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Abstract—Over finite words, languages of dot-depth one are
expressively complete for alternation-free first-order logic. This
fragment is also known as the Boolean closure of existential first-
order logic. Here, the atomic formulas comprise order, successor,
minimum, and maximum predicates. Knast (1983) has shown that
it is decidable whether a language has dot-depth one. We extend
Knast’s result to infinite words. In particular, we describe the
class of languages definable in alternation-free first-order logic
over infinite words, and we give an effective characterization of
this fragment. This characterization has two components. The
first component is identical to Knast’s algebraic property for
finite words and the second component is a topological property,
namely being a Boolean combination of Cantor sets.

As an intermediate step we consider finite and infinite words
simultaneously. We then obtain the results for infinite words as
well as for finite words as special cases. In particular, we give
a new proof of Knast’s Theorem on languages of dot-depth one
over finite words.

I. INTRODUCTION

The investigation of logical fragments has a long history.
One of the first results in our direction is due to McNaughton
and Papert [22]. They showed that a language over finite words
is definable in first-order logic if and only if it is star-free. A
few years earlier, Schützenberger showed that a language is star-
free if and only if its syntactic monoid is aperiodic [28]. For a
regular language given by a (nondeterministic) finite automaton
one can effectively compute its syntactic monoid and test for
aperiodicity. Combining the result of McNaughton and Papert
and the result of Schützenberger, this gives an algorithm for
checking whether a regular language is first-order definable.

The very same approach led to similar decision procedures
for various other fragments. The motivation for such results
is to have some (descriptive) complexity measure for regular
languages: the simpler a logical formula defining a language,
the easier this language is. In addition, fragments often admit
more efficient algorithms for computational problems such
as the satisfiability problem. For example, the satisfiability
for full first-order logic is non-elementary [30], whereas
the satisfiability problem for first-order logic with only two
variables is in NEXPTIME [15]. Moreover, one can frequently
find temporal logic counterparts for first-order fragments and
these temporal logics allow even more efficient algorithms.
For example, there are temporal logics for first-order logic
with two variables having a satisfiability problem in NP [9],
[21]. The satisfiability problem for most temporal logics is
PSPACE-complete, see e.g. [13].

When considering some particular logical fragment F , then

there are several main aspects of F which are interesting: First,
which languages are definable in F , e.g., in first-order logic one
can define exactly the class of star-free languages. Second, how
can one decide whether a given regular language is definable
in F , e.g., a language is first-order definable if and only if its
syntactic monoid is aperiodic. Third, which closure properties
does F have, e.g., the inverse homomorphic image of a first-
order definable language is again first-order definable. Other
important aspects are given by relations to other fragments
and the computational complexity of problems such as the
satisfiability problem or the model-checking problem for F .
In this paper, we focus on the first three aspects. Very often,
the second aspect is solved by giving a decidable algebraic
characterization of the syntactic monoid. Apart from pure
decidability, this also has the advantage that several closure
properties come for free by Eilenberg’s Variety Theorem [12].

The algebraic approach has been very successful for finite
words [8], [33], [35], [41]. It has been generalized in different
directions. One such direction is to extend the algebraic setting
in order to be able to characterize more fragments. The syntactic
monoid of a language and of its complement are identical.
Hence, if a fragment is not closed under complementation,
then only considering the syntactic monoid is not sufficient. To
overcome this obstacle, Pin introduced ordered monoids and
positive varieties [24]. Other fragments, such as stutter-invariant
logics, are not closed under inverse homomorphisms. The
solution to this problem was given by Straubing who suggested
to use homomorphisms instead of semigroups or monoids. This
led to the notion of C -varieties [34], [5]. More recently Gehrke,
Grigorieff, and Pin developed a general equational theory for
regular languages [16].

Another way to generalize the algebraic approach is to
consider other models than finite words such as infinite
words [23], finite trees [3], [14], Mazurkiewicz traces [11], or
data words [2], just to name a few. In most cases, considering
models other than finite words requires a new notion of
recognition or even new algebraic objects. The characterizations
we give in this paper rely on an extended notion of recognition
based on so-called linked pairs. As it turns out, purely algebraic
conditions are not sufficient in this setting, but together with a
topological property they work well.

When considering language classes for first-order fragments
over finite words, there are two similar hierarchies within
the class of star-free languages which take center stage. The
first one is the dot-depth hierarchy introduced by Cohen and
Brzozowski [6], and the second one is the Straubing-Thérien



hierarchy [31], [36]. There is a tight connection between the
two in terms of so-called wreath products [32], [40]. Both
hierarchies are strict [4] and each level forms a variety [6],
[26]. Thomas showed that there is a one-to-one correspondence
between the quantifier alternation hierarchy of first-order logic
and the dot-depth hierarchy [38]. This correspondence holds
if one allows [<,+1,min,max] as a signature. The same
correspondence between the Straubing-Thérien hierarchy and
the quantifier alternation hierarchy holds if we restrict the
signature to [<], cf. [26]. In particular, all decidability results
for the dot-depth hierarchy and the Straubing-Thérien hierarchy
yield decidability of the membership problem for the respective
levels of the quantifier alternation hierarchy and vice versa.
Unfortunately, effectively determining the level of a language
in the dot-depth hierarchy or the Straubing-Thérien hierarchy
is one of the most challenging open problems in automata
theory. Knast has shown that the first level of the dot-depth
hierarchy is decidable [20], and Simon has given a decidable
characterization for the first level of the Straubing-Thérien
hierarchy [29]. These two levels and the first two half levels
of each hierarchy are the only decidable cases known so far,
see e.g. [25] for an overview and [17] for level 3/2 of the
dot-depth hierarchy. All of the above decidability results have
been generalized to infinite words [1], [10], [18], [23]; the sole
exception is dot-depth one. The extension of Knast’s result
to infinite words is the main purpose of this paper. So far,
all generalizations for infinite words rely on a combination of
algebraic and topological properties. As we shall see, dot-depth
one is no exception.

Dot-depth one over finite words corresponds to the Boolean
closure of existential first-order logic with predicates < for
order, +1 for successor, min for first position, and max for last
position. This fragment is denoted by BΣ1[<,+1,min,max].
In our setting min and max are unary predicates rather than
constants because a predicate max also makes sense for infinite
words. Note that this does not change the expressive power of
the fragment BΣ1 and that over infinite words the fragments
BΣ1[<,+1,min] and BΣ1[<,+1,min,max] coincide. From an
algebraic and topological point of view it is more natural to
work with finite and infinite words simultaneously. However,
over Γ∞ = Γ∗ ∪ Γω there is one major difference between
BΣ1[<,+1,min] without max and BΣ1[<,+1,min,max] with
max: The latter fragment can distinguish finite from infinite
words whereas BΣ1[<,+1,min] cannot differentiate between
Γ∗ and Γω. In particular, every BΣ1[<,+1,min]-definable
language with an infinite word also contains finite words, i.e.,
BΣ1[<,+1,min] has the finite model property.

