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Abstract. We consider the fragments FO2, Σ2∩FO2, Π2∩FO2, and ∆2

of first-order logic FO[<] over finite and infinite words. For all four frag-
ments, we give characterizations in terms of rankers. In particular, we
generalize the notion of a ranker to infinite words in two possible ways.
Both extensions are natural in the sense that over finite words they co-
incide with classical rankers, and over infinite words they both have the
full expressive power of FO2. Moreover, the first extension of rankers
admits a characterization of Σ2 ∩FO2 while the other leads to a charac-
terization of Π2 ∩ FO2. Both versions of rankers yield characterizations
of the fragment ∆2 = Σ2∩Π2. As a byproduct, we also obtain character-
izations based on unambiguous temporal logic and unambiguous interval
temporal logic.

1 Introduction

We consider fragments of two-variable first-order logic FO2. Formulas are in-
terpreted over words which may be finite or infinite. Over finite words only, a
large number of different characterizations of FO2 is known, see e.g. [8] or [2]
for an overview. Some of the characterizations have been generalized to infinite
words in [3]. We continue this line of work. For this paper the main difference
between finite word models and infinite word models is the following: Over finite
words, FO2 and the fragment ∆2 = Σ2 ∩ Π2 have the same expressive power
[9], whereas ∆2 is a strict subclass of FO2 over infinite words. Moreover, in the
case of infinite words, FO2 is incomparable to Σ2 and Π2. By definition, Σ2

is the class of formulas in prenex normal form with two blocks of quantifiers
starting with a block of existential quantifiers, and Π2 is the class of negations
of Σ2-formulas. Here and throughout the paper, we identify a logical fragment
with the class of languages definable in the fragment.

An important concept in this paper are rankers which have been introduced
by Immerman and Weis [10] in order to give a combinatorial characterization of
quantifier alternation within FO2 over finite words. Casually speaking, a ranker
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2 L. Dartois, M. Kufleitner, A. Lauser

is a sequence of instructions of the form “go to the next a-position” and “go to
the previous a-position” for some letters a. For every word, a ranker is either
undefined or it determines a unique position. We generalize rankers to infinite
words in two possible ways. The main difference to finite words is that we have
to define the semantics of “go to the last a-position” if there are infinitely many
occurrences of the letter a. The first solution is to say that the position is unde-
fined. The second approach is to stay at an infinite position. For example, if a
word has infinitely many a-positions but only two b-positions, then in the first
semantics “go to the last a-position and from there, go to the previous b-position”
would be undefined while in the second semantics it would determine the last
b-position. By delaying the interpretation of instructions until some letter with
finite occurrence is met, the second semantics is reminiscent of the lazy evalu-
ation principle, and we therefore call it lazy rankers. If we want to emphasize
that we use the first semantics, then we often use the term eager ranker. The
language L(r) generated by a ranker r consists of all words on which r is defined.
A ranker language is a Boolean combination of languages of the form L(r).

In both ways, rankers admit natural combinatorial characterizations of the
first-order fragments FO2 (Theorems 1 and 5) and ∆2 (Theorem 3) over finite
and infinite words. Moreover, the eager semantics yields a characterization of
Σ2∩FO2 (Theorem 2) while lazy rankers lead to a characterization of Π2∩FO2

(Theorem 4). We note that the decidability results for the first-order fragments
lead to decidability results for the respective ranker fragments [3].

It turns out that unambiguous temporal logic [4] and unambiguous interval
temporal logic [5] allow natural intermediate characterizations on the way from
first-order logic to rankers. In particular, this yields temporal logic counterparts
of the first-order fragments. Moreover, we show that it is possible to convert
formulas in unambiguous interval temporal logic into equivalent formulas in un-
ambiguous temporal logic, without introducing new negations (Propositions 1
and 2). This also leads to a new characterization of FO2 over finite words in
terms of restricted ranker languages (Corollary 1).

Due to lack of space, most proofs are omitted. For complete proofs, we refer
to the full version of this paper [1].

