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Abstract. We introduce partially ordered two-way Büchi automata and
characterize their expressive power in terms of fragments of first-order logic
FO[<]. Partially ordered two-way Büchi automata are Büchi automata which
can change the direction in which the input is processed with the constraint that
whenever a state is left, it is never re-entered again. Nondeterministic partially
ordered two-way Büchi automata coincide with the first-order fragment Σ2.
Our main contribution is that deterministic partially ordered two-way Büchi
automata are expressively complete for the first-order fragment ∆2. As an
intermediate step, we show that deterministic partially ordered two-way Büchi
automata are effectively closed under Boolean operations.

A small model property yields coNP-completeness of the emptiness problem
and the inclusion problem for deterministic partially ordered two-way Büchi
automata.
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1 Introduction

The original motivation of Büchi automata was to decide monadic second order logic over
infinite words [3, 19]. A Büchi automaton is a nondeterministic finite automaton which
accepts an infinite word if there is a run of the automaton on the word such that some
final state appears infinitely often. It is well-known that deterministic Büchi automata
are less expressive than nondeterministic ones. Today, Büchi automata have become one
of the most important tools for formal verification of sequential finite state systems, see
e.g. [1, 4]. A generalization are two-way Büchi automata which have the same expressive
power as one-way Büchi automata [13], but the conversion of a two-way Büchi automaton
into a one-way Büchi automaton may require an exponential blow-up [8].

An automaton is partially ordered if there exists a partial ordering of the states which
respects the transition relation, i.e., in any computation once a state is left, it is never
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re-entered again. Partially ordered automata are also known as 1-weak, very weak or
linear automata, cf. [6]. The last name comes from the fact that we may also use a linear
ordering of the states instead of a partial ordering. The drawback of using linear orders
is that this distorts the maximal length of chains of states, which in some situations is
a significant parameter. Partially ordered one-way Büchi automata can be used for a
characterization of the common fragment of the two temporal logics ACTL and LTL [2, 12].
As we will see in Section 3, nondeterministic partially ordered one-way Büchi automata
and nondeterministic partially ordered two-way Büchi automata have the same expressive
power.

Schwentick, Thérien, and Vollmer introduced partially ordered two-way automata over
finite words [15]. They showed that the nondeterministic variant is expressively complete
for the fragment Σ2 of first-order logic FO = FO[<]; they also showed that deterministic
partially ordered two-way automata coincide with the first-order fragment ∆2. Here, Σ2

consists of all FO formulas in prenex normal form with two blocks of quantifiers, starting
with existential quantifiers. The fragment ∆2 comprises all languages L such that both
L and its complement are Σ2-definable. The class of languages definable in ∆2 is the
largest subclass of Σ2 which is closed under complementation. Various characterizations
are known for Σ2 and ∆2 over infinite words, see e.g. [5, 7, 18]. When interpreted over
infinite word models, the fragment ∆2 is, in some sense, weaker than over finite words.
Over finite words it coincides with the fragment FO2 of first-order logic with only two
variables [17] and the languages definable in ∆2 are precisely so-called unambiguous
polynomials [14]. Over infinite words however, ∆2 is a strict subclass of FO2 and only
restricted unambiguous polynomials are definable in ∆2. Partially ordered two-way
automata over finite words have also been characterized by an interval temporal logic [10].

In this paper, we give an extension of the results of Schwentick et al. [15] to infinite words.
We introduce partially ordered two-way (po2) Büchi automata and we give completeness
results for their expressive power:
• L ⊆ Γω is recognized by some nondeterministic partially ordered two-way Büchi

automaton if and only if L is definable in Σ2 (Theorem 2).
• L ⊆ Γω is recognized by some deterministic partially ordered two-way Büchi

automaton if and only if L is definable in ∆2 (Theorem 13).
An immediate corollary is that deterministic po2-Büchi automata are less expressive than
their nondeterministic counterparts. Moreover, it will turn out that nondeterministic
partially ordered one-way and nondeterministic po2-Büchi automata have the same
expressive power (Theorem 2), whereas deterministic partially ordered one-way Büchi
automata are strictly less expressive than deterministic po2-Büchi automata (Example 15).
It is decidable whether a regular ω-language is definable in Σ2 or in ∆2, respectively
[2]. Hence, it is decidable whether a regular ω-language can be recognized by some
nondeterministic po2-Büchi automaton or by some deterministic po2-Büchi automaton,
respectively.
Theorem 2 is a straightforward extension of the finite case, whereas the situation for

deterministic po2-Büchi automata in Theorem 13 is more involved. The key ingredient
is to show that deterministic po2-Büchi automata are closed under Boolean operations
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(Corollary 10). This is nontrivial since, contrary to the finite case, we cannot run po2-
Büchi automata one after another because the computations are infinite. To overcome
this problem, we simulate two deterministic po2-Büchi automata in parallel by a product
automaton construction. The computations of deterministic po2-Büchi automata exhibit
some combinatorial property which allows us to keep track of the head positions of the
automata when they disagree on the direction of the head movement.
Finally we give complexity results for some decision problems concerning po2-Büchi

automata in Section 5. We show that the inclusion problem as well as the emptiness
problem, the universality problem and the equivalence problem for deterministic po2-
Büchi automata are coNP-complete. Moreover, we show that nondeterministic po2-Büchi
automata have a small model property leading to a coNP-completeness result for the
emptiness problem for nondeterministic po2-Büchi automata. Similar complexity results
for po2-automata over finite words have been shown by Lodaya, Pandya, and Shah [11].
For general one-way Büchi automata (that need not be partially ordered), the inclusion
problem and the equivalence problem are PSPACE-complete [16].
The results of this paper were presented at the 15th International Conference on

Implementation and Application of Automata (CIAA 2010) in Winnipeg, Canada [9].