In all variations (with or without max-predicate; infinite
words Γω only or finite and infinite words Γ∞) we obtain the
same algebraic characterization B1 as Knast did for finite words.
In addition, we have a topological condition which is being
a finite Boolean combination of open sets. Here, open means
open in the Cantor topology. This topological property is often
denoted by Fσ∩Gδ, see e.g. [39]. As it turns out, there are two
slightly different versions of the Cantor topology on Γ∞. The
first one is given by base sets uΓ∞ for u∈ Γ∗. This corresponds

Table I
FRAGMENTS OF FIRST-ORDER LOGIC OVER INFINITE WORDS Γω

Fragment Algebra + Topology

Σ1[<] x≤ 1 + Cantor sets [23]

BΣ1[<] J -trivial + Boolean combination [23]of Cantor sets

BΣ1[<,+1,min] B1 + Boolean combination Thm. 17of Cantor sets

FO2[<] DA + closed in strict [10]alphabetic topology

FO2[<,+1] LDA + closed in strict [18]factor topology

Σ2[<] eMee≤ e + open in [10]alphabetic topology

Σ2[<,+1] ePee≤ e + open in [18]factor topology

to the fragment BΣ1[<,+1,min] without max over Γ∞. The
second version is given by base sets of the form uΓω and {u}
for u ∈ Γ∗, i.e., finite words are isolated points. This second
version yields a characterization of BΣ1[<,+1,min,max] with
max over Γ∞. In our setting, it is more convenient to work
with some equivalent linked pair condition instead of using
the topology itself.

Related Work

Various fragments over infinite words have been considered.
Existential first-order logic is denoted by Σ1 and its Boolean
closure is BΣ1. For two-variable first-order logic we write
FO2. The second level of the alternation hierarchy is denoted
by Σ2. It contains all formulas in prenex normal form with
two blocks of quantifiers, starting with a block of existential
quantifiers. The prefix of a word can be defined in both
FO2[<] and Σ2[<]. Hence, FO2[<,+1,min] = FO2[<,+1] and
Σ2[<,+1,min] = Σ2[<,+1]. In contrast, BΣ1[<,+1] is a strict
subclass of BΣ1[<,+1,min]. The fragment Π2 consists of
negations of formulas in Σ2. Since regular languages are
effectively closed under complementation, decidability for
Σ2 yields decidability for Π2. An overview of effective
characterizations can be found in Table I. For the formal
definitions of the algebraic and topological properties we refer
to [10], [18], [23]. The first decision procedures for FO2[<]
and FO2[<,+1] are due to Wilke [42], and the first effective
characterization of Σ2[<] was given by Bojańczyk [1]. Among
the topologies in Table I, the Cantor topology is the coarsest
and the strict factor topology is the finest topology. The relation
between the other topologies is depicted in Fig. 1.

Cantor
top.

alphabetic
top.

factor top.

strict
alphabetic top.

strict factor
top.

Figure 1. Topologies for infinite words.



II. PRELIMINARIES

A. Languages

Throughout, Γ is a finite nonempty alphabet. The set of
finite words over Γ is denoted by Γ∗. The empty word is 1,
and Γ+ = Γ∗ \{1} is the set of finite, nonempty words. The
set of infinite words is Γω and Γ∞ = Γ∗ ∪Γω is the set of
finite and infinite words. A language is a subset of Γ∞. Let
L⊆ Γ∗ and K ⊆ Γ∞. We set LK = {uα ∈ Γ∞ | u ∈ L, α ∈ K},
L∗ = {u1 · · ·un | n ∈ N, ui ∈ L}, and Lω = {u1u2 · · · | ui ∈ L},
i.e., L∗ is the set of finite products of words in L and Lω is the
set of infinite products. We have 1ω= 1. Let α∈Γ∞ and u∈Γ∗.
The word u is a factor of α if α= vuβ for some v ∈ Γ∗ and
β ∈ Γ∞. It is a prefix if we can choose v = 1 and it is a suffix
if we can choose β= 1. We write u≤ α if u is a prefix of α.
The length of α is |α| and we have |α| ∈ N∪{∞}. For k ∈ N,
the k-factor alphabet of α is alphk(α) = {u ∈ Γk | α ∈ Γ∗uΓ∞}.
If X ⊆ N, then α(X) is the word comprising all positions
of α which are contained in X . By extension, α(x) is the x-th
letter of α. Therefore, α = α(1) · · ·α(n) if |α| = n ∈ N and
α= α(1)α(2) · · · if |α|=∞. We say that a position x of α is
covered by a factor u of a factorization α= vuβ if |v|< x≤ |vu|.
If the position at which u occurs in α is clear from the context,
then we say that u covers x. Similarly, a set of positions
is covered by a set of factors if each position is covered
by some factor. Here, factors are understood with implicit
positions of occurrence. A monomial is a language of the form
w1Γ∗w2 · · ·Γ∗wn, of the form w1Γ∗w2 · · ·Γ∗wnΓ∞, or of the
form w1Γ∗w2 · · ·Γ∗wnΓω for n ≥ 1 and wi ∈ Γ∗. The degree
of the monomial is |w1 · · ·wn|. A language L ⊆ Γ∗ of finite
words has dot-depth one if it is a finite Boolean combination of
monomials of the form w1Γ∗w2 · · ·Γ∗wn. Similarly, a language
L⊆ Γω has dot-depth one if it is a finite Boolean combination
of monomials w1Γ∗w2 · · ·Γ∗wnΓω.

B. First-Order Logic

We consider first-order logic FO = FO[<,+1,min,max]
interpreted over finite and infinite words. In the context of
logic we think of words as labeled linearly ordered positions.
Variables range over positions of the word. Atomic formulas
are > for true, the unary predicates λ(x) = a, min(x) and
max(x), and the binary predicates x < y and x = y+ 1 for
variables x, y and a ∈ Γ. The formula λ(x) = a means that x is
labeled with a, and the formula min(x) (resp. max(x)) expresses
that x is the first (resp. last) position of the word. The formula
x < y is true if x is strictly smaller than y, and x = y+1 means
that x is the successor position of y. Formulas can be composed
by Boolean connectives and by the quantifiers ∃x : ϕ and ∀x : ϕ
for ϕ ∈ FO. The semantics of the connectives is as usual. A
sentence is a formula without free variables. For a sentence ϕ
and for α∈ Γ∞ we write α |= ϕ if ϕ interpreted over the word α
is true. The language defined by ϕ is L(ϕ) = {α ∈ Γ∞ | α |= ϕ}.

Let C ⊆ {<,+1,min,max}. The fragment Σ1[C ] of first-
order logic consists of all formulas in FO in prenex normal
form with only one block of existential quantifiers which, apart
from label-predicates, use only predicates in C . The fragment

BΣ1[C ] contains all finite Boolean combinations of formulas
in Σ1[C ]. Let L ⊆ Γ∞ be a language and F be a fragment
of first-order logic. Then L is definable in F if there exists
some sentence ϕ ∈F such that L = L(ϕ). Sometimes we want
to restrict the interpretation of the formula to some subset
K ⊆ Γ∞. We say that L is definable in F over K if there is a
sentence ϕ ∈F with L = {α ∈ K | α |= ϕ}. We frequently use
this with K = Γ∗ or K = Γω. Note that max(x) is false for all
positions x of an infinite word, i.e., a language L is definable in
BΣ1[C ] over Γω if and only if L is definable in BΣ1[C ,max]
over Γω.

C. Finite Semigroups and Finite Monoids

Let S be a semigroup. An element x ∈ S is idempotent if
x2 = x. If S is finite, then there exists a number n ≥ 1 such
that the element xn is idempotent for all x ∈ S. The monoid S1

generated by S is defined as follows. If S is a monoid, then
we set S1 = S; otherwise S1 = S∪{1} is the monoid obtained
by adding a new neutral element 1. Green’s relations R and
L are an important means for structural analysis in the theory
of finite semigroups. For x,y ∈ S we set

x R y iff xS1 = yS1, x≤R y iff xS1 ⊆ yS1,

x L y iff S1x = S1y, x≤L y iff S1x⊆ S1y.

