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The dot-depth hierarchy is a classification of star-free languages. It is related
to the quantifier alternation hierarchy of first-order logic over finite words.
We consider fragments of languages with dot-depth 1/2 and dot-depth 1
obtained by prohibiting the specification of prefixes or suffixes. As it turns
out, these language classes are in one-to-one correspondence with fragments
of alternation-free first-order logic without min- or max-predicate. For all
fragments, we obtain effective algebraic characterizations. Moreover, we give
new proofs for the decidability of the membership problem for dot-depth 1/2
and dot-depth 1.

1 Introduction

The dot-depth hierarchy Bn for n ∈ N + {1/2, 1} has been introduced by Cohen and
Brzozowski [3]. A very similar hierarchy is the Straubing-Thérien hierarchy Ln, see
[19, 21]. Both hierarchies are strict [2] and they exhaust the class of star-free languages.
A classical result of McNaughton and Papert is that a language is star-free if and only if it
is definable in first-order logic [10]. Thomas [23] has tightened this result by showing that
there is a one-to-one correspondence between the dot-depth hierarchy (and also between
the Straubing-Thérien hierarchy) and the quantifier alternation hierarchy of first-order
logic. More precisely, the dot-depth hierarchy is related to the quantifier alternation
hierarchy over the signature [<,+1,min,max], whereas the Straubing-Thérien hierarchy
corresponds to the quantifier alternation hierarchy over the signature [<].
Schützenberger has shown that a language is star-free if and only if its syntactic

semigroup is aperiodic [16]. The latter property is decidable. Together with the result of
McNaughton and Papert, this yields a decision procedure for definability in first-order
logic. Effectively determining the level of a language in the dot-depth hierarchy or
equivalently, in the quantifier alternation hierarchy of first-order logic, is one of the most
∗Supported by the German Research Foundation (DFG) under grant DI 435/5-1.

1



challenging open problems in automata theory. For n ∈ N, Straubing has shown that
membership in Bn is decidable if and only if membership in Ln is decidable [20]. This
result has been extended to the half-levels by Pin and Weil [15]. Simon has shown that
the class of piecewise testable languages L1 is decidable [17]. Later, Knast [6] gave an
effective algebraic characterization of B1. Decidability of L1/2 was shown by Pin [12], and
the levels B1/2 and L3/2 are decidable by a result of Pin and Weil [14]. The most recent
decidability result is for B3/2 due to Glaßer and Schmitz [4]. To date, no other levels are
known to be decidable.
In this paper, we focus on subclasses of B1/2 and B1. For both B1/2 and B1 we give

new proofs for their effective algebraic characterizations. The proof of Pin and Weil [14]
for B1/2 is based on factorization forests [18], and the proof of Knast [6] as well as the
simplified version of Thérien [22] for B1 are based on a generalization of finite monoids,
so-called finite categories [24]. Our proof for B1 is a generalization of Klíma’s proof [5]
for L1. The main advantage of our proofs for B1/2 and B1 over previous ones is that the
constants involved in finding language descriptions for given algebraic objects are more
explicit (and therefore smaller).
The main original contributions of this paper are effective algebraic characterizations

of fragments of alternation-free first-order logic over the signatures [<,+1,min] without
max-predicate, [<,+1,max] without min, and [<,+1] without min and max. These
fragments also admit language characterizations in terms of subclasses of B1/2 and B1.
The corresponding language classes are obtained by prohibiting the specification of prefixes
or suffixes. A more detailed overview of our results can be found in the summary in
Section 7.
A full version of this paper can be found as technical report [8].

2 Preliminaries

Words and languages Let Γ be a finite nonempty alphabet. The set of finite words is
Γ ∗. By 1 we denote the empty word and Γ+ = Γ ∗ \ {1} is the set of finite nonempty
words. A word v ∈ Γ ∗ is a prefix (resp. suffix, resp. factor) of u if u ∈ vΓ ∗ (resp.
u ∈ Γ ∗v, resp. u ∈ Γ ∗vΓ ∗). The length of a word u ∈ Γ ∗ is |u| and its alphabet is
alph(u) = {a ∈ Γ | u ∈ Γ ∗aΓ ∗}. Similarly, alphk(u) =

{
v ∈ Γ k

∣∣ u ∈ Γ ∗vΓ ∗} is the
set of all factors of u of length k. A quotient of L ⊆ Γ+ is a language of the form
u−1L = {v ∈ Γ+ | uv ∈ L} or Lu−1 = {v ∈ Γ+ | vu ∈ L} for u ∈ Γ ∗. A language L
is a monomial of degree m if L = w1Γ

∗w2 · · ·Γ ∗wn for some w1, . . . , wn ∈ Γ ∗ with
|w1 · · ·wn| = m. A language has dot-depth one if it is a Boolean combination of monomials.
Throughout this paper, Boolean operations are complementation, finite union, and finite
intersection. Positive Boolean operations are finite union and finite intersection.