2 Preliminaries

Throughout, Γ denotes a finite alphabet. The set of finite words over the alphabet A ⊆ Γ is
A∗, the set of infinite words over A is Aω, and A∞ = A∗∪Aω is the set of finite and infinite
words. The empty word is denoted by ε. The length of a word α is |α| ∈ N∪{∞} and α(i)
is the i-th letter of α. We have α = α(1) · · ·α(n) if |α| = n ∈ N and α = α(1)α(2) · · · if
|α| =∞. The alphabet of α is alph(α). It is the set {a ∈ Γ | α = uaβ for some u, β} of
letters occurring in α. A position i of α is an a-position if α(i) = a. For u, v ∈ Γ∗ we write
u ≤s v if u is a suffix of v, i.e., v = wu for some w ∈ Γ∗. A word v = a1 · · · an ∈ Γ∗ is a
scattered subword of α ∈ Γ∞, denoted by v 4 α if α = u1a1 · · ·unanβ for some ui ∈ Γ∗

and β ∈ Γ∞. Languages are subsets of Γ∞. In order to emphasize that a language L ⊆ Γω

contains only infinite words, we also say that L is an ω-language. A monomial of degree k
is a language of the form A∗1a1 · · ·A∗kakA∗k+1. It is unambiguous if every word w has at
most one factorization w = u1a1 · · ·ukakuk+1 with ui ∈ A∗i . Similarly, an ω-monomial
of degree k is an ω-language of the form A∗1a1 · · ·A∗kakAωk+1 and it is unambiguous if
every word α has at most one factorization u1a1 · · ·ukakβ with ui ∈ A∗i and β ∈ Aωk+1.
It is a restricted unambiguous ω-monomial if {ai, . . . , ak} * Ai for all 1 ≤ i ≤ k. An
(ω-)polynomial is a finite union of (ω-)monomials.
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2.1 Partially ordered two-way Büchi automata

In the following, we give the Büchi automaton counterpart of a two-way automaton.
A two-way Büchi automaton A = (Z,Γ, δ, Z0, F ) is given by:
• a finite set of states Z = X ∪̇ Y ,
• a finite input alphabet Γ; the tape alphabet is Γ ∪̇ {.}, where the left end marker .

is a new letter,
• a transition relation δ ⊆ (Z × Γ× Z) ∪ (Y × {.} ×X),
• a set of initial states Z0 ⊆ Z, and
• a set of final states F ⊆ Z.

The states Z are partitioned into “neXt-states” X and “Yesterday-states” Y . The idea is
that states in X are entered with a right-move of the head while states in Y are entered
with a left-move. For (z, a, z′) ∈ δ we frequently use the notation z a z′. On input
α = a1a2 · · · ∈ Γω the tape is labeled by .α, i.e., positions i ≥ 1 are labeled by ai and
position 0 is labeled by .. A configuration of the automaton is a pair (z, i) where z ∈ Z
is a state and i ∈ N is the current position of the head. A transition (z, i) `A (z′, j) on
configurations (z, i) and (z′, j) exists if
• z a z′ for some a ∈ Γ ∪ {.} such that i is an a-position, and
• j = i+ 1 if z′ ∈ X, and j = i− 1 if z′ ∈ Y .

The .-position can only be encountered in a state from Y and left via a state from X. In
particular, A can never overrun the left end marker .. Due to the partition of the states
Z, we can never have a change in direction without changing the state. A computation of
A on input α is an infinite sequence of transitions

(z1, i1) `A (z2, i2) `A (z3, i3) `A · · ·

such that z1 ∈ Z0 and i1 = 1. It is accepting if there exists some state y ∈ F which
occurs infinitely often in this computation. A word α is accepted by A if there is an
accepting computation of A on input α. As usual, the language recognized by A is
L(A) = {α ∈ Γω | A accepts α}.
A two-way Büchi automaton is deterministic if |Z0| = 1 and if for every state z ∈ Z

and every letter a ∈ Γ ∪ {.} there is at most one z′ ∈ Z with z a z′. A two-way Büchi
automaton is complete if for every state z ∈ Z and every letter a ∈ Γ there is at least one
z′ ∈ Z with z a z′, and for every z ∈ Y there is at least one z′ ∈ X with z . z′.
We are now ready to define partially ordered two-way Büchi automata. We use the

abbreviation “po2” for “partially ordered two-way”. The set of states Z in a po2-Büchi
automaton is equipped with a partial order v such that z a z′ implies z v z′ for all
z, z′ ∈ Z and a ∈ Γ. In po2-Büchi automata, every computation enters a state at
most once and it defines a finite chain of states. Thus every computation has a unique
state z ∈ Z which occurs infinitely often and this state is maximal among all states in
the computation. Moreover, z ∈ X since the automaton cannot loop in a left-moving
state forever. We call this state z stationary. A computation is accepting if and only
if its stationary state z is a final state. Note that every partially ordered two-way
Büchi automaton can be converted into a complete partially ordered two-way Büchi
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automaton recognizing the same language by adding a new sink state and redirecting
missing transitions to the sink state.