Remember that xS1 = {xz | z ∈ S1} and S1x = {zx | z ∈ S1}. We
often use these relations in the following way: The relation
x≤R y holds if and only if there exists z ∈ S1 such that x = yz.
Likewise, x≤L y if and only if there exists z ∈ S1 such that
x = zy. As usual, we write x <R y if x≤R y but not x R y. The
relation <L is defined similarly.

A finite semigroup S is in B1 if for all idempotents e, f ∈ S
and for all s, t,x,y ∈ S we have

(ex f y)nex f (tes f )n = (ex f y)nes f (tes f )n

for n ≥ 1 such that all n-th powers are idempotent in S. A
semigroup S is aperiodic if for every x ∈ S there exists n≥ 1
such that xn = xn+1. In the equation for B1 we can set e, f ,s, t
and y to xn which yields xnx = xn. Hence, every semigroup in
B1 is aperiodic. Another important property of B1 is given in
Lemma 3 below.

The theory of first-order fragments over finite nonempty
words is more concise with semigroups rather than with
monoids. However, we want to treat finite and infinite words
simultaneously, and our approach is heavily based on allowing
the empty word 1 (and the fact that 1ω = 1). On the other hand,
it is crucial that the idempotents e and f in the above equation
for B1 correspond to nonempty words. We therefore consider
homomorphisms h : Γ∗→M to finite monoids. Membership
in B1 is then formulated as h(Γ+) ∈ B1.

D. Recognizability

A language L ⊆ Γ∞ is regular if it is recognized by an
extended Büchi automaton [7], i.e., a finite automaton with
two sorts of final states; the first sort is for accepting finite
words and the second is for accepting infinite words by a Büchi
condition. Alternatively, a language is regular if and only if it



is definable in monadic second-order logic [39]. We use a more
algebraic framework for recognition based on finite monoids.

Let h : Γ∗→M be a homomorphism to a finite monoid M.
If h is understood and s∈M, then we write [s] for the language
h−1(s). A linked pair of M is a pair (s,e) ∈M×M such that e
is idempotent and s = se. For every word α ∈ Γ∞ there exists
a linked pair (s,e) of M such that α ∈ [s][e]ω by Ramsey’s
Theorem [27]. A language L⊆ Γ∞ is recognized by h if

L =
⋃
{[s][e]ω | (s,e) is a linked pair with [s][e]ω∩L 6= /0} .

The syntactic congruence of L⊆ Γ∞ is defined as follows.
For nonempty words p,q ∈ Γ+ we let p≡L q if for all words
u,v,w ∈ Γ∗ the following equivalences hold:

upvwω ∈ L ⇔ uqvwω ∈ L and
u(pv)ω ∈ L ⇔ u(qv)ω ∈ L.

Remember that 1ω= 1. This relation indeed is a congruence and
the congruence classes [p]L = {q ∈ Γ+ | p≡L q} constitute the
syntactic semigroup Synt(L). The syntactic monoid Synt1(L)
is the monoid generated by Synt(L), i.e., Synt1(L) = S1 for
S = Synt(L). The syntactic homomorphism hL : Γ∗→ Synt1(L)
is defined by hL(a) = [a]L for a ∈ Γ. A variant of the syntactic
monoid is the pure syntactic monoid Synt+(L) = Synt(L)∪̇{1},
i.e., we add a new neutral element to Synt(L), even if Synt(L)
is a monoid. The pure syntactic homomorphism h+ : Γ∗ →
Synt+(L) is defined by h+(p) = hL(p) for p 6= 1. The only
possible difference between h+ and hL is their behavior on the
empty word. Note that

hL(Γ
+) = h+(Γ+) = Synt(L)⊆ Synt1(L)⊆ Synt+(L)

and Synt+(L) \ {1} = Synt(L) ( Synt+(L). A language L ⊆
Γ∞ is regular if and only if both Synt(L) is finite and hL
recognizes L, see e.g. [23], [39]. Moreover, L is recognized by
its syntactic homomorphism hL if and only if it is recognized
by its pure syntactic homomorphism h+. In contrast to hL, the
pure syntactic homomorphism has the property that h+(u) = 1
if and only if u = 1.

Lemma 1. Let L ⊆ Γ∞ be recognized by a homomorphism
h : Γ∗→M such that h(u) = 1 only if u = 1. Then both L∩Γ∗

and L∩Γω are also recognized by h.

Proof. We have [s] = [s][1]ω ⊆ Γ∗. Moreover, [s][e]ω ⊆ Γω if
e 6= 1. This proves the claim.

III. ALGEBRAIC PROPERTIES

This section contains simple algebraic and combinatorial
properties of the class B1. The following elementary lemma
gives a mechanism for obtaining idempotent stabilizers with
a nonempty preimage: Every sufficiently long word u has a
short prefix p admitting a nonempty idempotent stabilizer e.

Lemma 2. Let h : Γ∗ → M be a homomorphism to a finite
monoid M and let u∈ Γ∗ with |u|= |M|−1. Then there exists a
prefix p of u and an idempotent e ∈ h(Γ+) with h(p)e = h(p).

Proof. Let a ∈ Γ and let 1 = p0 < p1 < · · · < p|M| = ua be
the prefixes of ua. By the pigeonhole principle, there exist

0≤ i < j≤ |M| such that h(pi) = h(p j). In particular, we have
i≤ |M|−1 and pi is a prefix of u. Let piq = p j for q∈ Γ+. We
set e = h(q)n to be the idempotent element generated by h(q).
Now, h(p)e = h(p) for p = pi.

Next we state the key property of B1, a substitution rule
valid in certain situations. Much of the work in proving our
main theorem is devoted to guarantee its premises.

Lemma 3. Let S ∈ B1. If u R uex f and es f v L v for
idempotents e, f ∈ S and for u,v,x,s ∈ S, then uex f v = ues f v.

Proof. Choose n ≥ 1 such that all n-th powers in S are
idempotent. Since u R uex f and v L es f v, there exist y, t ∈ S1

with u = uex f y and v = tes f v. In particular, u = u(ex f y)n and
v = (tes f )nv. We can assume y, t ∈ S because e and f are
idempotent. Using the equation for B1 we conclude

uex f v = u(ex f y)nex f (tes f )nv

= u(ex f y)nes f (tes f )nv = ues f v.

Proposition 4 below gives an important combinatorial feature
of B1. It shows that if the R-class changes when reading a word
from left to right (resp. the L -class changes when reading the
word from right to left), then this happens with a new factor
of bounded length.

Proposition 4. Let h : Γ∗ → M be a homomorphism with
h(Γ+) ∈ B1 and let k ≥ |M|. For all a ∈ Γ and u,x ∈ Γ∗ with
|x| ≥ k we have:
1) h(u) R h(ux)>R h(uxa) ⇒ alphk(x) 6= alphk(xa).
2) h(u) L h(xu)>L h(axu) ⇒ alphk(x) 6= alphk(ax).

Proof. By left-right symmetry, it suffices to show “1”. Assume
h(u) R h(ux) >R h(uxa) and alphk(x) = alphk(xa). Let w be
the suffix of length k of xa. By Lemma 2, there exist y, z ∈ Γ∗

with w = yza and h(y)e = h(y) for some idempotent e ∈ h(Γ+)
because |w| ≥ |M|. Let |y| be maximal with this property. Since
w ∈ alphk(xa) = alphk(x), we can write x = syzatz for some
s, t ∈ Γ∗ such that y is a suffix of yzat. Note that there is
indeed at least one letter between the two occurrences of z. Let
u′ = h(usy) and x′ = h(zat). We have u′ = u′e, u′x′ = u′x′e, and
there exists y′ ∈ h(Γ+) with u′ = u′x′y′. Therefore, we have
u′x′ = u′(ex′ey′)nex′e(eeee)n for all n ∈ N, and by h(Γ+) ∈ B1
this equals u′(ex′ey′)neee(eeee)n = u′ for sufficiently large n.
Thus u′ = u′x′ and h(u) R u′ = u′x′x′ R h(uxa), contradicting
the assumption.

