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Abstract

Consider a family of sets and a single set, called the query set. How

can one quickly find a member of the family which has a maximal in-

tersection with the query set? Time constraints on the query and on a

possible preprocessing of the set family make this problem challenging.

Such maximal intersection queries arise in a wide range of applications,

including web search, recommendation systems, and distributing on-line

advertisements. In general, maximal intersection queries are computation-

ally expensive. We investigate two well-motivated distributions over all

families of sets and propose an algorithm for each of them. We show that

with very high probability an almost optimal solution is found in time

which is logarithmic in the size of the family. Moreover, we point out

a threshold phenomenon on the probabilities of intersecting sets in each

of our two input models which leads to the efficient algorithms mentioned

above.

1 Introduction

The nearest neighbor problem is the task to determine in a general metric space
a point that is closest to a given query point. This kind of queries appear in
a huge number of applied problems: text classification, handwriting recognition,
recommendation systems, distributing on-line advertisements, near-duplicate
detection, and code plagiarism detection.

In this paper we consider the nearest neighbor problem in a “binary” form.
Namely, every object is described as a set of its features and similarity is de-
fined as the number of common features. In order to construct an efficient
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solution some assumptions should be added to the problem. Here we assume
that the input behaves according to some predefined distribution. Then we
construct an algorithm and show that the time complexity and/or the accuracy
are reasonably good with high probability. Here we use the probability over the
input distribution, not over random choices of the algorithm. This probabilistic
approach was inspired by the recent survey of Newman [18]. He gives a compre-
hensive survey about random models of graphs that agree well with many real
life networks, including Web graphs, friendship graphs, co-authorship graphs,
and many others. Hence, we can attack the nearest neighbor problem in already
“verified” random models.

The Maximal Intersection Problem. Consider a family of sets and a single
set. We ask for a member of the set family which has a maximal intersection
with the query set.

The Maximal Intersection Problem (MaxInt)

Database: A family F of n sets such that |f | ≤ k for all f ∈ F .

Query: Given a set fnew with |fnew | ≤ k, return fi ∈ F with maximal
|fnew ∩ fi|.

Constraints: Preprocessing time n · (log n)O(1) · kO(1).
Query time (log n)O(1) · kO(1).

Let us restate the problem in a graph theoretical notation which will allow a
more convenient description of some applications of MaxInt later. A database
is a bipartite graph with vertex set partition (V, V ′) such that |V | = n and the
degree of every v ∈ V is at most k. A query is a (new) vertex v (together with
edges connecting v with V ′) of degree at most k. The query task is to return a
vertex u ∈ V with a maximal number of paths of length 2 from v to u.

Our main motivation for studying MaxInt was problems like text cluster-
ing, near-duplicate detection or distribution of on-line advertisements. In these
problems, the database mainly consists of natural language text documents.
Therefore, we will deal in the rest of the paper with documents and terms in-
stead of sets and elements. On the other hand, we want to stress that our ideas
and algorithms can be applied to every input following our models. Note that
in this work documents are not considered to be multisets of terms. But, as we
will see in Section 2, we use the fact that every term in a document occurs with
a certain multiplicity.

Results. In Section 2 and Section 3 we propose two new randomized input
models for MaxInt, called the Zipf model and the hierarchical scheme. As-
sume that the terms of a query document are ordered by their frequency in the
document collection. Now consider the probability curves for the two following
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events with parameter q (Figure 1). Any q-match: there is a document in the
random (according to our models) collection that has at least q common terms
with the query document (the solid curve). Prefix q-match: there is a document
in the random collection that has at least the first q terms (according to the
order given by the term frequencies) of the query document (the dashed curve).
Both curves have the similar structure: the probability is close to 1 for small q,
but suddenly, at some “matching level”, it falls to nearly zero. Our main ob-

 
matching level

1

Prob

q

Figure 1: Exemplary probability curves for any q-match and prefix q-match

servation is that these matching levels for prefix q-match and any q-match are
very close to each other. And this is extremely important for solving MaxInt.
Indeed, finding the best prefix q-match is computationally feasible. We show
that closeness of matching levels for any q-match and prefix q-match with high
probability allows to find an approximate solution for MaxInt.