Example 1 Consider the following two-way Büchi automaton A with X-states {x0, x1}
and Y -states {y1, y2, y3} over the alphabet Γ = {a, b, c, d}:

x0

y1

y2

y3

x1

c, d

b

a c

Γ

d

d

c

d
.

This automaton is deterministic and partially ordered. The language accepted by A is
L(A) = {c, d}∗ {ca, db}Γ∗ ∪ {d}∗ {da, cb}Γ∗. ♦

2.2 Fragments of first-order logic

In first-order logic FO[<] = FO, words are interpreted as labeled linear orders and
variables range over positions of the word. Atomic formulas of FO are > for true,
λ(x) = a and x < y for variables x, y and letters a ∈ Γ. A modality λ(x) = a means
that x is an a-position and x < y says that the position x is smaller than y. Formulas
can be composed by Boolean connectives, existential quantification ∃x : ϕ, and universal
quantification ∀x : ϕ for a formula ϕ ∈ FO. The semantics of these operators are as usual.
For every formula there exists an equivalent formula in prenex normal form by renaming
variables and moving quantifiers to the front. The fragment Σ2 (respectively, Π2) consists
of all formulas in FO which are in prenex normal form with one quantifier alternation,
starting with a block of existential quantifiers (respectively, universal quantifiers). We
identify equivalent formulas and hence it makes sense to define ∆2 = Σ2 ∩ Π2, which
contains all formulas in Σ2 which have an equivalent formula in Π2. Note that the
notion of equivalence of formulas depends on the models we allow. More concretely, the
fragment ∆2 depends on whether we interpret formulas over Γ∗ or over Γω, cf. [7, 17].
Unless stated otherwise, we consider infinite word models in the remainder of the paper.
A sentence is a formula in FO without free variables. For every word α, the truth value
of a sentence ϕ is well-defined and we write α |= ϕ if ϕ is true when interpreted over α.
For a sentence ϕ, the ω-language defined by ϕ is L(ϕ) = {α ∈ Γω | α |= ϕ}. A language
L ⊆ Γω is definable in a fragment F if there exists a sentence ϕ ∈ F such that L(ϕ) = L.

3 Nondeterministic po2-Büchi Automata

This section contains the characterization of nondeterministic po2-Büchi automata by
the first-order fragment Σ2 over infinite words. As a byproduct, we will see that non-
deterministic partially ordered one-way Büchi automata (i.e., Y = ∅) have the same
expressive power as nondeterministic po2-Büchi automata. The proof of this result is
a straightforward extension of the finite case [15]. It is presented here for the sake of
completeness.
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Theorem 2 Let L ⊆ Γω. The following assertions are equivalent:
1. L is recognized by a nondeterministic po2-Büchi automaton.
2. L is definable in Σ2.
3. L is recognized by a nondeterministic partially ordered Büchi automaton.

Proof: “1⇒ 2”: Let L be recognized by a po2-Büchi automaton. From Lemma 3 below
(with A = B) we get that L is an ω-polynomial. The claim follows since ω-polynomials
are Σ2-definable.
“2⇒ 3”: Let L be definable in Σ2. Then L is an ω-polynomial [18]. Now, the ω-

monomial A∗1a1 · · ·A∗kakAωk+1 is recognized by the following Büchi automaton:

· · ·

A1

a1 ak−1

Ak

ak

Ak+1

Every ω-polynomial is recognized by a finite union of such automata.
The implication “3⇒ 1” is trivial. �

For the proof of Theorem 2, a slightly weaker property than the one given in Lemma 3
would suffice. We prove a more general statement for later use in Section 5.

Lemma 3 Let A and B be complete po2-Büchi automata and let nA and nB be the lengths
of the longest chains of states of A and B, respectively. For every α ∈ L(A) ∩ L(B) there
exists an ω-monomial Pα of degree at most nA+nB − 2 such that α ∈ Pα ⊆ L(A)∩L(B).
In particular, L(A) ∩ L(B) is an ω-polynomial.

Proof: Let α ∈ L(A)∩L(B) and consider an accepting computation of A and an accepting
computation of B. For these computations, we define the factorization α = u1a1 · · ·ukakβ
with ai ∈ Γ, ui ∈ Γ∗, and β ∈ Γω such that the positions of the markers ai are exactly
those where a state change happens in at least one of the computations. In each traversal
of one of the factors ui and β, the letters in these factors correspond to self-loops
on the respective states in both computations. Hence, Pα = A∗1a1 · · ·A∗kakBω with
Ai = alph(ui) and B = alph(β) satisfies α ∈ Pα, Pα ⊆ L(A), and Pα ⊆ L(B). Therefore,
L(A)∩L(B) =

⋃
{Pα | α ∈ L(A) ∩ L(B)} is an ω-polynomial since there are only finitely

many ω-monomials of degree at most nA + nB − 2. �

Corollary 4 For a given regular ω-language L it is decidable whether L can be recognized
by some nondeterministic po2-Büchi automaton (or equivalently, by some nondeterministic
partially ordered Büchi automaton).

