]. Moreover, this fragment coincides with the class of locally
threshold testable languages, which is known to be decidable, see e.g. Theorem VI.3.1 in [23].
For the fragment BΣ1[<,+1,min,max], decidability follows by Knast’s Theorem [9], see
Theorem 4. In this section, we give effective characterizations of the remaining fragments.
Moreover, we obtain natural subclasses of dot-depth one for the languages definable by these
fragments.

Lemma 11 Let P = w1A
∗w2 · · ·A∗wn and let uq ∈ P . There exists a monomial Q =

v1A
∗v2 · · ·A∗v` with |v1 · · · v`| ≤ |w1 · · ·wn| and ` ≤ n such that u ∈ Q ⊆ Pq−1.

Proof: Let uq = w1s1w2 · · · sn−1wn. First consider the case u = w1s1 · · ·wi−1si−1v, wi = vv′

and q = v′siwi+1 · · · sn−1wn for some i. Setting Q = w1A
∗ · · ·wi−1A

∗v yields the claim. In
the other case we have u = w1s1 · · · si−1wit, si = tt′ and q = t′wi+1 · · · sn−1wn for some i.
In this case, we set Q = w1A

∗w2 · · ·wiA
∗. �

Apart from Theorem 4, the following lemma is the main ingredient in the proof of Theorem 5
below.

Lemma 12 Let h : A+ → S ∈ B1 and let u, v ∈ A+. If u and v are contained in the same
monomials w1A

∗ · · ·wnA
∗ with |w1 · · ·wn| < 8 |S|2, then h(u) R h(v).

Proof: We write u ≡m v if u and v are contained in the same monomials w1A
∗w2 · · ·A∗wn of

degree |w1 · · ·wn| ≤ m. Analogously, we write u ∼m v if u and v are contained in the same
monomials w1A

∗ · · ·wnA
∗ of degree |w1 · · ·wn| ≤ m. If u ≡m v for m = 4 |S|2 − 1, then by

Corollary 2 we have h(u) = h(v).
Let u ∼2m v. We want to show h(u) R h(v). We can assume |u|, |v| ≥ 2m because

otherwise u = v. Let u = u′q with |q| = m. Consider the factorization v = v′qx such that qx
is the shortest suffix of v admitting q as a factor, i.e., v is factorized at the last occurrence
of q. This factorization exists since both u and v belong to A∗qA∗. We claim that u ≡m v′q
and therefore, h(v) ≤R h(v′q) = h(u). Symmetry then yields h(u) R h(v).
We now prove the claim. Let P = w1A

∗w2 · · ·A∗wn with |w1 · · ·wn| ≤ m. First suppose
that v′q ∈ P . Then v ∈ PA∗ and u ∈ PA∗. Since wn is a suffix of q, we conclude u ∈ P .
Next, suppose u ∈ P . By Lemma 11, there exists a monomial Q = v1A

∗v2 · · ·A∗v` with
|v1 · · · v`| ≤ |w1 · · ·wn| and u′ ∈ Q ⊆ Pq−1. Since u′q ∈ QqA∗ and the degree of the monomial
QqA∗ is at most 2m, we obtain v ∈ QqA∗. By choice of x we have v′q ∈ QqA∗ ⊆ PA∗. Since
wn is a suffix of q, we conclude v′q ∈ w1A

∗w2 · · ·A∗wn. �
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Theorem 5 Let L ⊆ A+. The following assertions are equivalent:
1. L is definable in BΣ1[<,+1,min].
2. L is a Boolean combination of monomials w1A

∗ · · ·wnA
∗.

3. Synt(L) ∈ B1 and the syntactic homomorphism hL : A+ → Synt(L) has the property
that hL(L) is a union of R-classes.

Proof: The equivalence “1⇔ 2” follows from Theorem 2.
“2⇒ 3”: We have Synt(L) ∈ B1 by Theorem 4. The set hL(w1A

∗ · · ·wnA
∗) is a right

ideal. Hence, hL(L) is a Boolean combination of right ideals. The claim follows since every
Boolean combination of right ideals is a union of R-classes.
“3⇒ 2”: By Lemma 12, there exists m ∈ N such that hL(u) R hL(v) if u and v are

contained in the same languages of the form w1A
∗ · · ·wnA

∗ with |w1 · · ·wn| ≤ m. Therefore,
for each R-class R of SyntL(L), the language h−1L (R) is a Boolean combination of languages
w1A

∗ · · ·wnA
∗ with |w1 · · ·wn| ≤ m. The claim follows, since L is a union of languages of

the form h−1L (R). �

There is also a left-right dual of the above theorem: A language L is definable in
BΣ1[<,+1,max] if and only if L is a Boolean combination of monomials A∗w1 · · ·A∗wn

if and only if Synt(L) ∈ B1 and hL(L) is a union of L-classes. Next, we consider the fragment
BΣ1[<,+1] with neither min nor max.