IV. THE FRAGMENT BΣ1[<,+1,min] OVER Γ∞

This section contains our main result Theorem 5. We
give an effective characterization of the first-order fragment
BΣ1[<,+1,min] over finite and infinite words.

Over Γ∞, the fragment BΣ1[<,+1,min] yields a strict
subclass of the BΣ1[<,+1,min,max]-definable languages. For
example, Γ∗a is not definable in alternation-free first-order
logic without max-predicate. On the other hand, the language
aΓ∞ is definable in BΣ1[min]. We pinpoint this asymmetry of
BΣ1[<,+1,min] to some topological condition (expressed in
terms of linked pairs).



Theorem 5. Let L⊆ Γ∞ be regular. The following assertions
are equivalent:
1) L is a finite Boolean combination of monomials of the

form w1Γ∗w2 · · ·Γ∗wnΓ∞.
2) L is definable in BΣ1[<,+1,min].
3) The syntactic homomorphism hL : Γ∗→ Synt1(L) satisfies

a) Synt(L) ∈ B1, and
b) for all linked pairs (s,e) and (t, f ) of Synt1(L) with

s R t we have [s][e]ω ⊆ L ⇔ [t][ f ]ω ⊆ L.
4) L is recognized by a homomorphism h : Γ∗→M satisfying

a) h(Γ+) ∈ B1, and
b) for all linked pairs (s,e) and (t, f ) of M with s R t we

have [s][e]ω ⊆ L ⇔ [t][ f ]ω ⊆ L.

Remark 6. Suppose h : Γ∗→M recognizes a regular language
L and consider the condition [s][e]ω ⊆ L⇔ [t][ f ]ω ⊆ L for all
linked pairs (s,e) and (t, f ) of M with s R t. This condition
is equivalent to L being a finite Boolean combination of open
sets, cf. [23, Theorem VI.3.7]. Here, open means open in the
Cantor topology defined by the base sets uΓ∞ for u ∈ Γ∗.
Therefore, the conditions “3b” and “4b” in Theorem 5 are
actually topological properties.

Remark 7. For languages over Γ∞ there is also the concept
of weak recognition. A language L is weakly recognized by a
homomorphism h : Γ∗→M to a finite monoid if

L =
⋃
{[s][e]ω | (s,e) is a linked pair with [s][e]ω ⊆ L} .

If a language L⊆ Γ∞ is recognized by a homomorphism h, then
it is weakly recognized by h. In general the converse is not true.
However, if in addition [s][e]ω ⊆ L⇔ [t][ f ]ω ⊆ L for all linked
pairs (s,e) and (t, f ) of M with s R t, then weak recognition im-
plies strong recognition. Suppose [s][e]ω∩L 6= /0. Then there ex-
ists a linked pair (t, f ) with [t][ f ]ω ⊆ L and [s][e]ω∩ [t][ f ]ω 6= /0.
The latter condition implies s R t and hence [s][e]ω ⊆ L.

In the remainder of this section we prove Theorem 5. The
implications “1⇒ 2” and “2⇒ 3” are Lemmas 8, 9 and 10.
The most involved part “4⇒ 1” is shown in the second half
of this section.

Lemma 8. Let n≥ 1 and let w1, . . . ,wn ∈ Γ∗.
1) The monomial w1Γ∗w2 · · ·Γ∗wnΓ∞ is defined by a sentence

in Σ1[<,+1,min] with quantifier depth |w1 · · ·wn|.
2) The monomial w1Γ∗w2 · · ·Γ∗wn is defined by a sentence

in Σ1[<,+1,min,max] with quantifier depth |w1 · · ·wn|.

Proof. We write ≡ for syntactic equivalence of formulas.
For variable vectors x = (x1, . . . ,x`) and y = (y1, . . . ,ym) we
introduce the shortcuts ∃x ≡ ∃x1 · · ·∃x`, min(x) ≡ min(x1),
max(x) ≡ max(x`), x < y ≡ x` < y1, and λ(x) = a1 · · ·a` for∧

1≤ j≤`
λ(x j) = a j ∧

∧
1≤ j<`

x j+1 = x j +1.

Let L = w1Γ∗w2 · · ·Γ∗wnΓ∞. We introduce variable vectors
xi = (xi,1, . . . ,xi,|wi|) for every i ∈ {1, . . . ,n}. Then L is defined

by the following sentence ϕ:

∃x1 · · ·∃xn : min(x1) ∧
∧

1≤i≤n

λ(xi) = wi ∧
∧

1≤i<n

xi < xi+1.

The second term of the conjunction ensures that each xi
corresponds to a factor wi and the first term says that any model
starts with w1. The third term makes sure that the factors wi
occur in the correct order. The sentence for w1Γ∗w2 · · ·Γ∗wn
is ϕ ∧max(xn).

Lemma 9. If L ⊆ Γ∞ is definable in BΣ1[<,+1,min,max],
then Synt(L) ∈ B1.

Proof. Let e, f ,s, t,x,y ∈ Γ+, let n≥ 1 and define

p = (enx f ny)nenx f n(tens f n)n,

q = (enx f ny)nens f n(tens f n)n.

For all u,v,w∈Γ∗ and for all sentences ϕ∈Σ1[<,+1,min,max]
with quantifier depth at most n, we show upvwω |= ϕ if and
only if uqvwω |= ϕ. Let ψ be quantifier free such that ϕ =
∃x1 · · ·∃xn : ψ. Suppose upvwω |= ϕ and consider positions xi
such that ψ is true. The consecutive positions in this assignment
induce a sequence of factors w1, . . . ,wm of upvwω with m≤ n
and |wi| ≤ n for all i. Since this sequence of nonadjacent factors
appears in the same order in uqvwω, we see that uqvwω |= ϕ.
Showing that uqvwω |= ϕ implies upvwω |= ϕ is symmetric.

The equivalence of u(pv)ω |= ϕ and u(qv)ω |= ϕ is similar.
Thus the syntactic semigroup of every BΣ1[<,+1,min,max]-
definable language is in B1.

Lemma 10. Let L⊆ Γ∞ be definable in BΣ1[<,+1,min] and
let M be a finite monoid. For every surjective homomorphism
h : Γ∗→M which recognizes L we have [s]⊆ L⇔ [s][e]ω ⊆ L
for every linked pair (s,e) of M.

Proof. Let ϕ ∈ Σ1[<,+1,min] be a sentence. If α ∈ Γ∞

models ϕ, then there is a prefix u of α such that for every
β ∈ Γ∞ we have uβ |= ϕ. This is because α |= ϕ yields some
satisfying assignment for the variables, and positions beyond
the last position of this assignment have no influence. Let L
be defined by a sentence in BΣ1[<,+1,min] with quantifier
depth d. Consider α= ŝ êω for ŝ∈ [s] and ê∈ [e]. By the above
consideration there exists a finite prefix u = ŝ ên of α such
that α and u model the same formulas in Σ1[<,+1,min] with
quantifier depth at most d. Now, u ∈ L if and only if α ∈ L.
Therefore, [s]⊆ L if and only if [s][e]ω ⊆ L.