Proof: By Theorem 2, this decision problem is equivalent to L being Σ2-definable. The
latter is known to be decidable [2]. �
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4 Deterministic po2-Büchi Automata

In this section we prove our main result: Deterministic po2-Büchi automata are expres-
sively complete for the first-order fragment ∆2 over infinite words. The proof is based
on a characterization of ∆2 in terms of restricted unambiguous ω-monomials [7]. The
key ingredient is to show that deterministic po2-Büchi automata are effectively closed
under Boolean operations (Corollary 10). We first show the closure under complemen-
tation in Lemma 5. At first sight, this result is surprising since deterministic two-way
Büchi automata are not closed under complementation. In Proposition 9 we show that
deterministic po2-Büchi automata are closed under union and intersection. The idea is to
simulate two automata simultaneously. The main problem is a dissent on the direction
of the head movement. This problem is solved using a combinatorial property of the
computation of a deterministic po2-Büchi automata which is formulated in Proposition 7
and translated into an automaton construction in Lemma 8.

Lemma 5 If L is recognized by a complete deterministic po2-Büchi automaton A =
(Z,Γ, δ, z0, F ), then Γω\L is recognized by the complete deterministic po2-Büchi automaton
A = (Z,Γ, δ, z0, Z \ F ).

Proof: Let A be a complete deterministic po2-Büchi automaton recognizing L. For every
word α there is a unique computation of A. Therefore, every word α uniquely determines
a stationary state xα and α is accepted if and only if xα is final. Thus, complementing
the set of final states yields a deterministic po2-Büchi automaton A for the complement
of L(A). �

We now turn to the closure under union and intersection. Prior to this, we need some
more notation which we will use later for a product automaton construction.
Let α ∈ Γ∞ be a finite or infinite word. For a scattered subword v 4 α with v =

a1 · · · am ∈ Γ+, the v-prefix factorization of α is α = u1a1 · · ·umamβ with ui ∈ (Γ \ {ai})∗
and β ∈ Γ∞. For every v 4 α, the v-prefix factorization of α is unique. The next lemma
justifies the name.

Lemma 6 Let α ∈ Γ∞, let v = a1 · · · am ∈ Γ+, and let α = u1a1 · · ·umamβ be the
v-prefix factorization. Then for all k ∈ {1, . . . , n}, the word u1a1 · · ·ukak is the shortest
prefix of α such that a1 · · · ak 4 u1a1 · · ·ukak.

Proof: We have a1 6∈ alph(u1). Hence, the claim is true for k = 1. Let now k > 1.
Obviously, a1 · · · ak 4 u1a1 · · ·ukak. Assume a1 · · · ak 4 u1a1 · · ·uk−1ak−1uk. Since ak 6∈
alph(uk), we conclude a1 · · · ak 4 u1a1 · · ·uk−1ak−1 and hence, a1 · · · ak−1 4 u1a1 · · ·uk−1.
This contradicts the induction hypothesis. Therefore, u1a1 · · ·ukak is the shortest prefix
of α such that a1 · · · ak 4 u1a1 · · ·ukak. �

Consider the v-prefix factorization α = u1a1 · · ·umamβ for v = a1 · · · am ∈ Γ+. A word
w ∈ Γ∗ is k-prefix compatible for k ∈ {1, . . . ,m}, if

ak · · · am 4 w ≤s ukak · · ·umam.
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One can think of the scattered subword property ak · · · am 4 w as a lower bound for |w|,
and w being a suffix of ukak · · ·umam yields an upper bound for |w|, i.e., if w is k-prefix
compatible, then, in some sense, w is neither too short nor too long. As shown in the
following proposition, it is easily possible to keep track of k-prefix compatible suffixes.

Proposition 7 Let α ∈ Γ∞, let v = a1 · · · am ∈ Γ+ and let α = u1a1 · · ·umamβ be
the v-prefix factorization, i.e., ai 6∈ alph(ui). Let w ∈ Γ∗ and c ∈ Γ be such that
cw ≤s u1a1 · · ·umam. Suppose 1 < k ≤ m and 1 ≤ ` < m for k, ` ∈ N.

1. If w is 1-prefix compatible, then cw is 1-prefix compatible.
2. If w is k-prefix compatible and c = ak−1, then cw is (k − 1)-prefix compatible.
3. If w is k-prefix compatible and c 6= ak−1, then cw is k-prefix compatible.
4. If cw is `-prefix compatible and c = a`, then w is (`+ 1)-prefix compatible.
5. If cw is `-prefix compatible and c 6= a`, then w is `-prefix compatible.
6. If cw is m-prefix compatible and c = am, then w = ε.
7. If cw is m-prefix compatible and c 6= am, then w is m-prefix compatible.

Proof: “1”: If a1 · · · am 4 w, then a1 · · · am 4 cw. By definition, cw is a suffix of
u1a1 · · ·umam. Hence, cw is 1-prefix compatible.
“2”: If ak · · · am 4 w, then ak−1ak · · · am 4 ak−1w. With w ≤s ukak · · ·umam and

ak−1w ≤s u1a1 · · ·umam we get ak−1w ≤s ak−1ukak · · ·umam ≤s uk−1ak−1 · · ·umam.
Therefore, ak−1w is (k − 1)-prefix compatible.