With respect to the conference version of this paper we generalize the match-
ing level theorem from regular queries to any query taken from the Zipf model
[10].

Applications. The MaxInt problem is a natural formalization for many
practical problems:

Long search queries. Consider a bipartite graph representing websites and
their words, that is, every website is represented as a set of words. Let a
query be a moderately large set of words (say, 100 words). For example,
one might get a large query by expanding a five word query by adding all
synonyms. The search for a website containing ALL query terms might
produce no result. Hence, a search for a website that has maximal in-
tersection with the query set is a natural alternative. Therefore, efficient
algorithms for MaxInt can help web search engines like google.com1,
yahoo.com, or msn.com to relax their restrictions on the query length.

1The reference time for all links mentioned in this paper is April 2007.
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Content-based similarity. Consider a bipartite graph representing documents
and their terms. Finding a document in a database that has a maximal
number of common terms with a newcomer document might be a basic rou-
tine for text clustering/classification and duplicates detection. Particular
examples are news classification systems (reuters.com), news clustering
(news.google.com), and spam detection.

New connection suggestions. Consider an undirected graph between people
representing for example friendship or co-authorship. Here, every person
is described by his name and a list of all his friends. Then, applying a
MaxInt query to a (new) person we get a natural suggestion for establish-
ing a new connection for her. Indeed, we get a person that has a maximal
number of joint friends with the query person. Related systems can be
found at linkedin.com (for acquaintances) and dblp.uni-trier.de (for
co-authorship).

Co-occurrence similarity. Consider an audience graph between people and
some items. Every item is represented by a set of people who are interested
in it. Take a (new) item together with its audience. Then, the MaxInt

query returns an item that has the maximal co-occurrence with the query
item in people’s preference lists. Particular examples are the music band
similarity by their listeners (last.fm) and RSS-feeds similarity by their
subscribers (bloglines.com and feedburner.com).

Advertisement Matching. Delivering advertisement relevant to users inter-
ests is one of the most important problems in web technologies [15]. Max-

Int can reflect this challenge in a natural way: Consider a graph represent-
ing websites participating in some ad distribution system and their terms.
A query is a set of terms that describe some advertisement and its target
audience. Here, a solution of MaxInt suggests a website that is among
the best candidates to display the given ad. See google.com/adsense as
an example system for ad distribution.

Social recommendations. Consider a bipartite graph between people and
their recommendations (e.g. for books, bars, cars). A query is a set of
friends of some newcomer person. Finding an item that is already chosen
by many of the newcomer’s friends is a natural form of recommendation.
The friendship graph together with recommended items is for example
accumulated on facebook.com.

Note that for some of these applications the Jaccard similarity coefficient
may also be an appropriate similarity measure.

Related Work. MaxInt is a special case of the nearest neighbor problem.
Indeed, one just needs to define the similarity between two documents as the
number of common words. There is also a way to define a metric (i.e. distance
function satisfying the triangle inequality) providing the reverse similarity order.

4



To do this, we need to add some unique “imaginary” words to every document
making their size equal and then use the Jaccard metric [2]. Denoting the
maximal cardinality of a document in the collection by M the resulting formula

is d(A, B) = 2M−2|A∩B|
2M−|A∩B| . Instead of the Jaccard metric one could use the size of

the symmetric difference as well (again, one has to add unique words to every
document making their size equal). This defines again a metric which provides
the reverse similarity order.