2 Preliminaries

In the following Γ denotes a finite alphabet. For A ⊆ Γ , we denote by A∗ the
set of finite words over A. The set of infinite words is Aω and A∞ = A∗ ∪Aω is
the set of finite and infinite words. The empty word is ε and we have {ε} = ∅∞.
For a word α and a position x of the word, α(x) is the x-th letter of α. By
|α| ∈ N ∪ {∞} we denote the length of α. Therefore α = α(1) · · ·α(|α|) if α
is finite and α = α(1)α(2) · · · if α is infinite. We call alph(α) the alphabet of
α, i.e., the set of letters occurring in α. For a ∈ Γ , a position labeled by a is
called an a-position. By im(α) we mean the imaginary alphabet of α, i.e., the
set of letters occurring infinitely often in α. For A ⊆ Γ , the set of words with
imaginary alphabet A is denoted by Aim. In particular, Γ ∗ = ∅im. A monomial
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(of degree k) is a language of the form A∗1a1 · · ·A∗kakA∞k+1 for letters ai ∈ Γ
and sets Ai ⊆ Γ . It is unambiguous if each word of the monomial has a unique
factorization u1a1 · · ·ukakβ with ui ∈ A∗i and β ∈ A∞k+1. A polynomial is a finite
union of monomials. It is called unambiguous if it is a finite union of unambiguous
monomials.

We denote by FO = FO[<] the first-order logic over words interpreted as
labeled linear orders (without ∞). As atomic formulas, FO comprises > (for
true), the unary predicate λ(x) = a for a ∈ Γ , and the binary predicate x < y
for variables x and y. The idea is that variables range over the linearly ordered
positions of a word, and λ(x) = a means that x is an a-position. Apart from the
Boolean connectives, we allow composition of formulas using existential quan-
tification ∃x : ϕ and universal quantification ∀x : ϕ for ϕ ∈ FO. The semantics is
as usual. Every formula in FO can be converted into a semantically equivalent
formula in prenex normal form by renaming variables and moving quantifiers to
the front. This observation gives rise to the fragment Σ2 (resp. Π2) consisting
of all FO-formulas in prenex normal form with only two blocks of quantifiers,
starting with a block of existential quantifiers (resp. universal quantifiers). Note
that the negation of a formula in Σ2 is equivalent to a formula in Π2 and vice
versa. The fragments Σ2 and Π2 are both closed under conjunction and disjunc-
tion. Furthermore, FO2 is the fragment of FO containing all formulas which use
at most two different names for the variables. This is a natural restriction, since
FO with three variables already has the full expressive power of FO. A sentence
in FO is a formula without free variables. The language defined by ϕ, denoted
by L(ϕ), is the set of words α ∈ Γ∞ for which ϕ is true. We frequently identify
logical fragments with the classes of languages they define (as in the definition
of the fragment ∆2 = Σ2 ∩Π2 for example).

Example 1. Consider the formulas

ϕ = ∃x∀y : y ≤ x ∨ λ(y) 6= a and ψ = ∀x∃y : y > x ∧ λ(y) = a.

The formula ϕ ∈ Σ2∩FO2 states that after some position there is no a-position,
i.e., L(ϕ) contains all words with finitely many a-positions. Its negation ψ ∈
Π2 ∩FO2 says that for all positions there is a greater a-position, i.e., L(ψ) is set
of all words α with a ∈ im(α). Surprisingly, L(ϕ) is not definable in Π2, while
L(ψ) is not definable in Σ2, cf. [3]. ♦

3 Rankers and Unambiguous Temporal Logics

For finite words, rankers have been introduced by Immerman and Weis [10].
They can be seen as a generalization of turtle programs used by Schwentick,
Thérien, and Vollmer [7] for characterizing FO2-definable languages over finite
words. The main difference between rankers and turtle programs is that rankers
either uniquely determine a position in a word or they are undefined, whereas
turtle programs mainly distinguish between being defined and being undefined.
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1 2 3 · · · ∞
a1 a2 a3 im(α)

Fig. 1. Signature of α = a1 a2 a3 · · · over lazy rankers

Extending rankers with Boolean connectives yields unambiguous temporal
logic (unambiguous TL). It is called unambiguous since each position considered
by some formula in this logic is unique. Unambiguous TL has been introduced
for Mazurkiewicz traces [4] which are a generalization of finite words.