“3”: If ak · · · am 4 w, then ak · · · am 4 cw. Moreover, if w ≤s ukak · · ·umam and
cw ≤s u1a1 · · ·umam, then cw ≤s ak−1ukak · · ·umam. With c 6= ak−1 we conclude
cw ≤s ukak · · ·umam. This shows that cw is k-prefix compatible.
“4”: If a` · · · am 4 cw, then a`+1 · · · am 4 w. From a`w ≤s u`a` · · ·umam we get

a`w ≤s a`u`+1a`+1 · · ·umam because a` 6∈ alph(u`). Thus w ≤s u`+1a`+1 · · ·umam which
yields that w is (`+ 1)-prefix compatible.

“5”: If a` · · · am 4 cw and c 6= a`, then a` · · · am 4 w. If cw ≤s u`a` · · ·umam, then
w ≤s u`a` · · ·umam. Hence, w is `-prefix compatible.
“6”: We have amw ≤s am since amw ≤s umam and am 6∈ alph(um). Thus w = ε.
“7”: If am 4 cw and c 6= am, then am 4 w; and if cw ≤s umam, then w ≤s umam.

Therefore, w is m-prefix compatible. �

Next, we give an “automaton version” of Lemma 7. Let u1a1 · · ·umam be a v-prefix
factorization for v = a1 · · · am. Suppose a deterministic po2-Büchi automaton A starts
some computation on u1a1 · · ·umamβ at the position i0 = |u1a1 · · ·umam| with a left-
move of the head. We construct an equivalent deterministic po2-Büchi automaton C
which in some sense is aware of the first time the position i0 is re-visited.

Lemma 8 Let A be a deterministic po2-Büchi automaton with states Z = X ∪̇ Y . For
every v = a1 · · · am ∈ Γ+ there effectively exists a deterministic po2-Büchi automaton
C with state set ZC = Z × {v} × {1, . . . ,m} such that for all α ∈ Γω with a v-prefix
factorization α = u1a1 · · ·umamβ the following property holds: If

(z0, i0) `A (z1, i1) `A · · · `A (zn, in)
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is a sequence of transitions of A for some n ≥ 1 satisfying i0 = in = |u1a1 · · ·umam| and
it < in for all 1 ≤ t < n, then(

(z1, v, k1), i1
)
`C · · · `C

(
(zn, v, kn), in

)
is a sequence of transitions of C with k1 = kn = m such that there exists no 1 ≤ t < n
with zt ∈ X, kt = m, and α(it) = am.

Proof: A position i ≤ in is k-prefix compatible if the factor of α induced by the interval
of positions {j ∈ N | i ≤ j ≤ in} is k-prefix compatible. For z ∈ Z, we define ξ(z) = 0 if
z ∈ X, and ξ(z) = 1 if z ∈ Y . For every transition z c z′ in A and every k ∈ {1, . . . ,m},
we give a k′ ∈ {1, . . . ,m} such that (z, v, k) c (z′, v, k′) in C. Moreover, every transition(
(z, v, k), i

)
`C
(
(z′, v, k′), j

)
will satisfy the following invariant:

If i+ ξ(z) is k-prefix compatible, then j + ξ(z′) is k′-prefix compatible.

The claim of the lemma then follows by Proposition 7 (6) since z1 ∈ Y and i1 + ξ(z1) = i0
is m-prefix compatible. In particular, we do not have to treat the case z ∈ X, k = m,
and c = am.

We now construct k′. For this purpose we first define the prefix compatibility ` of the
head position before the transition is made. If z ∈ X, then we set ` = k by definition
of ξ. If z ∈ Y and c = ak−1, then ` = k − 1 by Proposition 7 (2). In the remaining case
z ∈ Y and c 6= ak−1, we set ` = k by Proposition 7 (1) and Proposition 7 (3). Finally,
we define k′. If z′ ∈ Y , then k′ = ` by definition of ξ. If z′ ∈ X and c = ak, then
k′ = `+ 1 by Proposition 7 (4); otherwise we have z′ ∈ X and c 6= ak, and we set k′ = `
by Proposition 7 (5) and Proposition 7 (7).
Note that once the counter value changes, there must be a change of direction (and

hence a change of state in A) before we may encounter the same value again. Therefore C
is partially ordered. �

Proposition 9 Let A1 and A2 be complete deterministic po2-Büchi automata. There
effectively exists a deterministic po2-Büchi automaton B such that L(B) = L(A1)∪L(A2)
(resp. L(B) = L(A1) ∩ L(A2)).

Moreover, let ni be the number of states in Ai, let mi be the length of a maximal chain
of next-states in Ai, and let m = m1 +m2− 2. Then B has at most 3mn1n2|Γ|m+1 states.