In the remainder of this section we show that condition “4”
in Theorem 5 is sufficient. To this end we show that if α
and β are contained in the same monomials up to a certain
degree, then their images in a semigroup in B1 are R-related.
The main idea is to apply Lemma 3. The first step is to show
that under certain conditions we can replace several factors in
finite words (Lemma 11). To formulate these conditions we
introduce the R(k)-factorization and the L (k)-factorization.
Then the substitution principle in Lemma 11 is extended to
infinite words (Lemma 12). Finally, in Proposition 13 we show
that in B1 we can guarantee the premises of Lemma 12.



We think of a factor ui as being equipped with the position xi
of its first letter. Consequently, a factorization F is a tuple
(x1,u1, . . . ,x`,u`)∈ (N×Γ+)` with `≥ 0 and xi+1≥ xi+ |ui| for
all 1≤ i< `, i.e., we assume that the factors ui are in increasing
order and nonoverlapping. The type of F is the sequence of
words (u1, . . . ,u`). We say that F is a factorization of α if
ui = α({xi, . . . ,xi + |ui|−1}) for all 1≤ i≤ `.

We want to be able to merge two factorizations F =
(x1,u1, . . . ,x`,u`) and G = (y1,v1, . . . ,ym,vm) of α. In order
to define the join F ∨G of F and G, we combine overlapping
factors of F and G into one factor, see Fig. 2 for an illustration.
More precisely, let Xi = {xi, . . . ,xi + |ui|−1} be the positions of
the factor ui and let Yi = {yi, . . . ,yi + |vi|−1} be the positions
of the factor vi. We say that X =

⋃`
i=1 Xi is the set of positions

of F . Analogously, Y =
⋃m

i=1 Yi is the set of positions of G.
We set Z = X ∪Y . Let {Z1, . . . ,Zn} be the finest partition of Z
such that every class Z j is a union of sets Xi and sets Yi.
Therefore, if x < y < z and x,z ∈ Z j, then y ∈ Z j; otherwise
we could split Z j into two classes Z j ∩{s ∈ N | s < y} and
Z j ∩{s ∈ N | s > y}, resulting in a finer partition. Therefore,
each α(Z j) is a factor of α. Let z j be the minimal element in
Z j and suppose z1 < · · ·< zn. Now, the join of F and G is

F ∨G =
(
z1,α(Z1), . . . ,zn,α(Zn)

)
.

It is easy to see that the operation ∨ on factorizations of α is
associative and commutative.

An important algebraic concept in our proofs is the R(k)-
factorization and its left-right dual, the L (k)-factorization.
Let h : Γ∗ → M be a homomorphism to a finite monoid M.
The R-factorization of a word α is given by the positions
where the R-class changes when reading α from left to right.
More precisely, let α= a1w1 · · ·ar−1wr−1arβ with r≥ 0, ai ∈ Γ,
wi ∈ Γ∗ and β ∈ Γ∞ such that

h(a1w1 · · ·ai) R h(a1w1 · · ·aiwi)>R h(a1w1 · · ·ai+1)

for all 1≤ i < r and h(a1w1 · · ·ar) R h(a1w1 · · ·arw) for every
finite prefix w of β. Let zi be the position of ai in the above
factorization. The R-factorization of α is (z1,a1, . . . ,zr,ar). For
every word α, the above factorization is unique and its size r
is at most |M|. Note that x1 = 1 for every nonempty word α,
even if h(a1) = 1.

We extend this definition by taking the contexts of the
R-factorization into account. Let k ∈ N and consider the
R-factorization (z1,a1, . . . ,zr,ar) of α. Let Fi = (z′i,wi) with
z′i = max{1,zi− k} and wi = α({zi− k, . . . ,zi + k}), i.e., wi

α · · ·a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14

F
G

F ∨G

Figure 2. The join F ∨G of the factorizations F and G obtained by merging
overlapping factors. Here, we have F = (1,a1a2a3,8,a8a9a10,12,a12a13) and
G = (1,a1a2,6,a6,7,a7a8,10,a.10a11). The join of these two factorizations
is F ∨G = (1,a1a2a3,6,a6,7,a7a8a9a10a11,12,a12a13). Note that nonoverlap-
ping adjacent factors are not merged.

is the factor of α induced by all positions z such that
|z− zi| ≤ k. The R(k)-factorization of α is F1 ∨ ·· · ∨Fr. Let
F = (x1,u1, . . . ,x`,u`) be the R(k)-factorization of α and let X
be the set of its positions. We have |X | ≤ |M|(2k+1)−k since
at most k+ 1 positions come from the first position of the
R-factorization and all other positions of the R-factorization
contribute at most 2k+1 positions to X . In particular, |X | ≤ 2k2

if k≥ |M|. We have α= u1w1 · · ·u`−1w`−1u` β for some wi ∈Γ∗,
β ∈ Γ∞ such that the ui’s cover the positions of the R-
factorization and moreover, the R-class changes at neither the k
first positions of any ui with i > 1 nor at the k last positions
of any ui with i < `.

The L -factorization of a finite word w ∈ Γ∗ is the left-right
dual of the R-factorization: Let w = w1a1 · · ·wrar with r ≥ 0,
ai ∈ Γ, and wi ∈ Γ∗ such that

h(ai−1wiai · · ·wrar)<L h(wiai · · ·wrar) L h(ai · · ·wrar)

for all 1≤ i≤ r. The L -factorization of w is then given by
the factors ai of length one together with their positions in w.

As for R-factorizations, we extend this definition by
taking contexts into account. Let (z1,a1, . . . ,zr,ar) be the
L -factorization of w. Let k ∈ N and Gi = (z′i,wi) with
z′i = max{1,zi− k} and let wi = w({zi− k, . . . ,zi + k}) be the
factor of w induced by all positions z such that |z− zi| ≤ k.
Then, the L (k)-factorization of w is G1 ∨ ·· · ∨ Gr. Let
G = (y1,v1, . . . ,ym,vm) be the L (k)-factorization of w and
let Y be the set of its positions. As for R(k)-factorizations,
we have |Y | ≤ 2k2 if k ≥ |M|.

Lemma 11. Let h : Γ∗→M with h(Γ+) ∈ B1 and let k ≥ |M|.
If u = w0u1w1 · · ·u`w` and v = w0v1w1 · · ·v`w` for words
ui,vi,wi ∈ Γ∗ such that the wi’s in u cover the positions of the
R(k)-factorization of u and the wi’s in v cover the positions
of the L (k)-factorization of v, then h(u) = h(v).

Proof. The proof goes as follows. Since k is large enough, we
find a short prefix pi and a short suffix qi of each wi admitting
idempotent stabilizers fi and ei. Appending these prefixes and
suffixes to the ui’s and vi’s then allows us to apply Lemma 3.

We can assume that each wi covers the positions of a factor
of the R(k)-factorization of u or of a factor of the L (k)-
factorization of v. In particular, |w0| , |w`| ≥ k and |wi| ≥ 2k
for 0 < i < `. By Lemma 2 and its left-right dual, there exist
idempotents f1, . . . , f`,e0, . . . ,e`−1 ∈ h(Γ+) such that each wi
admits a factorization wi = piriqi with |pi| ≤ k and |qi| ≤ k
satisfying

h(pi) = h(pi) fi for 0 < i≤ `,

h(qi) = ei h(qi) for 0≤ i < `.

In particular, we can assume p0 = 1 = q`. Let xi = qi−1ui pi
and si = qi−1vi pi for 1 ≤ i ≤ `. Then, u = r0x1r1 · · ·x`r` and
s = r0s1r1 · · ·s`r`, and the ri’s in u cover the positions of the
R-factorization of u, whereas the ri’s in v cover the positions
of the L -factorization of v. Thus

h(r0x1 · · ·ri−1) R h(r0x1 · · ·ri−1) · ei−1h(xi) fi,

ei−1h(si) fi ·h(ri · · ·s`r`) L h(ri · · ·s`r`).