All of our characterizations of first-order fragments rely on so-called unam-
biguous polynomials. A natural intermediate step from polynomials to temporal
logic is interval temporal logic. Unambiguous interval temporal logic (unambigu-
ous ITL) has been introduced by Lodaya, Pandya, and Shah [5] for finite words.
They showed that over finite words it has the same expressive power as FO2.

In this section, we generalize all three concepts (rankers, unambiguous TL,
and unambiguous ITL) to infinite words. In fact, for each concept we shall give
two natural generalizations. Surprisingly, it turns out that one of the two exten-
sions can be used for the characterization of the first-order fragment Σ2 ∩ FO2

over Γ∞ while the other yields a characterization of Π2 ∩ FO2. Moreover, both
semantics can be used to describe FO2 and ∆2. In fact, for ∆2 we use some
fragment of rankers which conceals the difference between the two versions.

3.1 Rankers

A ranker is a finite word over the alphabet {Xa,Ya | a ∈ Γ}. It can be interpreted
as a sequence of instructions of the form Xa and Ya. Here, Xa (for neXt-a) means
“go to the next a-position” and Ya (for Yesterday-a) means “go to the previous
a-position”. Below, we shall introduce a second variant of rankers called lazy
rankers. If we want to emphasize the usage of this first version of rankers we
refer to eager rankers. For a word α and a position x ∈ N ∪ {∞} we define

Xa(α, x) = min {y ∈ N | α(y) = a and y > x} ,
Ya(α, x) = max {y ∈ N | α(y) = a and y < x} .

As usual, we set y < ∞ for all y ∈ N. The minimum and the maximum of ∅ as
well as the maximum of an infinite set are undefined. In particular, Xa(α,∞)
is always undefined and Ya(α,∞) is defined if and only if a ∈ alph(α) \ im(α).
We extend this definition to rankers by setting Xa r(α, x) = r(α,Xa(α, x)) and
Ya r(α, x) = r(α,Ya(α, x)), i.e., rankers are processed from left to right. If r(α, x)
is defined for some non-empty ranker r, then r(α, x) 6=∞.

Next, we define another variant of rankers as finite words over the alphabet
{X`

a,Y
`

a | a ∈ Γ}. The superscript ` is derived from lazy, and such rankers are
called lazy rankers, accordingly. The difference to eager rankers is that lazy
rankers can point to an infinite position∞. The idea is that the position∞ is not
reachable from any finite position and that it represents the behavior at infinity.
We imagine that ∞ is labeled by all letters in im(α) for words α. Therefore, it
is often adequate to set ∞ < ∞, since the infinite position simulates a set of
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α · · ·

Ya

a

Yb

b

Xc

c
· · ·

no ano b

no c

α · · · ∞

Y`
d

X`
d

Y`
a

a

Y`
b

b

X`
c

c
im(α)· · ·

no ano b

no c

Fig. 2. An eager and a lazy ranker

finite positions, see Fig. 1. For a word α and a finite position x ∈ N we define
X`

a(α, x) = Xa(α, x) and Y`

a(α, x) = Ya(α, x). For the infinite position we set

X`

a(α,∞) =

{
∞ if a ∈ im(α)

undefined else

Y`

a(α,∞) =

{
∞ if a ∈ im(α)