Many efficient algorithms have been developed for nearest neighbor search
in special cases or under various assumptions; see recent survey papers [1, 4,
5, 9, 11] and the book [19] for comprehensive reviews. Nearest neighbors are
particularly well studied in vector models with the Euclidean distance function
[13, 7]. Actually, we can interpret a document as a vector of 0s and 1s (1 means
a term is contained in a document). Then, the scalar product is equal to the size
of the intersection. Unfortunately, random projection methods studied are not
directly applicable to MaxInt. Namely, (1) we do not allow that the complexity
is linear in the vector length, and (2) a c-approximate solution for the Euclidean
distance is not necessarily a c-approximate solution for the size-of-intersection
similarity. Note that the length of the vectors (resulting from the overall number
of different terms in the document collection) can be much larger than the size
of the document collection.

Closely related to MaxInt is text search. Finding documents that fit best
to some given search terms can also be considered as a problem on a bipartite
graph. The documents and terms are the nodes and edges are drawn when a
term occurs in a document. Basically the task is to find all documents containing
every query term and rank these documents by relevance. The key technique
in this area is inverted files (inverted indexing). A comprehensive survey of the
topic can be found in [20].

2 MaxInt in the Zipf Model

Let T = {t1, . . . , tm} be a set of terms and D = ℘(T ) be the power set of T ,
called documents. A document collection Dn is a subset {d1, . . . , dn} ⊆ D.We
demand m ∈ nO(1). In the following we will use the terms prefix match and any
match instead of prefix q-match and any q-match since the size of a matching
is always stated explicitly. By log we always mean log2, while ln denotes loge.

We now describe a probabilistic mechanism for generating a document col-
lection called the Zipf model. Every document is generated independently. Term
occurrences are also independent. A document contains term ti with probability
1/i. Hence, the expected number of terms in a document is approximately equal
to lnm in our model. This model is similar to the configuration model ([18])
with Zipf’s law for distribution of term degrees and constant document degrees.
Zipf’s law states that in natural language texts the frequency f of a word is
approximately inversely proportional to its rank r in the frequency table, i.e.
there exists a constant c such that f · r ≈ c (Table 1). For more details about
Zipf’s law see [17].
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Word Frequency Rank f · r Word Frequency Rank f · r
the 3332 1 3332 turned 51 200 10200
and 2972 2 5944 you’ll 30 300 9000
a 1775 3 5235 name 21 400 8400
he 877 10 8770 comes 16 500 8000
but 410 20 8400 group 13 600 7800
be 294 30 8820 lead 11 700 7700
there 222 40 8880 friends 10 800 8000
one 172 50 8600 begin 9 900 8100
about 158 60 9480 family 8 1000 8000
more 138 70 9660 brushed 4 2000 8000
never 124 80 9920 sins 2 3000 6000
Oh 116 90 10440 Could 2 4000 8000
two 104 100 10400 Applausive 1 8000 8000

Table 1: Empirical evaluation of Zipf’s law on Tom Sawyer

Remark 1. The frequency of a term t in a collection Dn of documents is defined
as

|{d ∈ Dn | t ∈ d}|
n

.

The expected frequency of the term ti is equal to 1/i. At the same time,
the expected frequency rank for ti is exactly the i-th value among those of all
terms. So the Zipf model reflects in a natural way Zipf’s law. Since some of
our motivating applications also deal with natural language texts, we can state
that the Zipf model agrees with real life at least by degree distribution.

Remark 2. By defining the probability of the term ti to be contained in a
document as 1/i, the set D yields a probability space where a document d is an

event that occurs with probability P (d) =
(∏

ti∈d
1
i

)(∏

ti 6∈d 1 − 1
i

)

.

In the following proofs we will use two inequalities (a, b > 0):

(

1 − a

b

)b

< e−a, a ≤ b (2.1)

(

1 − 1

ab

)a

≥ 1 − 1

b
, a, b ≥ 1 (2.2)

Indeed, let g(x) = ln(1−x)/x, 0 < x < 1. Notice that g is a decreasing function.
The first inequality follows from g(a/b) ≤ limx→0 g(x) = −1, while the second
one is equivalent to g(1/b) ≤ g(1/ab).