First-order logic over words We consider the first-order logic FO = FO[<,+1,min,max]
over nonempty finite words. We view words as sequences of labeled positions which are
linearly ordered by <. Variables are interpreted as positions of a word. For variables x, y
we have the following atomic formulas: x < y says that x is a position smaller than y; and
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x = y + 1 is true if x is the immediate successor of y; the formula min(x) (resp. max(x))
holds if x is the first (resp. last) position. Moreover, we always assume that we have
an atomic formula > (for true), equality of positions x = y, and a predicate λ(x) = a
specifying that position x is labeled by a ∈ Γ . Formulas can be composed using Boolean
operations, existential quantification, and universal quantification. Their semantics is as
usual. A sentence is a formula without free variables. For a sentence ϕ of FO we write
u |= ϕ if u is a model of ϕ and the language defined by ϕ is L(ϕ) = {u ∈ Γ+ | u |= ϕ}.

The fragment Σ1 consists of all FO-formulas in prenex normal form with only one block
of quantifiers and these quantifiers are existential. Let C ⊆ {<,+1,min,max}. By Σ1[C]
we denote the class of formulas in Σ1 which only use predicates in C, equality, and the
label predicate. The fragment of alternation-free formulas over the signature C is BΣ1[C];
it comprises all Boolean combinations of formulas in Σ1[C].

Finite semigroups and recognizable languages Let S be a semigroup. We always
assume that S is nonempty. The set of idempotents is E(S) =

{
e ∈ S

∣∣ e2 = e
}
. For

every finite semigroup S there exists a number ω ≥ 1 such that for every x ∈ S, the
power xω is the unique idempotent element generated by x. Frequently, we consider words
u, v ∈ S∗ where the alphabet is a semigroup. We write “u = v in S” if either u = 1 = v
or u, v ∈ S+ evaluate to the same element of S.

Lemma 1. Let S be a finite semigroup. For all x1, . . . , x|S| ∈ S there exist i ∈ {1, . . . , |S|}
and e ∈ E(S) such that x1 · · ·xi = x1 · · ·xie in S.

A subset I ⊆ S is an ideal (resp. right ideal, resp. left ideal) if S1IS1 ⊆ I (resp. IS1 ⊆ I,
resp. S1I ⊆ I). Here, the monoid S1 = S∪{1} is obtained by adjoining a neutral element.
Green’s relations are an important tool in the study of semigroups. They are defined
as follows. Let x ≤J y (resp. x ≤R y, resp. x ≤L y) if there exist s, t ∈ S1 such that
x = syt in S (resp. x = yt in S, resp. x = sy in S). Let x J y (resp. x R y, resp. x L y)
if x ≤J y and y ≤J x (resp. x ≤R y and y ≤R x, resp. x ≤L y and y ≤L x). Therefore,
x J y (resp. x R y, resp. x L y) if and only if x and y generate the same ideals (resp.
right ideals, resp. left ideals) in S. The relations ≤R, ≤L, and ≤J form preorders on S;
therefore R, L, and J are equivalence relations.

Let ≤ be a preorder on S. A set P ⊆ S is a ≤-order ideal if x ≤ y ∈ P implies x ∈ P .
An ordered semigroup S is equipped with a compatible partial order ≤, i.e., if p ≤ q and
s ≤ t, then ps ≤ qt. Every semigroup is an ordered semigroup with equality as partial
order. A language L ⊆ Γ+ is recognized by an ordered semigroup S if there exists a
homomorphism h : Γ+ → S such that L = h−1(P ) for some ≤-order ideal P . If the order
of S is equality, then we obtain the usual notion of recognition. Note that every ≤R-order
ideal (resp. ≤L-order ideal, resp. ≤J -order ideal) is a right ideal (resp. left ideal, resp.
ideal) and vice versa. For a language L ⊆ Γ+ the syntactic preorder ≤L over Γ+ is given
by x ≤L y if uyv ∈ L⇒ uxv ∈ L for all u, v ∈ Γ ∗. The syntactic congruence ≡L is defined
by x ≡L y if both x ≤L y and y ≤L x. The equivalence classes [x]L = {y ∈ Γ+ | x ≡L y}
equipped with the canonical composition constitute the syntactic semigroup Synt(L) and
the preorder ≤L of Γ+ becomes a compatible partial order of Synt(L). The syntactic

3



homomorphism is hL : Γ+ → Synt(L) with hL(x) = [x]L. The syntactic semigroup of L
is finite if and only if L is regular. Moreover, every language is recognized by its syntactic
semigroup.