Ya(α,∞) else

i.e., Y`

a(α,∞) is undefined if a 6∈ alph(α), and Y`

a(α,∞) = Ya(α,∞) is a finite
position if a ∈ alph(α) \ im(α). As before, we extend this definition to rankers
by setting X`

a r(α, x) = r(α,X`

a(α, x)) and Y`

a r(α, x) = r(α,Y`

a(α, x)). We denote
by alphΓ (r) the set of letters a ∈ Γ such that r contains a modality using the
letter a. It can happen that r(α,∞) = ∞ for some non-empty lazy ranker r.
This is the case if and only if r is of the form Y`

a s and alphΓ (r) ⊆ im(α).
If the reference to the word α is clear from the context, then for eager and

lazy rankers r we shorten the notation and write r(x) instead of r(α, x).
An eager ranker r is an X-ranker if r = Xa s for some ranker s and a ∈ Γ ,

and it is a Y-ranker if r is of the form Ya s. Lazy X`-rankers and Y`-rankers are
defined similarly. We proceed to define r(α), the position of α reached by the
ranker r by starting “outside” the word α. The intuition is as follows. If r is
an X-ranker or an X`-ranker, we imagine that we start at an outside position in
front of α; if r is a Y-ranker or a Y`-ranker, then we start at a position behind
α. Therefore, we define

r(α) = r(α, 0) if r is an X-ranker or an X`-ranker,

r(α) = r(α,∞) if r is a Y-ranker or a Y`-ranker.

On the left hand side of Fig. 2, a possible situation for the eager ranker
YaYb Xc being defined on some word α is depicted. The right hand side of the
same figure illustrates a similar situation for the lazy ranker Y`

d X
`

d Y
`

a Y
`

b X
`

c with
d ∈ im(α) and a ∈ alph(α) \ im(α). Note that the eager version of the same
ranker is not defined on α since d ∈ im(α).

For an eager or lazy ranker r the language L(r) generated by r is the set of
all words in Γ∞ on which r is defined. A (positive) ranker language is a finite
(positive) Boolean combination of languages of the form L(r) for eager rankers
r. A (positive) lazy ranker language is a finite (positive) Boolean combination
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of languages of the form L(r) for lazy rankers r. Finally, a (positive) X-ranker
language is a (positive) ranker language using only X-rankers. At the end of the
next section, we extend rankers by some atomic modalities.

3.2 Unambiguous Temporal Logic

Our generalization of rankers allows us to define unambiguous temporal logic
(unambiguous TL) over infinite words. As for rankers, we have an eager and a
lazy variant. The syntax is given by:

> | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | Xa ϕ | Ya ϕ | Gā | Hā | X`

a ϕ | Y
`

a ϕ | G
`

ā | H
`

ā

for a ∈ Γ and formulas ϕ, ψ in unambiguous TL. The atomic formulas are >
(which is true), and the eager modalities Gā (for Globally-no-a) and Hā (for
Historically-no-a), as well as the lazy modalities G`

ā (for lazy-Globally-no-a) and
H`

ā (for lazy-Historically-no-a). We now define, when a word α with a position
x ∈ N ∪ {∞} satisfies a formula ϕ in unambiguous TL, denoted by α, x |= ϕ.
The atomic formula > is true for all positions, and the semantics of the Boolean
connectives is as usual. For Z ∈ {Xa,Ya,X`

a,Y
`

a | a ∈ Γ} we define

α, x |= Zϕ iff Z(x) is defined and α,Z(x) |= ϕ.

The semantics of the atomic modalities is given by

Gā = ¬Xa>, Hā = ¬Ya>, G`

ā = ¬X`

a>, H`

ā = ¬Y`

a>.

In order to define when a word α models a formula ϕ, we have to distinguish
whether ϕ starts with a future or with a past modality:

α |= Xa ϕ iff α, 0 |= Xa ϕ, α |= Ya ϕ iff α,∞ |= Ya ϕ,

α |= Gā iff α, 0 |= Gā, α |= Hā iff α,∞ |= Hā,

α |= X`

a ϕ iff α, 0 |= X`

a ϕ, α |= Y`

a ϕ iff α,∞ |= Y`

a ϕ,

α |= G`

ā iff α, 0 |= G`

ā, α |= H`

ā iff α,∞ |= H`

ā .