For further considerations we introduce the following terms and definitions:
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Definition 2.1. Let
t1 t2
︸︷︷︸

P1

t3 t4 t5 t6 t7
︸ ︷︷ ︸

P2

. . .

be a partition of the set of terms. The group Pi includes terms from t⌈ei−1⌉ to
t⌊ei⌋. We say that a document d ∈ D is regular if it contains exactly lnm terms
p1 . . . pln m such that pi ∈ Pi.

Remark 3. Note that the expected number of terms in each group Pi is approx-
imately one. If lnm is not an integer then the index of the last group is ⌈lnm⌉.
In this case the expected number of terms in this group is smaller than one. To
make the following proofs more legible we do not demand that the number of
terms of a document or the matching size is an integer. In real settings these
values have to be rounded appropriately.

Definition 2.2. Let 0 < δ < 1. We say that a document d ∈ D is δ-n-generic
if the following holds:

∀i ≥ δ
√

2 lnn : |{tj ∈ d | j ≤ ei}| ≥ (1 − δ)i.

Lemma 2.3. Let 0 < δ < 1 and c = e−δ2/2. Let d ∈ D be a random document
following the Zipf model. It holds that for a sufficiently large n the probability

that d is δ-n-generic is greater than 1 − c1.4 δ
√

ln n/(1 − c).

Proof. Let X be a random variable denoting the expected number of terms in
d up to the term tei . For a fixed i the Chernoff bound P (X ≤ (1 − δ)EX) ≤
e−EXδ2/2 yield that the probability that d contains less than (1 − δ)i terms up

to the term tei is smaller than e−iδ2/2. This holds since i < EX and therefore

P (X ≤ (1 − δ)i) ≤ P (X ≤ (1 − δ)EX) ≤ e−EXδ2/2 < e−iδ2/2.

So the probability that d is not δ-n-generic is for large n bounded by

∑

i≥0

ci −
⌊δ

√
2 ln n⌋−1
∑

i=0

ci =
1

1 − c
− 1 − c⌊δ

√
2 ln n⌋

1 − c

=
c⌊δ

√
2 ln n⌋

1 − c

≤ c
√

2 δ
√

ln n−1

1 − c

<
c1.4 δ

√
ln n

1 − c

This holds because 1.4 <
√

2 and n is large. Overall, the probability that d

contains (1 − δ)i or more terms is greater than 1 − c1.4 δ
√

ln n/(1 − c).
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Lemma 2.4. Let d ∈ D be a random document following the Zipf model and
let 0 < δ < 1 and c = e−δ2/2. If we insert the first δ

√
2 lnn missing terms to

d (assuming that there are missing terms), then for a sufficiently large n the
following holds:

P
(

∀i ≤
√

2 lnn : |{tj ∈ d | j ≤ ei}| ≥ i
)

> 1 − c1.4 δ
√

ln n/(1 − c).

Proof. Since we insert the first δ
√

2 lnn missing terms to d, the number of
terms in d is always at least δ

√
2 lnn. Thus, the statement holds trivially for

i < δ
√

2 lnn. So let’s consider the case i ≥ δ
√

2 lnn. By Lemma 2.3 we know

that the probability that d is δ-n-generic is greater than 1 − c1.4 δ
√

ln n/(1 − c)
for large n. Now, by inserting the first δ

√
2 lnn missing terms to d, we see that

the probability that there are at least i terms tj with j ≤ ei is greater than

1 − c1.4 δ
√

ln n/(1 − c).

We now introduce a threshold, called matching level, to give statements
about the most probable size of a maximal intersection:

q = qn :=
√

2 lnn.

Theorem 2.5 (Matching Level for the Zipf Model). Let Dn = {d1, . . . , dn} be
a document collection following the Zipf model.