By Jxωyxω ≤ xωK we denote the class of finite ordered semigroups S such that xωyxω ≤
xω for all elements x, y ∈ S. We let B1 be the class of finite semigroups S such that
(exfy)ωexf(tesf)ω = (exfy)ωesf(tesf)ω for all idempotents e, f ∈ E(S) and all elements
s, t, x, y ∈ S.

Lemma 2. Let (S,≤) be an ordered semigroup such that xωyxω ≤ xω for all x, y ∈ S.
Then S ∈ B1.

Lemma 3. Let S ∈ B1 and let u, v ∈ S with u = ue and v = ve for some idempotent
e ∈ E(S). If u R v, then u = v.

3 Dot-depth 1/2

A language L ⊆ Γ+ has dot-depth 1/2 if it is a positive Boolean combination of monomials
w1Γ

∗w2 · · ·Γ ∗wn with wi ∈ Γ ∗. By a result of Thomas [23], a language has dot-depth 1/2
if and only if it is definable in existential first-order logic Σ1[<,+1,min,max]. Pin and
Weil [14] have shown that L has dot-depth 1/2 if and only if Synt(L) ∈ Jxωyxω ≤ xωK.
In this section, we give a new proof of these equivalences. The key step in the proof is to
show that if L ⊆ Γ+ is recognized by some semigroup in Jxωyxω ≤ xωK, then L is a union
of monomials w1Γ

∗w2 · · ·Γ ∗wn. The main advantage of the proof given here is that the
degree |w1 · · ·wn| is polynomially bounded (Proposition 9), whereas in the proof of Pin
and Weil, the bound is exponential.

Theorem 4 (Pin/Weil [14], Thomas [23]). Let L ⊆ Γ+. The following are equivalent:
1. L is definable in Σ1[<,+1,min,max].
2. L is a finite union of monomials w1Γ

∗w2 · · ·Γ ∗wn.
3. L is a positive Boolean combination of monomials w1Γ

∗w2 · · ·Γ ∗wn.
4. Synt(L) ∈ Jxωyxω ≤ xωK.

In the remainder of this section we prove the above theorem.

Lemma 5. Let L ⊆ Γ+ be definable by a sentence in Σ1[<,+1,min,max] with m
variables. Then L is a finite union of languages w1Γ

+w2 · · ·Γ+wn with |w1 · · ·wn| ≤ m.
In particular, L is a finite union of monomials of the form w1Γ

∗w2 · · ·Γ ∗wn of degree
less than 2m.

Lemma 6. Let w1, . . . , wn ∈ Γ ∗.
1. The monomial w1Γ

∗w2 · · ·Γ ∗wn is definable by a Σ1[<,+1,min,max]-sentence
which uses |w1 · · ·wn| variables.

2. The monomial w1Γ
∗ · · ·wnΓ

∗ is definable by a Σ1[<,+1,min]-sentence which uses
|w1 · · ·wn| variables.

3. The monomial Γ ∗w1Γ
∗ · · ·wnΓ

∗ is definable by a Σ1[<,+1]-sentence which uses
|w1 · · ·wn| variables.
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Lemma 7. Let L ⊆ Γ+ be a positive Boolean combination of monomials w1Γ
∗w2 · · ·Γ ∗wn.

Then Synt(L) ∈ Jxωyxω ≤ xωK.

Lemma 8. Let S be a finite semigroup. For every w ∈ S+ there exists a factorization
w = x1w1y1 · · ·xmwmyms with

1. 0 ≤ m ≤ |S| and |x1y1 · · ·xmyms| < 2 |S|2 + |S|,
2. wi, s ∈ S∗, xi, yi ∈ S+, |yi| ≤ |S|,
3. ∀ i ∈ {1, . . . ,m} ∃ ei ∈ E(S) : xi = xiei in S and yi = yiei in S.

Proof. For w ∈ S∗, let E(w) be the set all e ∈ E(S) such that there exists a factor x ∈ S+

of w with |x| ≤ |S| and xe = x in S. We prove the existence of the factorization by
induction on |E(w)| with the stronger assertions that m ≤ |E(w)| and |x1y1 · · ·xmyms| <
2 |S| |E(w)|+ |S| instead of condition “1”. Suppose |E(w)| = 0. By Lemma 1 we have
|w| < |S|. Hence, we can choose m = 0 and s = w.