An `-fold application of Lemma 3 yields

h(u) = h(r0x1 · · ·r`−2x`−1r`−1x`r`)

= h(r0x1 · · ·r`−2x`−1r`−1s`r`)

= h(r0x1 · · ·r`−2s`−1r`−1s`r`)

= · · ·
= h(r0s1 · · ·r`−2s`−1r`−1s`r`) = h(v).

We can think of the above equations as converting h(u) into
h(v) by using substitution rules xi→ si. Note that the image
under h is preserved only when applying these rules from right
to left.

Next, we give a version of Lemma 11 for finite and infinite
words. The problem is that there is no canonical choice for the
L (k)-factorization of an infinite word α. We overcome this
obstacle by fixing a type and considering L (k)-factorizations
of this type for infinitely many prefixes of α.

Lemma 12. Let h : Γ∗→M with h(Γ+) ∈ B1, let k≥ |M| and
let α= w0u1w1 · · ·u`w`γ with ui,wi ∈ Γ∗ and γ ∈ Γ∞ such that
the wi’s cover the positions of the R(k)-factorization of α.
Let τ be a type such that for every finite prefix p of β ∈ Γ∞

there exists q ∈ Γ∗ with pq≤ β and
• the L (k)-factorization G of pq has type τ, and
• pq = w0v1w1 · · ·v`w` for some vi ∈ Γ∗ such that the wi’s

cover the positions of G.
Then s ≤R t for all linked pairs (s,e) and (t, f ) of M with
α ∈ [s][e]ω and β ∈ [t][ f ]ω.

Proof. Suppose α ∈ [s][e]ω and β ∈ [t][ f ]ω. We can write β ∈
p[ f ]ω with h(p) = t. By assumption, there exists q ∈ Γ∗ such
that pq is a prefix of β with L (k)-factorization G of type τ.
Moreover, we have a factorization pq = w0v1w1 · · ·v`w` such
that the positions of G are covered by the wi’s. Let r = h(pq).
We have r ≤R t because p is a prefix of pq. By Lemma 11
we have h(w0u1w1 · · ·u`w`) = h(w0v1w1 · · ·v`w`). Since we can
write α ∈ w[e]ω such that h(w) = s and w0u1w1 · · ·u`w` is a
prefix of w, we conclude s≤R r ≤R t.

A factorization F = (x1,u1, . . . ,x`,u`) is a subfactorization
of a factorization G = (y1,v1, . . . ,ym,vm), denoted by F � G,
if for every i ∈ {1, . . . , `} there exists j ∈ {1, . . . ,m} such that
v j = puiq and xi = y j + |p| for some p,q ∈ Γ∗. Intuitively, this
means that every ui is covered by some v j. Let G and G′

be factorizations of the same type. Then, there is a one-
to-one correspondence between the positions of G and the
positions of G′. Hence, every subfactorization F � G induces
a subfactorization F ′ � G′.

For every factorization F = (x1,u1, . . . ,x`,u`) with x1 = 1
we define the monomial PF = u1Γ∗u2 · · ·Γ∗u`Γ∞ of degree
|u1 · · ·u`|. Now, whenever F is a factorization of a word α,
then α ∈ PF . The converse does not hold, but if α ∈ PF , then
there exists a factorization F ′ of α with type (u1, . . . ,u`). Next,
we give a canonical way of turning a membership α ∈ PF into
such a factorization F ′.

Let P= u1Γ∗u2 · · ·Γ∗u`Γ∞ be a monomial and suppose α∈P.
We write α = u1s1u2 · · ·s`−1u` β such that (|s1| , . . . , |s`−1|) is

minimal in the lexicographic order, i.e., we first minimize
|s1|, then |s2|, and so on. We can think of this as greedily
minimizing the lengths of the si’s one after another. Now, the
greedy factorization for α ∈ P is F ′ = (x1,u1, . . . ,x`,u`) with
xi = 1+ |u1s1u2 · · ·si−1|.

Proposition 13. Let h : Γ∗ → M be a homomorphism with
h(Γ+) ∈ B1 and let α ∈ [s][e]ω and β ∈ [t][ f ]ω for some linked
pairs (s,e) and (t, f ) of M. If α and β are contained in the
same monomials w1Γ∗w2 · · ·Γ∗wnΓ∞ of degree at most 4 |M|2,
then s R t.

Proof. Let k = |M|. We shall first give an intuitive outline of
our proof. We consider the R(k)-factorization F of α. This
converts to a factorization F ′ of β. Then we choose a prefix pq
of β such that its L (k)-factorization G′ is “as far to the right
as possible” in a certain sense. Next, the factorization G′ of β
is converted into a factorization G of α. This process makes
use of the factorization F ′ to ensure that on α the factorization
G is sufficiently far to the right of F . Using Proposition 4, the
crucial step is to show that F ∨G and F ′∨G′ have the same
type. This step was inspired by a proof of Klı́ma [19]. Finally,
applying Lemma 12, we obtain s≤R t. Since the situation is
symmetric in α and β, we conclude s R t.

Let F = (x1,u1, . . . ,x`,u`) be the R(k)-factorization of α.
Note that α∈PF and the degree of PF is at most 2k2. Therefore,
β∈PF by assumption. Let F ′= (x′1,u1, . . . ,x′`,u`) be the greedy
factorization for β ∈ PF .

There exists a type τ such that for every prefix p of β there
is a prefix pq of β with an L (k)-factorization of type τ. If
β is an infinite word, then this means that there are infinitely
many such prefixes pq of β.

Consider some prefix pq of β with an L (k)-factorization
G′ = (y′1,v1 . . . ,y′m,vm) of type τ such that y′ > x′ for as many
positions y′ of G′ and positions x′ of F ′ as possible. Let H ′ =
F ′∨G′. We have β ∈ PH ′ and the degree of PH ′ is at most 4k2.
Thus α∈PH ′ . Let H be the greedy factorization for α∈PH ′ . Fur-
ther, let G�H be the subfactorization of H induced by G′�H ′.
Note that we cannot directly transfer the factorization G′ of β
to the word α because we want that G = (y1,v1, . . . ,ym,vm) is
“sufficiently far to the right”. Next, we show H = F ∨G.

We claim that for all i ∈ {1, . . . , `}, for all 0≤ j < |ui|, and
for all r ∈ {1, . . . ,m} we have

xi + j < yr iff x′i + j < y′r and
xi + j ≤ yr iff x′i + j ≤ y′r.

Using property “1” of Proposition 4, we see that F is the
greedy factorization for α ∈ PF . Therefore, x′i + j < y′r in β
implies xi + j < yr in α. Similarly, x′i + j ≤ y′r in β implies
xi + j ≤ yr in α. Suppose xi + j < yr in α. Let

J = (x1,w1, . . . ,xi,wi)∨ (yr,vr, . . . ,ym,vm).

We have α ∈ PJ and the degree of PJ is at most 4k2. Hence,
β∈PJ and therefore x′i+ j < y′r by property “2” of Proposition 4
and by choice of pq. Suppose xi + j ≤ yr in α. If xi + j < yr,
then we are done by the previous consideration. So suppose



xi+ j = yr. We have α∈PJ with J defined as above. Now, β∈PJ
implies x′i + j ≤ y′r. Note that we cannot conclude x′i + j = y′r
at this point. This proves the claim.