1. (Prefix match). Let 0 < δ < 1 be fixed. Let γ = 2 + δ
√

2 lnn and c =

e−δ2/2. For sufficiently large n, m the following holds: The probability
that there exists a document in Dn that contains the first q − γ terms
of a query document dnew ∈ D following the Zipf model is greater than

1 − cδ
√

ln n/(1 − c). Thus, the probability tends to one as n → ∞.

2. (Any match). Let ε > 0 be fixed. The probability that there exists a docu-
ment in Dn that contains more than (1 + ε)q terms of a query document
dnew ∈ D following the Zipf model tends to zero as n → ∞.

Proof. 1. Let dR be a fixed regular document (Definition 2.1). The proba-
bility that a document from Dn contains the prefix of length q − 2 of dR

is at least

1

e
· . . . · 1

eq−2
>

1

e(q−1)2/2
=

1

e(q2−2q+1)/2

=
eq−1/2

n
.

Note that eq−1/2 < n since e(q−1)2/2 > 1. This means that the probability
that there exists no document in Dn that contains the (q− 2)-prefix of dR

is no more than (

1 − eq−1/2

n

)n

< e−eq−1/2

,

8



which follows from inequality (2.1). So with probability greater than 1 −
e−eq−1/2

there exists a document in Dn that has all terms from the (q−2)-
prefix of dR. Consider dnew . If we insert the first δ

√
2 lnn missing terms

to dnew , Lemma 2.4 implies that for large n the probability that dnew

contains in every group Pi, i ≤
√

2 lnn, at least as many terms as dR is

greater than 1 − c1.4 δ
√

ln n/(1 − c). Therefore, the probability that there
exists a document in Dn that matches the prefix of length q − 2 of the
extended query document dnew is greater than

(

1 − c1.4 δ
√

lnn/(1 − c)
)(

1 − e−eq−1/2
)

.

For large n, this product is at least 1−cδ
√

ln n/(1−c). It remains to notice
that by removing the initially inserted δ

√
2 lnn terms from dnew we still

match q − γ terms. This concludes the proof.

2. Let us fix a query document dnew for now. Let d be a random document
following the Zipf model and let λ > 0. We can evaluate the Laplace
transform of the intersection size as follows:

E exp (λ|dnew ∩ d|) =
∏

j:tj∈dnew

(

1 − 1

j
+

1

j
eλ

)

≤
∏

j:tj∈dnew

(

1 +
eλ

j

)

=
∏

j:tj∈dnew

j>eλ

(

1 +
eλ

j

)

·
∏

j:tj∈dnew

j≤eλ

eλ

j

(

1 +
j

eλ

)

.

It follows that

lnE exp (λ|dnew ∩ d|) ≤
∑

j:tj∈dnew

j≥eλ

eλ

j
+

∑

j:tj∈dnew

j≤eλ

(λ − ln j) +
∑

j:tj∈dnew

j≤eλ

j

eλ

= eλT1 + λT2 − T3 + e−λT4,

where

T1 =
∑

j:tj∈dnew

j≥eλ

1

j
, T2 = |dnew ∩ [1, eλ]|,

T3 =
∑

j:tj∈dnew

j≤eλ

ln j, T4 =
∑

j:tj∈dnew

j≤eλ

j.

We will assume that our fixed query dnew satisfies the following four reg-
ularity conditions.

eλT1 ≤ ελ2, T2 ≤ (1 + ε)λ,

T3 ≥ (1 − ε)
λ2

2
, e−λT4 ≤ ελ2.
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Under these regularity conditions we obtain

lnE exp (λ|dnew ∩ d|) ≤ (1 + 7ε)
λ2

2
.

Assuming (dj) to be a sample of n independent documents distributed
according to the Zipf model, by the Chebyshev exponential inequality, for
any r > 0 we have

P

(

max
j≤n

|dnew ∩ dj | ≥ r

)

≤ n P (|dnew ∩ d| ≥ r)

≤ n
E exp (λ|dnew ∩ d|)

eλr

≤ n exp

(

(1 + 7ε)
λ2

2
− λr

)

.