If |E(w)| ≥ 1, then Lemma 1 yields a nonempty prefix x of w with |x| ≤ |S| such that
xe = x in S for some idempotent e ∈ E(S). Write w = xw′. We have to distinguish
two cases. The first case is e 6∈ E(w′). By induction, there exists a factorization w′ =
x1w1y1 · · ·xmwmyms with m ≤ |E(w′)| < |E(w)| and |x1y1 · · ·xmyms| ≤ 2 |S| |E(w′)| +
|S| satisfying conditions “2” and “3”. If m ≥ 1, then w = (xx1)w1y1 · · ·xmwmyms is a
desired factorization of w. If w′ = s, then the factorization is w = xs with m = 0.
The second case is e ∈ E(w′). Let w′ = w0y0w

′′ such that y0 ∈ S+, |y0| ≤ |S|,
y0e = y0 in S and e 6∈ E(w′′), i.e., we take y0 as the last short factor of w′ which is
stabilized by e. By induction, there exists a factorization w′′ = x1w1y1 · · ·xmwmyms.
Now, w = x0w0y0 · · ·xmwmyms with x0 = x is a factorization of w of the desired form.

Proposition 9. Let L ⊆ Γ+ be recognized by S ∈ Jxωyxω ≤ xωK. Then L is a finite
union of monomials w1Γ

∗w2 · · ·Γ ∗wn with n ≤ |S|2 and degree |w1 · · ·wn| < 2 |S|3+ |S|2.
Proof. Let h : Γ+ → S be a homomorphism recognizing L. The order ideal of S
generated by a subset P ⊆ S is ↓P = {x ∈ S | x ≤ y for some y ∈ P}. We define the
depth of the word u ∈ Γ+ as d(u) = |{s ∈ S | h(u) ≤R s}|. For every u ∈ Γ+ we are going
to construct a language Pu = w1Γ

∗w2 · · ·Γ ∗wn with |w1 · · ·wn| < 2d(u) |S|2 + d(u) |S|
such that u ∈ Pu ⊆ h−1

(
↓h(u)

)
. With this claim, L =

⋃
u∈L Pu is a finite union since

there are only finitely many monomials of degree less than 2 |S|3 + |S|2.
In order to avoid unnecessary case distinctions, we set P1 = 1 and h(1) >R h(u)

for all u ∈ Γ+. Let u = vw, v ∈ Γ ∗, w ∈ aΓ ∗ such that h(v) >R h(va) R h(u).
Now, d(v) < d(u) and hence by induction, there exists a monomial Pv with v ∈ Pv ⊆
h−1(↓h(v)) of degree less than 2d(u) |S|2 + d(u) |S| − 2 |S|2 − |S|. By Lemma 8 we
find a factorization w = x1u1y1 · · ·xmumyms such that |x1y1 · · ·xmyms| < 2 |S|2 + |S|
and for all i ∈ {1, . . . ,m} there exists an idempotent ei with h(xi)ei = h(xi) and
h(yi)ei = h(yi). Using Lemma 3 we see h(u) = h(vw) = h(vx1 · · ·xms). Now, define
the monomial Pu = Pv x1Γ

∗y1 · · ·xmΓ ∗yms of degree less than 2d(u) |S|2 + d(u) |S|. By
construction u ∈ Pu. Consider v′w′ ∈ Pu with v′ ∈ Pv and w′ = x1w

′
1y1 · · ·xmw′myms.

We have h(v′) ≤ h(v) and since ese ≤ e for all s ∈ S and all e ∈ E(S) we see that
h(xi) = h(xi)ei ≥ h(xi)eih(w

′
iyi)ei = h(xiw

′
iyi). Therefore, h(x1 · · ·xms) ≥ h(w′) and

h(u) = h(vx1 · · ·xms) ≥ h(v′w′).
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4 Existential first-order logic without min or max

At higher levels of the quantifier alternation hierarchy, it is possible to specify the prefix
and the suffix of a word by using successor +1 as the only predicate (apart from labels
λ(x) = a for a ∈ Γ ). At the level Σ1, the min-predicate is required to determine prefixes,
and max is required for suffixes. We have the following inclusions:

Σ1[<] Σ1[<,+1]
Σ1[<,+1,min]

Σ1[<,+1,max]
Σ1[<,+1,min,max](

( (
( (

Pin [12] has given an effective characterization for the class of languages definable
Σ1[<]. For Σ1[<,+1,min,max], decidability follows by a result of Pin and Weil [14] (or
alternatively by Theorem 4). In this section, we characterize the languages definable in
the other fragments and we show that definability within these fragments is decidable.
The proofs easily follow from Theorem 4.