Proof: We start with some intuition on our construction before we give the actual proof.
The idea is that B simulates both automata simultaneously by a product automaton
construction in what we call the synchronous mode. However, we have to handle the case
when the automata disagree on the direction in which the input is processed. In this
case we switch to the asynchronous mode in which the automaton that wants to move
right is suspended and only the other automaton is simulated; in fact, the construction
becomes simpler if we switch to the asynchronous mode, even if both automata agree on
moving to the left. The position on the input where this divergence happens is called
synchronization point. As soon as we reach the synchronization point again, we resume the
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suspended automaton if now both automata agree on going to the right, else we re-enter
the asynchronous mode. Note that in a complete po2-Büchi automaton we must eventually
re-visit the synchronization point. Now, the problem is that during the simulation of
the active automaton we must be able to check “on the fly” whether the synchronization
point is reached again. Therefore, instead of simulating the original automaton, we use
the one from Lemma 8, which allows us to recognize when the synchronization point is
reached again.
Next, we give the formal construction of the automaton B. Let Ai = (Zi,Γ, δi, x

0
i , Fi)

with Zi = Xi ∪̇ Yi for i ∈ {1, 2}. We set B = (Z,Γ, δ, x0, F ) with Z = X ∪̇ Y and:
• Z ⊆

(
X1 ×X2 × Γ∗

)
∪
(
Z1 × Z2 × Γ∗ × N× {A1,A2}

)
. States from the first term

of the union are those of the synchronous mode, whereas the remaining states are
of the asynchronous mode. In both cases, the third component is a stack which
contains words w ∈ Γ∗ with |w| ≤ m. For the asynchronous states the fourth
component stores a counter which is bounded by the current stack size. The fifth
component specifies which automaton is currently being simulated. We say that
this automaton is active.
• Y =

(
(Y1×Z2×Γ∗×N×{A1})∪ (Z1× Y2×Γ∗×N×{A2})

)
∩Z and X = Z \ Y ,

i.e., the left-moving states are those asynchronous states with a left-moving state of
the active automaton.
• x0 = (x01, x

0
2, ε), so the computation starts in the synchronous mode with an empty

stack and both automata are in their respective initial states.
• For recognizing the union we set F =

(
(F1 ×X2 × Γ∗) ∪ (X1 × F2 × Γ∗)

)
∩ Z.

• For recognizing the intersection we set F = (F1 × F2 × Γ∗) ∩ Z.
The transition function δ of B is given as follows. First, suppose that z = (x1, x2, v) is a
synchronous state and let x1 c z1 in A1 and x2 c z2 in A2. If a state change happens,
then c is pushed to the stack, i.e., we define v′ = vc if z1 6= x1 or z2 6= x2 and v′ = v
otherwise. We set

(x1, x2, v) c


(z1, z2, v

′) if z1 ∈ X1 and z2 ∈ X2,
(z1, x2, v

′, |v′|,A1) if z1 ∈ Y1,
(x1, z2, v

′, |v′|,A2) else,

that is, we stay in synchronous mode if A1 and A2 agree on moving to the right. Otherwise
we make one of the left-moving automata active. If both of them want to move to the
left, then A1 is given precedence. Now, v′ is a stack of labels of positions, at which at
least one of the automata has changed its state. A crucial observation is the following:
If v′ = a1 · · · am and α = u1a1 · · ·umamβ is the factorization induced by the positions
corresponding to the ai’s, then this is the v′-prefix factorization of α. Moreover, since
a change of direction involves a change of state, the position corresponding to am is
precisely the synchronization point for the asynchronous mode.

We now describe the transitions for an asynchronous state (z1, z2, v, k,Ai). By symmetry,
we can assume Ai = A1. Let C be the automaton from Lemma 8 for A1 and v. We
add transitions (z1, z2, v, k,A1) c (z′1, z2, v, k

′,A1) to another asynchronous state if
(z1, v, k) c (z′1, v, k

′) in C. We therefore simulate the active automaton and moreover, by
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the properties of the automaton C, we know that, in a state (z1, z2, v, k,A1), the head
position has reached the synchronization point if and only if z1 ∈ X1, k = |v| and the
current letter c is v(k). If this is the case and if z1 c z′1 in A1 and z2 c z′2 in A2, then
we set

(z1, z2, v, k,A1) c


(z′1, z

′
2, v) if z′1 ∈ X1 and z′2 ∈ X2,

(z′1, z2, v, |v|,A1) if z′1 ∈ Y1,
(z1, z

′
2, v, |v|,A2) else,

i.e., we switch to the synchronous mode if now both automata agree on moving to the
right. Otherwise, we re-enter the asynchronous mode and again one of the automata is
suspended.

The constructions employed are effective and this automaton is partially ordered. Note
that each time the asynchronous mode is entered or re-entered, a state change in at least
one of the automata happens. There are at most m state changes in synchronous mode.
Thus the stack size is bounded by m. This yields |Γ|m+1 in the bound for |Z|. �

Corollary 10 The class of languages recognized by deterministic po2-Büchi automata is
effectively closed under Boolean operations.

Proof: Deterministic po2-Büchi automata can be made complete. Therefore, effective
closure under Boolean operations follows by Lemma 5 and Proposition 9. �

Proposition 11 Every restricted unambiguous ω-monomial is recognized by a determin-
istic po2-Büchi automaton.

Proof: Let L = A∗1a1 · · ·A∗kakAωk+1 be an unambiguous ω-monomial with {ai, . . . , ak} 6⊆ Ai
for all 1 ≤ i ≤ k. This implies ai 6∈ A1 for some i ≥ 1. Let i be minimal with this property.
For each α ∈ L we consider the ai-prefix factorization α = uaiβ with ai 6∈ alph(u). There
are two cases:

u ∈ A∗1a1 · · ·A∗i , β ∈ A∗i+1ai+1 · · ·A∗kakAωk+1 or
u ∈ A∗1a1 · · ·A∗j , ai ∈ Aj , β ∈ A∗jaj · · ·A∗kakAωk+1

with 2 ≤ j ≤ i. In each case, the expression Q = A∗jaj · · ·A∗kakAωk+1 is unambiguous
because L is. Moreover, it has a degree that is smaller than that of the expression
for L, and we have {a`, . . . , ak} 6⊆ A` for all j ≤ ` ≤ k. By induction, Q is recognized
by some complete deterministic po2-Büchi automaton B. The unambiguous monomial
P = A∗1a1 · · ·A∗j ∩ (Γ \ {ai})∗ is accepted by a deterministic po2-automaton A operating
on finite words [15]. We modify this automaton in order to use the letter ai instead of /
as a right end marker.