Take any γ > 0. By choosing now

r = (
√

2 lnn + γ)(1 + 7ε)

and
λ =

√
2 lnn + γ

we obtain (1 + 7ε)λ2 = λr, hence

P

(

max
j≤n

|dnew ∩ dj | ≥ r

)

≤ n exp

(

−(1 + 7ε)
λ2

2

)

≤ n exp

(

− (
√

2 lnn + γ)2

2

)

→ 0

for n → ∞, as required. Let now the query dnew be randomly chosen
according to the Zipf model. For a sufficiently large λ it is true that

ET1 =
∑

j≥eλ

1

j2
≤ e−λ;

ET2 =
∑

j≤eλ

1

j
≤ λ; V arT2 ≤

∑

j≤eλ

1

j
≤ λ;

ET3 =
∑

j≤eλ

ln j

j
≤ λ2

2
; V arT3 ≤

∑

j≤eλ

ln2 j

j
≤ λ3

3
;

ET4 =
∑

j≤eλ

1 ≤ eλ.

Let us explain the bound for ET3. Let 2 ≤ b ≤ S be integers.

∑

j≤S

ln j

j
≤
∫ S

b

lnx

x
dx +

b∑

j=2

ln j

j
=

ln2 S

2
− ln2 b

2
+

b∑

j=2

ln j

j
.
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For b ≥ 21 it holds that

ln2 b

2
≥

b∑

j=2

ln j

j

and therefore
∑

j≤S

ln j

j
≤ ln2 S

2
.

Hence, λ ≥ 4 yields the desired bound on ET3. The bound on V arT3 is
shown by similar techniques.

It remains to notice that the probability of each of the four regularity
conditions to be true for dnew tends to one as λ → ∞. Indeed, the
expectations and variances calculated above easily show this fact.

By Theorem 2.5 we can conclude that with high probability there exists
a document in D that matches the prefix of length q − γ of dnew , whereas the
probability to find a document that has more than (1+ ε)q common terms with
dnew (at arbitrary positions) is quite small. Therefore, it suffices to determine
a document that has a maximal common prefix with the query document. This
fact, however, allows to sort the documents according to their sorted term lists2

and then perform a binary search based on the sorted term list of the query
document (Figure 2). The running time is as follows (for the average case3

Preprocessing:

1. For every document: Sort the term list according to the position
of the terms in the frequency table.

2. Sort the documents according to their sorted term lists.

Query: Find a document having the maximal common prefix with the
query document by binary search.

Figure 2: MaxInt algorithm in the Zipf model

analysis we assume that the length of term lists is log m ∈ O(log n), for the
worst case analysis the length is m):

2In a sorted term list the terms of a document are ordered according to the position of the

terms in the frequency table.
3Only for the average case our constraints from Section 1 are preserved.
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Figure 3: Hierarchical scheme

average case worst case

Step 1 O(n · log n · log log n) O(n · m · log n)

Step 2 O(n · log2 n) O(n · log n · m)

Query O(log2 n) O(log n · m)

The log factor in the query step is due to the fact that the algorithm performs
a binary search on the document collection. Since in the average case the length
of a term list is O(log n), we get another log factor resulting in a query time
of O(log2 n). One can try to improve the accuracy of our algorithm by finding
a “maximal prefix with at most one difference to the query document”. A
recent technique called “indexing with errors” [6, 16] might be useful for such
an extension.