Theorem 10. Let L ⊆ Γ+. The following assertions are equivalent:
1. L is definable in Σ1[<,+1,min].
2. L is a finite union of monomials w1Γ

∗ · · ·wnΓ
∗.

3. Synt(L) ∈ Jxωyxω ≤ xωK and hL(L) is a right ideal of Synt(L).

Of course, there also is a left-right dual of the above theorem: A language L is definable
in Σ1[<,+1,max] if and only if L is a union of monomials of the form Γ ∗w1 · · ·Γ ∗wn if
and only if Synt(L) ∈ Jxωyxω ≤ xωK and hL(L) is a left ideal of Synt(L). The following
theorem is the analogue of Theorem 10 with neither min nor max predicates.

Theorem 11. Let L ⊆ Γ+. The following assertions are equivalent:
1. L is definable in Σ1[<,+1].
2. L is a finite union of monomials Γ ∗w1 · · ·Γ ∗wnΓ

∗.
3. Synt(L) ∈ Jxωyxω ≤ xωK and hL(L) is an ideal of Synt(L).

Corollary 12. Let L ⊆ Γ+ be a regular language. It is decidable whether L is definable
in Σ1[<,+1] (resp. Σ1[<,+1,min], resp. Σ1[<,+1,max]).

5 Dot-depth one

A language L ⊆ Γ+ has dot-depth one if it is a Boolean combination of monomials of
the form w1Γ

∗w2 · · ·Γ ∗wn with wi ∈ Γ ∗. Knast [6] has shown that a language L has
dot-depth one if and only if Synt(L) ∈ B1. Since the latter property is decidable, this
gives decidability of dot-depth one. Later, Thérien [22] gave a simpler proof for Knast’s
result. Both proofs are based on an algebraic concept called finite categories, see [24].
In this section, we give a new (more combinatorial) proof of this theorem. The same
techniques were used by the authors in order to obtain a characterization for languages of
dot-depth one over infinite words [7]. As for dot-depth 1/2, the main advantage of the
current proof is that the bounds involved are more explicit.
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Theorem 13 (Knast [6], Thomas [23]). Let L ⊆ Γ+. The following assertions are
equivalent:

1. L is definable in BΣ1[<,+1,min,max].
2. L is a Boolean combination of monomials w1Γ

∗w2 · · ·Γ ∗wn.
3. Synt(L) ∈ B1.

As for dot-depth 1/2, the equivalence of BΣ1[<,+1,min,max] and dot-depth one is
due to a result by Thomas [23]. The remainder of this section is devoted to the proof
of the above theorem. The following lemma will serve as the link between the algebraic
properties of B1 and the combinatorial properties in Lemma 15 below.

Lemma 14. Let S ∈ B1 and let k ≥ |S| + 1. For all a ∈ Γ and all u, v ∈ S+ with
|v| ≥ k − 1 we have alphk(v) 6= alphk(va) if u R uv >R uva.

Proof. Assume u R uv >R uva and alphk(v) = alphk(va). Let va = v′wa with |wa| = k.
Since wa ∈ alphk(va) = alphk(v) we have v = pwaq for some p, q ∈ S∗. Let x = up,
y = uv′, and wa = a1 · · · ak for ai ∈ S. By Lemma 1 there exist i ∈ {1, . . . , |S|} and
e ∈ E(S) such that a1 · · · ai = a1 · · · aie in S. In particular i ≤ k − 1 and xa1 · · · ai R
ya1 · · · ai. Lemma 3 yields xa1 · · · ai = ya1 · · · ai in S. Thus uva = ywa = xwa R u in S,
a contradiction.

The following lemma is the main combinatorial ingredient for our proof of Knast’s
Theorem. It generalizes an idea of Klíma [5] to factors of words. The determinacy
mechanism is similar to unambiguous interval logic with lookaround [9].