The modalities on the left are called future modalities, while the modalities on
the right are called past modalities. The atomic modalities Gā and G`

ā differ only
for the infinite position, but the semantics of Hā and H`

ā differs a lot: α |= Hā if
and only if a ∈ im(α) or a 6∈ alph(α) whereas α |= H`

ā if and only if a 6∈ alph(α).
Every formula ϕ defines a language L(ϕ) = {α ∈ Γ∞ | α |= ϕ}.

Finally, for C ⊆ {Xa,Ya,Gā,Hā,X`

a,Y
`

a,G
`

ā,H
`

ā} we define the following frag-
ments of TL:

– TL[C] consists of all formulas using only >, Boolean connectives, and tem-
poral modalities in C,

– TL+[C] consists of all formulas using only >, positive Boolean connectives
(i.e., no negation), and temporal modalities in C,

– TLX[C] consists of all formulas using only >, Boolean connectives, and tem-
poral modalities in C such that all outmost modalities are future modalities,

– TL+
X [C] consists of all formulas in TL+[C] ∩ TLX[C].
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Example 2. Consider the language L ⊆ Γ∞ consisting of all non-empty words
with a as the first letter. This language is defined by each of following formulas:

ϕ1 = Xa> ∧
∧
b∈Γ

¬Xa Yb> ∈ TLX[Xa,Ya],

ϕ2 =
∧
b∈Γ

Xa Hb̄ ∈ TL+
X [Xa,Hā],

ϕ3 = Xa> ∧
∧

b∈Γ\{a}

(
Gb̄ ∨ Xb Ya>

)
∈ TL+

X [Xa,Ya,Gā]. ♦

Inspired by the atomic logical modalities, we extend the notion of a ranker
by allowing the atomic modalities Gā and Hā as well as G`

ā and H`

ā. We call r
a ranker with atomic modality Gā (Hā, G`

ā, H`

ā, resp.) if r = sGā (r = sHā,
r = sG`

ā, r = sH`

ā, resp.) for some ranker s. In this setting, r = Gā is an X-
ranker, and r = Hā is a Y-ranker. Similarly, r = G`

ā is an X`-ranker, and r = H`

ā

is a Y`-ranker. Note that any ranker with some atomic modality is also a formula
in unambiguous TL. We can therefore define the domain of an extended ranker
r with some atomic modality by

r(α, x) is defined iff α, x |= r.

If r ∈ s {Gā,Hā,G`

ā,H
`

ā | a ∈ Γ} is an extended ranker with r(α, x) being de-
fined, then we set r(α, x) = s(α, x), i.e., r(α, x) is the position reached after the
execution of s. The reinterpretation of rankers as formulas also makes sense for
a ranker r ∈ {Xa,Ya,X`

a,Y
`

a}
∗

without atomic modality by identifying r with
r> in unambiguous TL. This is justified since r is defined on α if and only if
α |= r>.

Let C ⊆ {Gā,Hā,G`

ā,H
`

ā}. A language is a ranker language with atomic modal-
ities C if it is a Boolean combination of languages L(r) such that r is either a
ranker without atomic modalities or a ranker with some atomic modality in C.
Similarly, the notions of lazy / positive /X-ranker languages are adapted to the
use of atomic modalities.

3.3 Unambiguous Interval Temporal Logic

We extend unambiguous interval temporal logic (unambiguous ITL) to infinite
words in such a way that it coincides with FO2. Again, we have two extensions
with this property, one being eager and one being lazy. The syntax of unambigu-
ous ITL is given by Boolean combinations and:

> | ϕ Fa ψ | ϕ La ψ | Gā | Hā | ϕ F`

a ψ | ϕ L`

a ψ | G
`

ā | H
`

ā

with a ∈ Γ and formulas ϕ, ψ in unambiguous ITL. The name Fa derives
from “First-a” and La from “Last-a”. As in unambiguous temporal logic, the
atomic formulas are >, the eager modalities Gā and Hā, and the lazy modal-
ities G`