From these two automata A and B, we construct a deterministic po2-Büchi automaton C
accepting the ω-language PaQ with a = ai. First, C checks whether there exists some
a-position. If so, then C returns to the first letter of the word and starts a simulation of A.
If this automaton accepts the word, i.e., u ∈ P , then C moves its head to the position after
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the first a-position and starts an automaton B̂. This automaton simulates B but ensures
that a state change from z into another state is only successfully performed if it does not
happen to the left of the first a-position. This is done by scanning for an a-position to
the left. Afterwards we return to the position where this test was initiated from. This
is possible since B is deterministic. Finally we perform the transition from z if the test
was successful. If the test failed, then we know that we have overrun the first a-position
in z. Therefore, in this case, we return to the first a-position, and we use the transition
which B would have done when reading the left end marker . instead of a. There are at
most i cases from above for a word α ∈ L. Therefore, L is a finite union of languages of
the form PaQ recognized by deterministic po2-Büchi automata. Proposition 9 implies
the claim.

In what follows, we describe the construction of B̂ from B. Let z1 v · · · v zn be a linear
ordering of the states Z of B with z1 being the initial state of B. We inductively construct
a sequence of deterministic po2-Büchi automata B0, . . . ,Bn with Bj = (Zj ,Γ, δj , z1, F )
and F being the set of final states of B. The above sequence of automata will satisfy the
following invariants: Z = Z0 ⊆ · · · ⊆ Zn, ∅ = δ0 ⊆ · · · ⊆ δn, and for all 0 ≤ j ≤ n, if

(z1, 1) = (q0, i0) `B · · · `B (qt, it)

on input β ∈ Γω with t ≥ 1 and qt−1 v zj , then

(q0, r + i0) `∗Bj · · · `
∗
Bj (qt, r + it)

on any input uaβ with a 6∈ alph(u) and r = |ua|. Here, `∗Bj denotes a sequence of
transitions in Bj . It follows that computations of B on input β using only states up to zj
are relativized in Bj to the suffix β of uaβ. Therefore, B̂ = Bn is the desired automaton.

Suppose that we have already constructed the automaton Bj−1. We want to construct
Bj . All transitions from Bj−1 are taken over and moreover, we add to Bj a disjoint copy
of Bj−1 denoted by B′j−1. We will use this copy later on. If zj ∈ X, then we add all
transitions zj c z from B. Let now zj ∈ Y and zj c z in B. If z = zj , then we add the
transition to Bj . Suppose z 6= zj . In this case we add states and transitions to Bj that
scan for an a-position which is smaller than the current position. If no a is found, we
add to Bj a transition to a new X-state x and transitions x c x for c 6= a and x a x′

if zj . x′ in B. The effect is that Bj goes to the first a-position and at this position, it
behaves as if B was reading .. Note that in this case the first a-position was last read in
state zj .

If an a is found to the left, then we have to go back to where we started the test. For
this, Bj uses the copy B′j−1, i.e., Bj goes to the position after the first a-position and
starts B′j−1 in its initial state. Let z′j be the state of the copy corresponding to zj . For all
self-loops zj b zj in B we add z′j b z′j to Bj , and for zj c z in B we add the transition
z′j

c z to Bj . �

The following lemma shows the converse of Proposition 11. Our proof reuses techniques
from the proof of Lemma 3, which in turn yields a different proof as the usual one for
finite words [15].
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Lemma 12 The language recognized by a deterministic po2-Büchi automaton is a finite
union of restricted unambiguous ω-monomials.

Proof: Let A be a deterministic po2-Büchi automaton and let α ∈ L(A). We consider
the accepting computation of A on α. For this computation, we define the factorization
α = u1a1 · · ·ukakβ with ai ∈ Γ, ui ∈ Γ∗, and β ∈ Γω such that the positions of the
markers ai are exactly those where a state change happens in the computation. In
each traversal of one of the factors ui and of the suffix β, the letters in these factors
correspond to self-loops at the respective states in the accepting computation. Thus
Pα = A∗1a1 · · ·A∗kakBω ⊆ L(A) for Ai = alph(ui) and B = alph(β). Moreover, Pα is
unambiguous since A is deterministic. Assume {ai, . . . , ak} ⊆ Ai and consider the first
X-state q of A entered after reading the marker ai−1 in the above factorization of α. There
is a loop at q for all letters ai, . . . , ak. Hence, there cannot be any further markers after
ai−1. This contradicts the definition of ai, . . . , ak. Thus Pα is a restricted unambiguous
ω-monomial. It follows that L(A) is the union of all Pα ranging over α ∈ L(A). This
union is finite since the degree of each ω-monomial Pα is bounded by the number of states
in A and there are only finitely many ω-monomials of bounded degree. �

Theorem 13 Let L ⊆ Γω. The following assertions are equivalent:
1. L is recognized by a deterministic po2-Büchi automaton.
2. L is definable in ∆2.