Lemma 15. Let xi, yi, ui, u′i, vi, v
′
i ∈ Γ+ and uk, vk, u′1, v

′
1 ∈ Γ ∗, and let

u = x1u1 · · ·xkuk = u′1y1 · · ·u′`y`
v = x1v1 · · ·xkvk = v′1y1 · · · v′`y`

such that x1u1 · · ·xk (resp. x1v1 · · ·xk) is the shortest prefix of u (resp. v) in x1Γ+x2 · · ·Γ+xk,
and y1 · · ·u′`y` (resp. y1 · · · v′`y`) is the shortest suffix of u (resp. v) in y1Γ+y2 · · ·Γ+y`.
If u and v are contained in the same languages w1Γ

+w2 · · ·Γ+wn with n ≤ k + ` and
|w1 · · ·wn| ≤ |x1 · · ·xk y1 · · · y`|, then the relative positions of xk and y1 are the same in
u as in v. More precisely,

1. x1u1 · · ·xk is a prefix of u′1 ⇔ x1v1 · · ·xk is a prefix of v′1,
2. if xk and y1 overlap in u or in v, then they have the same overlap in both words,
3. u′1y1 is a prefix of x1 · · ·uk−1 ⇔ v′1y1 is a prefix of x1 · · · vk−1.

Lemma 16. Let S ∈ B1. For all u, v, x, s ∈ S and all idempotents e, f ∈ S we have
u R uexf, esfv L v ⇒ uexfv = uesfv.

Proof. Since u R uexf and v L esfv, there exist y, t ∈ M with u = uexfy and
v = tesfv. In particular, u = u(exfy)ω and v = (tesf)ωv. We conclude uexfv =
u(exfy)ωexf(tesf)ωv = u(exfy)ωesf(tesf)ωv = uesfv, where the second equality uses
S ∈ B1.
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Proposition 17. Let L ⊆ Γ+ be recognized by a homomorphism h : Γ+ → S with S ∈ B1

and let u, v ∈ Γ+. If u and v are contained in the same languages w1Γ
+w2 · · ·Γ+wn with

n ≤ 2 |S| and |w1 · · ·wn| ≤ 4 |S|2 − 2 |S|, then h(u) = h(v).

Proof. This proof was inspired by Klíma’s proof [5] of Simon’s Theorem on piecewise-
testable languages. The outline is as follows. We consider factorizations induced by the
R-factorization of u and the L-factorization of v. Then we transfer the factorization of u
to v and vice versa such that the respective orders of the factors in u and v are the same.
Finally, we transform v into u by a sequence of h-invariant substitutions.

Consider the R-factorization u = a1u1 · · · akuk such that

h(a1u1 · · · ai) R h(a1u1 · · · aiui) >R h(a1u1 · · · aiuiai+1)

for all i. We have k ≤ |S|. Let ji be the position of ai in the above factorization. We
color red all positions of u in all the intervals [ ji − |S| ; ji + |S| − 1 ]. In particular, the
ai-positions ji are red. And in general, there is a neighborhood of size 2 |S| around each
ai which contains only red positions. In the worst case, a1 is the sole exception. Hence,
there are at most 2 |S|2 − |S| red positions in u. Let Ri be the i-th consecutive factor of
red positions. Then u = R1u

′
1 · · ·Rk′u

′
k′ for some u′i ∈ Γ+, i < k′, and u′k′ ∈ Γ ∗. Note

that k′ ≤ k because some intervals could overlap. By Lemma 14, the word R1u
′
1 · · ·Ri is

the shortest prefix of u contained in R1Γ
+ · · ·Ri.

Symmetrically, we consider the L-factorization v = v1b1 · · · v`b` such that

h(bi−1vibi · · · v`b`) <L h(vibi · · · v`b`) L h(bi · · · v`b`)

for all i. Let j′i be the position of bi in the above factorization. We color blue all positions
of v in all the intervals [ j′i−|S|+1; j′i+ |S| ]. As before, there are at most 2 |S|2−|S| blue
positions. Let Bi be the i-th consecutive factor of blue positions. Then v = v′1B1 · · · v′`′B`′

for `′ ≤ |S| and some v′i ∈ Γ+, i > 1 and v′1 ∈ Γ ∗. As before, Bi · · · v′`′B`′ is the shortest
suffix of v contained in Bi · · ·Γ+B`′ .
Next, we transfer the red positions of u to v, and we transfer the blue positions of v

to u. By assumption, v ∈ R1Γ
+ · · ·Rk′Γ

+. Therefore, there exists a factorization v =
R1v

′′
1 · · ·Rk′v

′′
k′ such that R1v

′′
1 · · ·Ri is the shortest prefix of v contained in R1Γ

+ · · ·Ri.
We color the positions of the Ri’s in v red. Similarly, there exists a factorization u =
u′′1B1 · · ·u′′`′B`′ such that Bi · · ·u′′`′B`′ is the shortest suffix of u contained in Bi · · ·Γ+B`′ .
We color the positions of the Bi’s in u blue. Now, colored positions in u and v are either
red or blue or both. By Lemma 15, the colored positions in u have the same order as
the colored positions in v. Let wi be the i-th consecutive factor of colored (red or blue)
positions, and write

u = w1x1 · · ·wn−1xn−1wn,

v = w1s1 · · ·wn−1sn−1wn.