ā and H`

ā. We now define, when a word α together with an interval
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(x; y) = {z ∈ N ∪ {∞} | x < z < y} satisfies a formula ϕ in unambiguous ITL,
denoted by α, (x; y) |= ϕ. Remember that we have set ∞ < ∞. In particular
(∞;∞) = {∞}. The atomic formula > is true for all intervals, and the seman-
tics of the Boolean connectives is as usual. The semantics of the binary modalities
is as follows:

α, (x; y) |= ϕ Fa ψ iff Xa(x) is defined, Xa(x) < y,

α,
(
x;Xa(x)

)
|= ϕ and α,

(
Xa(x); y

)
|= ψ,

α, (x; y) |= ϕ La ψ iff Ya(y) is defined, Ya(y) > x,

α,
(
x;Ya(y)

)
|= ϕ and α,

(
Ya(y); y

)
|= ψ.

The semantics of F`
a and L`

a is defined analogously using X`

a and Y`

a, respectively.
The semantics of the atomic modalities is given by

Gā = ¬(> Fa >), Hā = ¬(> La >),

G`

ā = ¬(> F`

a >), H`

ā = ¬(> L`

a >) ∨
∨
b∈Γ

((> L`

b >) F`

b >).

In the definition of H`

ā, the disjunction on the right-hand side ensures that
α, (∞;∞) |= H`

ā for every infinite word α ∈ Γω and every a ∈ Γ . It will turn out
that the inability of specifying the letters not in im(α) is crucial in the charac-
terization of the fragment Π2 ∩FO2. Observe that only for the interval (∞;∞),
there can be a b before the “first” b. Also note that for every finite interval,
the formula Gā is true if and only if Hā is true and that G`

ā is equivalent to
¬(> L`

a >). Whether a word α models a formula ϕ in unambiguous ITL (i.e.,
α |= ϕ) is defined by

α |= ϕ iff α, (0;∞) |= ϕ.

The language defined by ϕ is L(ϕ) = {α ∈ Γ∞ | α |= ϕ}.

α · · ·

Ya

a

Xc

c

Xb

b

La

Fb Fc

· · ·

ϕ1 ψ1 ϕ2 ψ2
· · ·

Fig. 3.

Fig. 3 depicts the situation for the for-
mula (ϕ1 Fb ψ1) La (ϕ2 Fc ψ2) being defined
on α. The main difference to rankers and un-
ambiguous TL is that there is no crossing over
in unambiguous ITL, e.g., in the situation de-
picted on the left side of Fig. 2, the formula
(> Lb (> Fc >)) La > is false even though the
ranker YaYb Xc is defined.

In unambiguous ITL, the modalities Fa,
Gā, F`

a, G`

ā are future modalities and La, Hā,
L`
a, H`

ā are past modalities. A formula ϕ is a
future formula if in the parse tree of ϕ, every past modality occurs on the left
branch of some future modality, i.e., if it is never necessary to interpret a past
modality over an unbounded interval.

For C ⊆ {Fa, La,Gā,Hā,F`
a, L

`
a,G

`

ā,H
`

ā} we define the following fragments of
ITL:
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– ITL[C] consists of all formulas using only >, Boolean connectives, and tem-
poral modalities in C,

– ITL+[C] consists of all formulas using only >, positive Boolean connectives
(i.e., no negation), and temporal modalities in C,

– ITLF[C] consists of all future formulas using only >, Boolean connectives,
and temporal modalities in C,

– ITL+
F [C] consists of all formulas in ITL+[C] ∩ ITLF[C].

The proofs of the following two propositions give a procedure for converting
unambiguous ITL formulas into unambiguous TL formulas without introducing
new negations. A similar relativization technique as in our proof has been used
by Lodaya, Pandya, and Shah [5] for the conversion of ITL over finite words into
so-called deterministic partially ordered two-way automata (without the focus
on not introducing negations).