Lemma 13 Let h : A+ → S ∈ B1 and let u, v ∈ A+. If u and v are contained in the same
monomials A∗w1A

∗ · · ·wnA
∗ with |w1 · · ·wn| < 12 |S|2, then h(u) J h(v).

Proof: The proof is along the same lines as Lemma 12. The major difference is that we
need to consider the factorization u = pu′q with |p| = |q| = m as well as the factorization
v = spv′qx such that sp is the shortest prefix of v admitting p as a factor and qx is the
shortest suffix of v admitting q as a factor, i.e., v is factorized at the first occurrence of p
and the last occurrence of q. �

Theorem 6 Let L ⊆ A+. The following assertions are equivalent:
1. L is definable in BΣ1[<,+1].
2. L is a Boolean combination of monomials A∗w1 · · ·A∗wnA

∗.
3. Synt(L) ∈ B1 and the syntactic homomorphism hL : A+ → Synt(L) has the property

that hL(L) is a union of J -classes.

Proof: The proof is similar to Theorem 5 with “3⇒ 2” relying on Lemma 13. �

The condition of hL(L) being a union of J -classes in Theorem 6 has also been used by
Beauquier and Pin for an effective characterization of strongly locally testable languages [1].
The above characterizations immediately give the following decidability result.

Corollary 3 Let L ⊆ A+ be a regular language. It is decidable whether L is definable in
BΣ1[<,+1] (resp. BΣ1[<,+1,min], resp. BΣ1[<,+1,max]).

Proof: The syntactic homomorphism hL : A+ → Synt(L) of L is effectively computable.
Hence, one can verify whether property “3” in Theorem 6 (resp. “3” in Theorem 5, resp. the
left-right dual of “3” in Theorem 5) holds. �
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Table 1: Languages around dot-depth one.

Languages Logics Algebra Reference⋃
w1A

∗w2 · · ·A∗wn Σ1[<,+1,min,max] B1/2 [16], Thm. 1⋃
w1A

∗ · · ·wnA
∗ Σ1[<,+1,min] right ideals in B1/2 Thm. 2⋃

A∗w1 · · ·A∗wn Σ1[<,+1,max] left ideals in B1/2 cf. Thm. 2⋃
A∗w1 · · ·A∗wnA

∗ Σ1[<,+1] ideals in B1/2 Thm. 3

B(w1A
∗w2 · · ·A∗wn) BΣ1[<,+1,min,max] B1 [9], Thm. 4

B(w1A
∗ · · ·wnA

∗) BΣ1[<,+1,min] R-classes in B1 Thm. 5

B(A∗w1 · · ·A∗wn) BΣ1[<,+1,max] L-classes in B1 cf. Thm. 5

B(A∗w1 · · ·A∗wnA
∗) BΣ1[<,+1] J -classes in B1 Thm. 6

7 Summary
We considered subclasses of languages with dot-depth 1/2 and of languages with dot-depth one.
These subclasses admit counterparts in terms of fragments of existential first-order logic Σ1

and its Boolean closure BΣ1. For all fragments, we gave effective algebraic characterizations.
We summarize the main results of this paper in Table 1. To shorten notation, we write B1/2

instead of Jxωyxω ≤ xωK.
In addition, we gave new proofs for Pin and Weil’s Theorem on dot-depth 1/2 and for

Knast’s Theorem on dot-depth one. Our proofs improve the bounds involved in computing a
language description for a given recognizing semigroup.

Acknowledgments
We thank the anonymous referees for several suggestions which helped to improve the
presentation of the paper, and we gratefully acknowledge the support by the German
Research Foundation (DFG) under grant DI 435/5-1.