By Lemma 1 and its left-right dual, there exist e1, . . . , en−1 ∈ E(S) and f2, . . . , fn ∈ E(S)
such that each wi admits a factorization wi = piriqi with |pi| ≤ |S| − 1 and |qi| ≤ |S| − 1
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satisfying

h(ri) = h(ri) ei for 1 ≤ i < n,

h(ri) = fi h(ri) for 1 < i ≤ n.

In particular, we can assume p1 = 1 = qn. Let x′i = qixipi+1 and s′i = qisipi+1 for
1 ≤ i < n. Then

u = r1x
′
1r2 · · ·x′n−1rn,

v = r1s
′
1r2 · · · s′n−1rn,

and the ri’s in u cover the positions of the R-factorization of u, whereas the ri’s in v
cover the positions of the L-factorization of v. Therefore, for all 1 ≤ i < n

h(r1x
′
1 · · · ri) R h(r1x

′
1 · · · ri) · eih(x′i)fi+1,

h(ri+1 · · · s′nrn) L eih(s
′
i)fi+1 · h(ri+1 · · · s′nrn).

By an (n− 1)-fold application of Lemma 16 we obtain

h(v) = h(r1s
′
1r2s

′
2r3 · · · s′n−1rn)

= h(r1x
′
1r2s

′
2r3 · · · s′n−1rn)

= h(r1x
′
1r2x

′
2r3 · · · s′n−1rn)

...
= h(r1x

′
1r2x

′
2r3 · · ·x′n−1rn) = h(u)

Note that the substitution rules s′i → x′i are h-invariant in their respective contexts only
when applied from left to right.

Corollary 18. Let L ⊆ Γ+ be recognized by a finite semigroup S ∈ B1 and let u, v ∈ Γ+.
If u and v are contained in the same monomials w1Γ

∗w2 · · ·Γ ∗wn with n ≤ 2 |S| and
degree |w1 · · ·wn| < 4 |S|2, then h(u) = h(v).

We are now ready to prove Theorem 13.

Proof (Theorem 13). “1⇔ 2”: This follows from Theorem 4.
“2⇒ 3”: By Lemma 7 the syntactic semigroup of every monomial w1Γ

∗w2 · · ·Γ ∗wn

satisfies xωyxω ≤ xω and by Lemma 2 it is in B1. Thus L is recognizable by a direct
product S ∈ B1 of such semigroups. Since Synt(L) is a divisor of S, we see that
Synt(L) ∈ B1, cf. [11].
“3⇒ 2”: Let L be recognized by h : Γ+ → S ∈ B1. We write u ≡ v if u and v are

contained in the same monomials of the form w1Γ
∗w2 · · ·Γ ∗wn of degree at most 4 |S|2.

We have L = h−1(P ) for P = h(L). Corollary 18 shows that every set h−1(p) is a union
of ≡-classes. Moreover, ≡ has finite index since there are only finitely many monomials
of bounded degree. Every ≡-class is a finite Boolean combination of the required form by
specifying which monomials hold and which do not hold.
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6 Dot-depth one without min or max

As for existential first-order logic, one cannot define min- or max-predicates in BΣ1[<,+1].
Therefore, the following inclusions hold:

BΣ1[<]

BΣ1[+1]
BΣ1[<,+1]

BΣ1[<,+1,min]

BΣ1[<,+1,max]
BΣ1[<,+1,min,max]

(

(

( (
( (

Simon’s Theorem on piecewise testable languages [17] gives decidability of BΣ1[<]. An ef-
fective characterization of BΣ1[+1] is due to Pin [13]. For the fragment BΣ1[<,+1,min,max],
decidability follows by Knast’s Theorem [6], see Theorem 13. In this section, we give
effective characterizations of the remaining fragments. Moreover, we obtain natural
subclasses of dot-depth one for the languages definable by the above fragments.
Apart from Theorem 13, the following lemma is the main ingredient in the proof of

Theorem 20 below.

Lemma 19. Let h : Γ+ → S ∈ B1 and let u, v ∈ Γ+. If u and v are contained in the
same monomials w1Γ

∗ · · ·wnΓ
∗ with |w1 · · ·wn| < 8 |S|2, then h(u) R h(v).