Proposition 1. We have the following inclusions:

ITL[Fa, La] ⊆ TL[Xa,Ya],

ITL+[Fa, La,Gā,Hā] ⊆ TL+[Xa,Ya,Gā,Hā],

ITL+[Fa, La,Gā] ⊆ TL+[Xa,Ya,Gā],

ITL+
F [Fa, La,Gā,Hā] ⊆ TL+

X [Xa,Ya,Gā],

ITLF[Fa, La] ⊆ TLX[Xa,Ya].

Proposition 2. We have the following inclusions:

ITL[F`

a, L
`

a] ⊆ TL[X`

a,Y
`

a],

ITL+[F`

a, L
`

a,G
`

ā,H
`

ā] ⊆ TL+[X`

a,Y
`

a,G
`

ā,H
`

ā],

ITL+[F`

a, L
`

a,H
`

ā] ⊆ TL+[X`

a,Y
`

a,H
`

ā].

4 Main results

We start this section with various ITL, TL, and ranker characterizations using
the eager variants. We postpone characterizations in terms of the lazy fragments
to Theorem 4 and Theorem 5.

Theorem 1. For L ⊆ Γ∞ the following assertions are equivalent:

1. L is definable in FO2.
2. L is definable in ITL+[Fa, La,Gā,Hā].
3. L is definable in ITL[Fa, La].
4. L is definable in TL[Xa,Ya].
5. L is definable in TL+[Xa,Ya,Gā,Hā].
6. L is a positive ranker language with atomic modalities Gā and Hā.
7. L is a ranker language.
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Every FO2-definable language is a Boolean combination of unambiguous
monomials and languages of the form Aim, see [3]. The language Aim is definable
by the formula ∧

a∈A
(> Fa >) ∧ Hā ∈ ITL+[Fa,Hā].

Hence, the following lemma provides the missing part in order to show that every
language in FO2 is definable in unambiguous ITL.

Lemma 1. Every unambiguous monomial L = A∗1a1 · · ·A∗kakA∞k+1 is definable

in ITL+[Fa, La,Gā].

Proof. We perform an induction on k. For k = 0 we have L
(∧

a 6∈A1
Gā
)

=
A∞1 . Let k ≥ 1. Since L is unambiguous, we have {a1, . . . , ak} 6⊆ A1 ∩ Ak+1;
otherwise (a1 · · · ak)2 admits two different factorizations showing that L is not
unambiguous. First, consider the case ai 6∈ A1 and let i be minimal with this
property. Each word α ∈ L has a unique factorization α = uaiβ such that
ai 6∈ alph(u). Depending on whether the first ai of α coincides with the marker
ai or not, we have

u ∈ A∗1a1 · · ·A∗i , β ∈ A∗i+1ai+1 · · ·A∗kakA∞k+1 or

u ∈ A∗1a1 · · ·A∗j , ai ∈ Aj , β ∈ A∗jaj · · ·A∗kakA∞k+1

with 2 ≤ j ≤ i. In both cases, since L is unambiguous, each expression containing
u or β is unambiguous. Moreover, each of these expressions is strictly shorter than
L. By induction, for each 2 ≤ j ≤ k, there exist formulas ϕ,ψ ∈ ITL+[Fa, La,Gā]
such that L(ϕ) = A∗1a1 · · ·A∞j and L(ψ) = A∗jaj · · ·A∗kakA∞k+1. By the above
reasoning, we see that L is the union of (at most i) languages of the form(

L(ϕ) ∩ (Γ \ {ai})∗
)
ai L(ψ)

and each of them is defined by ϕ Fai ψ.
For ai 6∈ Ak+1 with i maximal, we consider the unique factorization α = uaiβ

with ai 6∈ alph(β) and, again, we end up with one of the two cases from above,
with the difference that 1 ≤ i < j ≤ k in the second case. Inductively L is
defined by a disjunction of formulas ϕ Lai ψ. ut

Theorem 2. Let L ⊆ Γ∞. The following assertions are equivalent:

1. L is definable in Σ2 and FO2.
2. L is definable in ITL+[Fa, La,Gā].
3. L is definable in TL+[Xa,Ya,Gā].
4. L is a positive ranker language with atomic modality Gā.