The above claim shows that indeed H = F ∨G. Let p̃q̃
such that pq ≤ p̃q̃ ≤ β and p̃q̃ has an L (k)-factorization of
type τ. Then, by property “2” of Proposition 4, the factors of
the L (k)-factorization of p̃q̃ can only lie further to the right
than those of the L (k)-factorization of pq. Thus considering
the L (k)-factorization of p̃q̃ instead of pq leads to the same
factorization H of α. Hence, Lemma 12 shows s ≤R t. The
situation is symmetric in α and β. Therefore, s R t.

We are now ready to prove Theorem 5.

Proof of Theorem 5. “1⇒ 2”: By Lemma 8, every language
of the form w1Γ∗w2 · · ·Γ∗wnΓ∞ is definable in Σ1[<,+1,min].
Hence, the Boolean closure of such languages is contained in
the Boolean closure of Σ1[<,+1,min].

“2⇒ 3”: The condition Synt(L) ∈ B1 is shown in Lemma 9.
By Lemma 10, for every linked pair (s,e) of Synt1(L) we
have [s]⊆ L if and only if [s][e]ω ⊆ L. This is equivalent to the
condition for linked pairs in “3b”, see [10, Proposition 6.4].
The implication “3⇒ 4” is trivial since L is recognized by its
syntactic homomorphism.

“4⇒ 1”: We write α≡ β if α and β are contained in the same
monomials w1Γ∗w2 · · ·Γ∗wnΓ∞ of degree at most 4 |M|2. Every
≡-class is a finite Boolean combination of such monomials.
It therefore suffices to show that β ≡ α ∈ L implies β ∈ L.
Suppose α ∈ [s][e]ω ⊆ L and β ∈ [t][ f ]ω for some linked pairs
(s,e) and (t, f ). By Proposition 13 we see that α≡ β implies
s R t. Thus [t][ f ]ω ⊆ L and in particular β ∈ L.

V. THE FRAGMENT BΣ1[<,+1,min,max] OVER Γ∗

In this section we give a new self-contained proof of Knast’s
result for dot-depth one [20]. Another proof was given by
Thérien [37]. Both Knast’s and Thérien’s proof rely on so-called
finite categories. Our proof uses only elementary algebraic
concepts like Green’s relations. The main part of the proof
builds on Proposition 13. Note that a language L ⊆ Γ∗ is
definable in BΣ1[<,+1,min,max] over Γ∞ if and only if L is
definable in this fragment over Γ∗.

Theorem 14. Let L⊆ Γ∗. The following are equivalent:
1) L has dot-depth one, i.e., L is a finite Boolean combination

of monomials w1Γ∗w2 · · ·Γ∗wn.
2) L is definable in BΣ1[<,+1,min,max].
3) Synt(L) ∈ B1.
4) L is recognized by some homomorphism h : Γ∗→M with

h(Γ+) ∈ B1.

Proof. “1⇒ 2”: By Lemma 8, every language of the form
w1Γ∗w2 · · ·Γ∗wn is definable in Σ1[<,+1,min,max]. Hence,
the Boolean closure of such languages is contained in the
Boolean closure of Σ1[<,+1,min,max]. “2⇒ 3”: This is
Lemma 9. The implication “3⇒ 4” is trivial.

“4⇒ 1”: We write u ≡ v if u,v ∈ Γ∗ are contained in the
same monomials w1Γ∗w2 · · ·Γ∗wn of degree at most 4 |M|2.
Every ≡-class is a Boolean combination of such monomials.

Thus it suffices to show h(u) = h(v) whenever u≡ v. Applying
Proposition 13 with e = f = 1 shows h(u)R h(v) if u≡ v. The
reversal of a word w= a1 · · ·an with ai ∈Γ is w′= an · · ·a1. Let
u′ and v′ be the reversals of u and v, respectively. Now, u≡ v
implies u′ ≡ v′. By Proposition 13 we have h(u′)R h(v′) in the
reversal of M. This in turn is equivalent to h(u) L h(v) in M.
Thus h(u) = h(v) since M is aperiodic [23, Proposition A.2.9].
Therefore, for every x ∈M the language h−1(x) is a Boolean
combination of monomials.

VI. THE FRAGMENT BΣ1[<,+1,min,max] OVER Γ∞

In this section, we incorporate the max-predicate. This leads
to an effective characterization of the first-order fragment
BΣ1[<,+1,min,max] over finite and infinite words. The major
difference between Theorem 15 below and Theorem 5 is that
the “topological” linked pair condition is slightly different.
To express this new condition, we have to use the pure
syntactic homomorphism which can distinguish between finite
and infinite words.

Theorem 15. Let L⊆ Γ∞ be regular. The following assertions
are equivalent:
1) L is a finite Boolean combination of monomials of the

form w1Γ∗w2 · · ·Γ∗wnΓ∞ and w1Γ∗w2 · · ·Γ∗wn.
2) L is definable in BΣ1[<,+1,min,max].
3) The pure syntactic homomorphism h+ : Γ∗ → Synt+(L)

satisfies
a) Synt(L) ∈ B1, and
b) for all linked pairs (s,e) and (t, f ) of Synt+(L) with

s R t and e 6= 1 6= f we have [s][e]ω ⊆ L ⇔ [t][ f ]ω ⊆ L.
4) L is recognized by a homomorphism h : Γ∗ → M with

h(u) = 1 only if u = 1 satisfying
a) h(Γ+) ∈ B1, and
b) for all linked pairs (s,e) and (t, f ) of M with s R t

and e 6= 1 6= f we have [s][e]ω ⊆ L ⇔ [t][ f ]ω ⊆ L.

Before proving Theorem 15 at the end of this section, we
give a counterpart of Lemma 10 for infinite words.

Lemma 16. Let L⊆ Γ∞ be definable in BΣ1[<,+1,min,max].
If h : Γ∗→M is a surjective homomorphism recognizing L such
that h(u) = 1 only if u = 1, then [s][e]ω ⊆ L ⇔ [t][ f ]ω ⊆ L for
all linked pairs (s,e) and (t, f ) of M with s R t and e 6= 1 6= f .

Proof. Let ϕ ∈ Σ1[<,+1,min,max] be a sentence. If α ∈ Γω

models ϕ, then there is a finite prefix u of α such that for every
β ∈ Γω we have uβ |= ϕ. This is because α |= ϕ yields some
satisfying assignment for the variables, and positions beyond
the last position of this assignment have no influence.

Let L be defined by a formula with quantifier depth d,
let t = sx and s = ty for x,y ∈ M. Consider α1 = ŝ êω for
ŝ ∈ [s] and ê ∈ [e], and let x̂ ∈ [x], ŷ ∈ [y], and f̂ ∈ [ f ]. By
the above consideration, there exists a finite prefix u = ŝ ên

of α1 such that β1 = u x̂ f̂ ω models at least the same formulas in
Σ1[<,+1,min,max] with quantifier depth at most d as α1 does.
Similarly, there exists a prefix v = u x̂ f̂ m of β1 such that α2 =
v ŷ êω models at least the same formulas in Σ1[<,+1,min,max]



with quantifier depth at most d as β1 does. We continue this
process and construct α1, β1, α2, β2, . . . such that each word
satisfies at least the same formulas with quantifier depth d as
its predecessor. There are only finitely many nonequivalent
Σ1[<,+1,min,max]-formulas with quantifier depth at most d.
Hence, there exist words αi ∈ [s]êω and βi ∈ [t] f̂ ω which satisfy
the same formulas in Σ1[<,+1,min,max] with quantifier depth
at most d. Now, αi ∈ L if and only if βi ∈ L. This yields
[s][e]ω ⊆ L if and only if [t][ f ]ω ⊆ L.