Proof. We write u ≡m v if u and v are contained in the same monomials w1Γ
∗w2 · · ·Γ ∗wn

of degree |w1 · · ·wn| ≤ m. Analogously, we write u ∼m v if u and v are contained in the
same monomials w1Γ

∗ · · ·wnΓ
∗ of degree |w1 · · ·wn| ≤ m. If u ≡m v for m = 4 |S|2 − 1,

then by Corollary 18 we have h(u) = h(v).
Let u ∼2m v. We want to show h(u) R h(v). We can assume |u|, |v| ≥ 2m, because

otherwise u = v. Let u = u′q with |q| = m. Consider the factorization v = v′qx such
that qx is the shortest suffix of v admitting q as a factor, i.e., v is factorized at the last
occurrence of q. This factorization exists, since u ∈ Γ ∗qΓ ∗ 3 v. We claim u ≡m v′q and
therefore, h(v) ≤R h(v′q) = h(u). Symmetry then yields h(u) R h(v).
We now prove the claim. First, let v′q ∈ P = w1Γ

∗w2 · · ·Γ ∗wn with |w1 · · ·wn| ≤ m.
Then v ∈ PΓ ∗ and u ∈ PΓ ∗. Since wn is a suffix of q, we conclude u ∈ P . Next,
suppose u ∈ P = w1Γ

∗w2 · · ·Γ ∗wn with |w1 · · ·wn| ≤ m. There exists a monomial Q =
v1Γ

∗v2 · · ·Γ ∗v` with |v1 · · · v`| ≤ |w1 · · ·wn| and u′ ∈ Q ⊆ Pq−1. Since u′q ∈ QqΓ ∗ and
the degree of the monomial QqΓ ∗ is at most 2m, we obtain v ∈ QqΓ ∗. By choice of x we
have v′q ∈ QqΓ ∗ ⊆ PΓ ∗. Since wn is a suffix of q, we conclude v′q ∈ w1Γ

∗w2 · · ·Γ ∗wn.

Theorem 20. Let L ⊆ Γ+. The following assertions are equivalent:
1. L is definable in BΣ1[<,+1,min].
2. L is a Boolean combination of monomials w1Γ

∗ · · ·wnΓ
∗.

3. Synt(L) ∈ B1 and the syntactic homomorphism hL : Γ+ → Synt(L) has the property
that hL(L) is a union of R-classes.

There also is a left-right dual of the above theorem: A language L is definable in
BΣ1[<,+1,max] if and only if L is a Boolean combination of monomials Γ ∗w1 · · ·Γ ∗wn

if and only if Synt(L) ∈ B1 and hL(L) is a union of L-classes. Next, we consider the
fragment BΣ1[<,+1] with neither min nor max.
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Lemma 21. Let h : Γ+ → S ∈ B1 and let u, v ∈ Γ+. If u and v are contained in the
same monomials Γ ∗w1Γ

∗ · · ·wnΓ
∗ with |w1 · · ·wn| < 12 |S|2, then h(u) J h(v).

Theorem 22. Let L ⊆ Γ+. The following assertions are equivalent:
1. L is definable in BΣ1[<,+1].
2. L is a Boolean combination of monomials Γ ∗w1 · · ·Γ ∗wnΓ

∗.
3. Synt(L) ∈ B1 and the syntactic homomorphism hL : Γ+ → Synt(L) has the property

that hL(L) is a union of J -classes.

The condition of hL(L) being a union of J -classes in Theorem 22 has also been
used by Beauquier and Pin for an effective characterization of strongly locally testable
languages [1].

Corollary 23. Let L ⊆ Γ+ be a regular language. It is decidable whether L is definable
in BΣ1[<,+1] (resp. BΣ1[<,+1,min], resp. BΣ1[<,+1,max]).

Since in every finite semigroup Green’s relation J is the finest equivalence relation
containing both R and L, we obtain the following corollary.

Corollary 24. A language L ⊆ Γ+ is definable in BΣ1[<,+1] if and only if L is definable
in both BΣ1[<,+1,min] and BΣ1[<,+1,max].

7 Summary

We considered subclasses of languages with dot-depth 1/2 and of languages with dot-depth
one. These subclasses admit counterparts in terms of fragments of existential first-order
logic Σ1 and its Boolean closure BΣ1. For all fragments, we gave effective algebraic
characterizations. We summarize the main results of this paper in Table 1. To shorten
notation, we write B1/2 instead of Jxωyxω ≤ xωK.

In addition, we gave new proofs for Pin and Weil’s Theorem on dot-depth 1/2 and for
Knast’s Theorem on dot-depth one. The proofs are combinatorial and they improve the
bounds involved in computing a language description for a given recognizing semigroup.
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