References
[1] D. Beauquier and J.-É. Pin. Languages and scanners. Theor. Comput. Sci., 84(1):3–21, 1991.

[2] J. A. Brzozowski and R. Knast. The dot-depth hierarchy of star-free languages is infinite. J.
Comput. Syst. Sci., 16(1):37–55, 1978.

[3] R. S. Cohen and J. A. Brzozowski. Dot-depth of star-free events. J. Comput. Syst. Sci.,
5(1):1–16, 1971.

[4] Z. Ésik and K. G. Larsen. Regular languages definable by Lindström quantifiers. RAIRO,
Inform. Théor. Appl., 37(3):179–241, 2003.

[5] Ch. Glaßer and H. Schmitz. Languages of dot-depth 3/2. In STACS’00, Proceedings, volume
1770 of LNCS, pages 555–566. Springer, 2000.

14



[6] Ch. Glaßer and H. Schmitz. Languages of dot-depth 3/2. Theory Comput. Syst., 42(2):256–286,
2008.

[7] J. Kallas, M. Kufleitner, and A. Lauser. First-order fragments with successor over infinite
words. In STACS’11, Proceedings, volume 9 of LIPIcs, pages 356–367. Dagstuhl Publishing,
2011.

[8] O. Klíma. Piecewise testable languages via combinatorics on words. Discrete Mathematics,
311(20):2124–2127, 2011.

[9] R. Knast. A semigroup characterization of dot-depth one languages. RAIRO, Inf. Théor.,
17(4):321–330, 1983.

[10] M. Kufleitner and A. Lauser. Languages of dot-depth one over infinite words. In LICS’11,
Proceedings, pages 23–32. IEEE Computer Society, 2011.

[11] K. Lodaya, P. K. Pandya, and S. S. Shah. Around dot depth two. In DLT’10, Proceedings,
volume 6224 of LNCS, pages 305–316. Springer, 2010.

[12] R. McNaughton and S. Papert. Counter-Free Automata. The MIT Press, 1971.

[13] J.-É. Pin. Varieties of Formal Languages. North Oxford Academic, London, 1986.

[14] J.-É. Pin. A variety theorem without complementation. In Russian Mathematics (Iz. VUZ),
volume 39, pages 80–90, 1995.

[15] J.-É. Pin. Expressive power of existential first-order sentences of Büchi’s sequential calculus.
Discrete Math., 291(1-3):155–174, 2005.

[16] J.-É. Pin and P. Weil. Polynomial closure and unambiguous product. Theory Comput. Syst.,
30(4):383–422, 1997.

[17] J.-É. Pin and P. Weil. The wreath product principle for ordered semigroups. Commun. Algebra,
30(12):5677–5713, 2002.

[18] M. P. Schützenberger. On finite monoids having only trivial subgroups. Inf. Control, 8:190–194,
1965.

[19] I. Simon. Piecewise testable events. In Autom. Theor. Form. Lang., 2nd GI Conf., volume 33
of LNCS, pages 214–222. Springer, 1975.

[20] I. Simon. Factorization forests of finite height. Theor. Comput. Sci., 72(1):65–94, 1990.

[21] H. Straubing. A generalization of the Schützenberger product of finite monoids. Theor. Comput.
Sci., 13:137–150, 1981.

[22] H. Straubing. Finite semigroup varieties of the form V ∗D. J. Pure Appl. Algebra, 36(1):53–94,
1985.

[23] H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, 1994.

[24] D. Thérien. Classification of finite monoids: The language approach. Theor. Comput. Sci.,
14(2):195–208, 1981.

[25] D. Thérien. Categories et langages de dot-depth un. RAIRO, Inf. Théor., 22(4):437–445, 1988.

[26] W. Thomas. Classifying regular events in symbolic logic. J. Comput. Syst. Sci., 25:360–376,
1982.

[27] W. Thomas. Languages, automata and logic. In A. Salomaa and G. Rozenberg, editors,
Handbook of Formal Languages, volume 3, Beyond Words. Springer, Berlin, 1997.

[28] B. Tilson. Categories as algebras: An essential ingredient in the theory of monoids. J. Pure
Appl. Algebra, 48:83–198, 1987.

15


	Introduction
	Preliminaries
	Dot-Depth 1/2
	Existential First-Order Logic without min or max
	Dot-Depth One
	Dot-Depth One without min or max
	Summary