Proof: An ω-language L is ∆2-definable if and only if L is a finite union of restricted
unambiguous ω-monomials [7]. The implication “1⇒ 2” is Lemma 12. For “2⇒ 1” let
L be a finite union of restricted unambiguous ω-monomials. Proposition 11 shows that
each of these ω-monomials is recognized by a deterministic po2-Büchi automaton, and
Proposition 9 yields an automaton for their union. �

Corollary 14 For a given regular ω-language L it is decidable whether L can be recognized
by some deterministic po2-Büchi automaton.

Proof: By Theorem 13, L is recognizable by some deterministic po2-Büchi automaton if
and only if L is ∆2-definable. The latter is known to be decidable [2, 7]. �

Example 15 The ω-language L = {a, b}∗ a ∅∗c {c}ω is a restricted unambiguous ω-
monomial and thus definable in ∆2, see [7]. By Theorem 13 it is recognized by a
deterministic po2-Büchi automaton. Moreover, L cannot be recognized by a deterministic
partially ordered one-way Büchi automaton. Hence, the class of ω-languages recognizable
by deterministic partially ordered one-way Büchi automata is a strict subclass of the class
recognizable by deterministic po2-Büchi automata. ♦
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5 Complexity Results

In this section, we show that several decision problems for po2-Büchi automata are
coNP-complete. This is surprising since for general Büchi automata, these problems are
PSPACE-hard [16]. We consider the following decision problems for given po2-Büchi
automata A and B:
• Inclusion: Decide whether L(A) ⊆ L(B).
• Equivalence: Decide whether L(A) = L(B).
• Emptiness: Decide whether L(A) = ∅.
• Universality: Decide whether L(A) = Γω.

Theorem 16 Emptiness is coNP-complete for both nondeterministic and deterministic
po2-Büchi automata. Inclusion, Equivalence and Universality are coNP-complete
for deterministic po2-Büchi automata; for Inclusion it suffices that B is deterministic.

The proof of this theorem can be found at the end of this section.

Lemma 17 Inclusion is in coNP for nondeterministic A and deterministic B.

Proof: Let ZA and ZB be the states of A and B, respectively. We have L(A) ⊆ L(B)
if and only if L(A) \ L(B) = ∅. By Lemma 5 we see that we can easily compute a
deterministic po2-Büchi automaton B such that L(B) = Γω \ L(B). If L(A) ∩ L(B) 6= ∅,
then, by Lemma 3, there is a word u with |u| ≤ |ZA|+ |ZB| and a letter a ∈ Γ such that
uaω ∈ L(A) ∩ L(B) = L(A) \ L(B). We might have to add one state in each of A and B
for making them complete. Therefore, in order to test L(A) 6⊆ L(B), it suffices to guess a
word u of length at most |ZA|+ |ZB| and a letter a ∈ Γ with uaω ∈ L(A) ∩ L(B). Hence,
non-inclusion can be verified in NP, i.e., Inclusion is in coNP. �

Lemma 18 Emptiness is coNP-hard for deterministic po2-Büchi automata.

Proof: We shall reduce the complement of Sat to Emptiness. Let ϕ be a propositional
formula and let v1, . . . , vm be the variables used in ϕ. We give the construction of a
deterministic po2-automaton Aϕ over the alphabet {0, 1} such that L(Aϕ) = ∅ if and
only if there is no satisfying assignment for ϕ. The idea is that we identify the position i
of the input with the assignment of variable i for 1 ≤ i ≤ m. The rest of the input has no
effect on the computation.
Inductively we construct an automaton with the following characteristics: There are

two distinguished X-states xt and xf with a loop for both letters 0 and 1. No other
right-moving state has a self-loop. The state xt is eventually entered if ϕ evaluates to
true under the input, else xf is eventually entered. Moreover, xt and xf are only entered
by transitions reading . and xt is the sole final state. Hence an input is accepted if and
only if eventually xt is entered. In case it is rejected, it eventually enters xf .

For variables vi the automaton Avi skips the first i− 1 letters of the input, remembers
the letter ai at position i and returns to the beginning of the word. If ai = 1 then A
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enters xt else it enters xf . For the negation we simply swap the states xf and xt. For ϕ∧ψ
we compose the automata Aϕ and Aψ in the following way: The states xt and xf of Aϕ
are deleted. Transitions of Aϕ leading into state xf are redirected to the corresponding
state xf of Aψ; transitions leading into state xt are redirected to the initial state of Aψ.
Similarly, we get an automaton for ϕ ∨ ψ. �

Proof (Proof of Theorem 16): For nondeterministic A and deterministic B, Lemma 17
shows that Inclusion is in coNP. Therefore, Emptiness, Equivalence and Uni-
versality for deterministic po2-Büchi automata are in coNP, too. Lemma 18 yields
coNP-hardness of Emptiness for deterministic po2-Büchi automata. Closure under
complement (Lemma 5) yields a reduction from Emptiness to Universality. Together
with the straightforward reductions from Universality to Equivalence and from
Emptiness to Inclusion, this yields coNP-hardness of all these problems for deterministic
po2-Büchi automata. �
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