Combining Theorem 5, Theorem 14, and Lemma 16 yields
the following proof of Theorem 15.

Proof of Theorem 15. “1⇒ 2”: By Lemma 8, every monomial
of the form w0Γ∗w1 · · ·Γ∗wnΓ∞ or w0Γ∗w1 · · ·Γ∗wn is definable
in Σ1[<,+1,min,max]. Therefore, the Boolean closure of such
languages is contained in BΣ1[<,+1,min,max].

“2⇒ 3”: Let L be defined by ϕ ∈ BΣ1[<,+1,min,max].
Lemma 9 shows Synt(L) ∈ B1. The condition “3b” for the
linked pairs follows from Lemma 16.

“3⇒ 4”: This is trivial, since h+ : Γ∗→ Synt+(L) recognizes
L and h+ maps only the empty word to 1 ∈ Synt+(L).

“4⇒ 1”: Consider Lω = L∩Γω and let L∞ be the union of
the language Lω and the following language over finite words:⋃
{[s] | Lω∩ [s][e]ω 6= /0 for some linked pair (s,e) of M} .

Then L∞ satisfies condition “4” in Theorem 5 for the homo-
morphism h and hence L∞ is a finite Boolean combination of
monomials w1Γ∗w2 · · ·Γ∗wnΓ∞. Since Γω is a finite Boolean
combination of languages Γ∗a and aΓ∞ for a ∈ Γ, we see that
Lω = L∞∩Γω is a finite Boolean combination of monomials
w1Γ∗w2 · · ·Γ∗wnΓ∞ and w1Γ∗w2 · · ·Γ∗wn. Consider L∗= L∩Γ∗.
Lemma 1 shows that L∗ is recognized by h. Therefore, L is a
finite Boolean combination of monomials w0Γ∗w1 · · ·Γ∗wn by
Theorem 14. Thus L = L∗∪Lω is of the required form.

VII. THE FRAGMENT BΣ1[<,+1,min] OVER Γω

If we consider infinite words only, the predicate max is
always false and the fragments BΣ1[<,+1,min,max] and
BΣ1[<,+1,min] coincide. In this section we give an effective
characterization of this fragment for infinite words.

Theorem 17. Let L⊆ Γω be regular. The following assertions
are equivalent:
1) L has dot-depth one, i.e., L is a finite Boolean combination

of monomials of the form w1Γ∗w2 · · ·Γ∗wnΓω.
2) L is definable in BΣ1[<,+1,min] over Γω.
3) The pure syntactic homomorphism h+ : Γ∗ → Synt+(L)

satisfies
a) Synt(L) ∈ B1, and
b) for all linked pairs (s,e) and (t, f ) of Synt+(L) with

s R t and e 6= 1 6= f we have [s][e]ω ⊆ L ⇔ [t][ f ]ω ⊆ L.
4) L is recognized by a homomorphism h : Γ∗ → M with

h(u) = 1 only if u = 1 satisfying
a) h(Γ+) ∈ B1, and
b) for all linked pairs (s,e) and (t, f ) of M with s R t

and e 6= 1 6= f we have [s][e]ω ⊆ L ⇔ [t][ f ]ω ⊆ L.

Proof. “1⇒ 2”: If L is a Boolean combination of mono-
mials w1Γ∗w2 · · ·Γ∗wnΓω, then L can also be written as a
Boolean combination of monomials w1Γ∗w2 · · ·Γ∗wnΓ∞ and
Γ∗a for a ∈ Γ. By Theorem 15 the language L is definable
in BΣ1[<,+1,min,max] over Γ∞. Since max is false for all
positions of an infinite word, L is definable in BΣ1[<,+1,min]
over Γω.

“2⇒ 3”: Let L be definable in BΣ1[<,+1,min] over Γω.
Then L is definable in BΣ1[<,+1,min,max] over Γ∞ and by
Theorem 15 the claim follows. “3⇒ 4”: Trivial.

“4⇒ 1”: Let L∞ be the union of L and the following
language over finite words⋃
{[s] | L∩ [s][e]ω 6= /0 for some linked pair (s,e) of M} .

Now, L∞ satisfies condition “4” in Theorem 5 for the homo-
morphism h and we obtain that L∞ is a Boolean combination of
monomials w1Γ∗w2 · · ·Γ∗wnΓ∞. Moreover, L = L∞∩Γω and L
is a Boolean combination of monomials w1Γ∗w2 · · ·Γ∗wnΓω.

Since condition “3” in Theorem 17 is decidable, we obtain
the following corollary.

Corollary 18. It is decidable whether a regular language
L⊆ Γω has dot-depth one.

Remark 19. Another algebraic framework for infinite words
are ω-semigroups [23]. An ω-semigroup (S+,Sω) has two
components. The first component S+ is a semigroup equipped
with an infinite product operation and Sω is the set of results
of infinite products. The conditions “3” in Theorem 15 and “3”
in Theorem 17 are equivalent to saying that the syntactic
ω-semigroup (S+,Sω) satisfies S+ ∈ B1 and (xπyπ)πxω =
(xπyπ)πyω in Sω for all x,y ∈ S+, cf. [23, Theorem VI.3.8 (6)].
Here, xπ ∈ S+ denotes the idempotent generated by x and xω

is an infinite product. The two components of an ω-semigroup
inevitably distinguish between finite nonempty and infinite
words. Therefore, ω-semigroups are only suitable for fragments
which can distinguish finite from infinite words. In particular,
BΣ1[<,+1,min] cannot distinguish between finite and infinite
words and condition “3” in Theorem 5 is not an equational
ω-semigroup condition.

VIII. SUMMARY

In Table II we summarize our results on alternation-free
first-order logic BΣ1. We gave classes of languages for which
BΣ1[<,+1,min] and BΣ1[<,+1,min,max] are expressively
complete. Our main results are characterizations of the syntactic
homomorphisms of such languages. These characterizations
are combinations of algebraic and topological properties. The
topological properties are stated in terms of linked pairs.

An entry “R-closed” in the column “Linked Pairs” of
Table II stands for the equivalence [s][e]ω ⊆ L ⇔ [t][ f ]ω ⊆ L
for all linked pairs (s,e) and (t, f ) with s R t in the syntactic
monoid. For “R+-closed” this equivalence has to hold for the
pure syntactic homomorphism and e 6= 1 6= f .

Over Γ∞ there are two variants of the Cantor topology. The
first one is defined by the base sets uΓ∞ for u∈Γ∗, and base sets



Table II
CHARACTERIZATIONS OF THE FRAGMENT BΣ1 FOR VARIOUS SIGNATURES AND MODELS

Fragment Models Languages Algebra + Linked Pairs

BΣ1[<,+1,min] Γ∞ B{w1Γ∗ · · ·Γ∗wnΓ∞} B1 + R-closed Thm. 5

BΣ1[<,+1,min,max] Γ∞ B
{w1Γ∗ · · ·Γ∗wnΓ∞

w1Γ∗ · · ·Γ∗wn

}
B1 + R+-closed Thm. 15

BΣ1[<,+1,min,max] Γ∗ B{w1Γ∗ · · ·Γ∗wn} B1 [20], Thm. 14

BΣ1[<,+1,min] Γω B{w1Γ∗ · · ·wnΓω} B1 + R+-closed Thm. 17

for the second one are uΓω and {u}. A regular language is a
finite Boolean combination of Cantor sets of the first kind if
and only if its syntactic homomorphism is “R-closed”. Boolean
combinations of Cantor sets of the second kind correspond to
“R+-closed”.

In all cases, the combination of the algebraic and the
topological properties gives decidability of the membership
problem for the respective fragment.
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