Theorem 5 shows that the same characterizations for FO2 hold using the lazy
variants. Note that we cannot use lazy counterparts in the characterizations for
Σ2 ∩ FO2, since for example Y`

a X
`

a is defined if and only if there are infinitely
many a’s, but this property is not Σ2-definable.

Over finite words, the fragments FO2 and ∆2 coincide [9]. In particular,
FO2 ∩ Σ2 = FO2 over finite words. Since finiteness of a word is definable in
FO2 ∩Σ2, we obtain the following corollary of Theorem 2.
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Corollary 1. A language L ⊆ Γ ∗ of finite words is definable in FO2 if and only
if L is a positive ranker language with atomic modality Gā.

Over infinite words, the fragment ∆2 is a strict subclass of FO2. The next the-
orem says that ∆2 is basically FO2 with the lack of past formulas and Y-rankers.
Since eager future formulas and X-rankers coincide with their lazy counterparts,
all of the characterizations in the next theorem could be replaced by their lazy
pendants.

Theorem 3. Let L ⊆ Γ∞. The following assertions are equivalent:

1. L is definable in ∆2.
2. L is definable in ITL+

F [Fa, La,Gā].
3. L is definable in ITLF[Fa, La].
4. L is definable in TLX[Xa,Ya].
5. L is definable in TL+

X [Xa,Ya,Gā].
6. L is a positive X-ranker language with atomic modality Gā.
7. L is an X-ranker language.

In the next theorem we give characterizations of the fragment Π2 ∩ FO2 in
terms of the lazy variants of ITL, TL, and rankers. We cannot use the eager
variants, since Ya says that there are only finitely many a’s, but this property
is not Π2-definable. Also note that α, (∞;∞) |= Ĥā for Ĥā = ¬(> L`

a >) if and
only if a 6∈ im(α), i.e., if and only if a occurs at most finitely often. As before,
this property is not Π2-definable. This is the reason why we did not define H`

ā

simply as Ĥā.

Theorem 4. Let L ⊆ Γ∞. The following assertions are equivalent:

1. L is definable in Π2 and FO2.
2. L is definable in ITL+[F`

a, L
`
a,H

`

ā].
3. L is definable in TL+[X`

a,Y
`

a,H
`

ā].
4. L is a positive lazy ranker language with atomic modality H`

ā.

For completeness, we give a counterpart of Theorem 1 using the lazy versions
of ITL, TL, and rankers.

Theorem 5. For L ⊆ Γ∞ the following assertions are equivalent:

1. L is definable in FO2.
2. L is definable in ITL+[F`

a, L
`
a,G

`

ā,H
`

ā].
3. L is definable in ITL[F`

a, L
`
a].

4. L is definable in TL[X`

a,Y
`

a].
5. L is definable in TL+[X`

a,Y
`

a,G
`

ā,H
`

ā].
6. L is a positive ranker language with atomic modalities G`

ā and H`

ā.
7. L is a lazy ranker language.
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5 Open Problems

Rankers over finite words have been introduced for characterizing quantifier
alternation within FO2. We conjecture that similar results for infinite words can
be obtained using our generalizations of rankers.

Over infinite words, the class of X-ranker languages corresponds to the frag-
ment ∆2. Over finite words however, X-ranker languages form a strict subclass
of ∆2 (which for finite words coincides with FO2). An algebraic counterpart of
X-ranker languages over finite words is still missing. The main problem is that
over finite words X-rankers do not define a variety of languages.

A well-known theorem by Schützenberger [6] implies that over finite words,
arbitrary finite unions of unambiguous monomials and finite disjoint unions of
unambiguous monomials describe the same class of languages. In the case of
infinite words, it is open whether one can require that unambiguous polynomials
are disjoint unions of unambiguous monomials without changing the class of
languages.

Acknowledgments. We thank Volker Diekert for a suggestion which led to Theo-
rem 2. We also thank the anonymous referees for several useful suggestions which
helped to improve the presentation of this paper.
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