3 MaxInt in the Hierarchical Scheme

Our second model is motivated by the observation that in many existing appli-
cations terms can be ordered hierarchically. Let k ≥ 8 be an integer and let T
be a set of (2k − 1) · k different terms. A document collection Dk consists of 2k

sets where every set d ∈ Dk is a subset of T with |d| = k. A hierarchical scheme
is a table with k levels, level 1 to level k. Level i, 1 ≤ i ≤ k, is divided into 2i−1

cells, cell Ci,1 to cell Ci,2i−1 . For 2 ≤ l ≤ k we say that cell Cl−1,j , 1 ≤ j ≤ 2l−2,
is above cell Cl,j′ , 1 ≤ j′ ≤ 2l−1, if ⌈j′/2⌉ = j. Every cell contains k terms. A
document collection based on this scheme can be generated as follows: Every
document is generated independently. Choose a random cell on level k and
mark it. Then, for l = {k, . . . , 2}, mark on level l − 1 the cell that is above the
already marked cell on level l. Now choose one random term in every marked
cell. The so defined set of terms form a document of our collection. Note that
every document generated by this process corresponds to a unique sequence of
cells. We’ll call such a sequence a cell path. There exists a natural ordering on
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these cell paths where the cells C1,1, C2,1, . . . , Ck,1 describe the leftmost path,
the cells C1,1, C2,2, . . . , Ck,2k−1 accordingly the rightmost one (see Figure 3).

Remark 4. We claim that the hierarchical scheme follows Zipf’s law. To be more
precise, the following holds: For every level the product of expected frequency
and expected frequency rank of a term is the same. Indeed, the expected fre-
quency of a term on level i is given by the formula 2k/(2i−1 · k). The expected
rank of a term is given by the formula (2i−1−1) ·k+2i−2 ·k. Hence, the product
between frequency and frequency rank (divided by 2k) is equal to

2k

2i−1 · k ·
(

3

2
· 2i−1 − 1

)

· k

2k
∈ [0.5, 1.5) ,

which means it lies in a fixed interval and therefore follows the idea of Zipf’s
law.

This time we introduce two matching levels to give statements about the
most probable size of a maximal intersection. The matching levels are

q =
k

1 + log k
and q′ =

k

log k
.

Remark 5. Again, to keep proofs more legible, we do not demand that the
length of a prefix or the matching size is an integer (except part one of the
following theorem). But clearly, in real settings these values have to be rounded
appropriately.

Theorem 3.1 (Matching Levels for Hierarchical Scheme). Let k ≥ 8 be an
integer and 2 ≤ γ < q. Let Dk be a document collection following the hierarchical
scheme.

1. (Prefix match). The probability that there exists a document d ∈ Dk that
matches the first ⌊q−γ⌋ terms (i.e. the terms from level 1 to level ⌊q−γ⌋)
of a query document dnew following the hierarchical scheme is greater than
1 − 2−(2k)γ

.

2. (Any match). The probability that there exists a document d ∈ Dk that
matches at least q′ + γ terms of a query document dnew following the
hierarchical scheme is smaller than 2/kγ−1.

Proof. 1. The number of different prefixes of length ⌊q − γ⌋ is at most

k(2k)q−γ−1 < 2(1+log k)(q−γ) = 2(1+log k)(k/(1+log k)−γ) = 2k · (2k)−γ .

So the probability that a new document does not match a prefix of length
⌊q − γ⌋ with any document from Dk is smaller than

(

1 − (2k)γ

2k

)2k

< e−(2k)γ

< 2−(2k)γ

.
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For k ≥ 8 and γ < q it holds that (2k)γ < 2k and therefore the above
inequality follows from inequality (2.1). We get that the probability that
there exists a document in Dk with the same prefix as dnew of length
⌊q − γ⌋ is greater than 1 − 2−(2k)γ

.

2. Let t ≥ q′ + γ be the last position where the terms of d and dnew match.
We want to estimate the probability that dnew matches at least q′ + γ
terms at arbitrary positions with d. The probability that the first t terms
(beginning at level 1) of d and dnew are all in the same cells is 21−t. The
probability that at least q′ + γ terms are matched on some fixed positions

is no more than (1/k)
q′+γ · ((k − 1)/k)

t−q′−γ
. An upper bound for the

number of different possibilities of matching at least q′ + γ out of t terms

is 2t. Since the factor ((k − 1)/k)
t−q′−γ

is smaller than 1, overall we get
that the probability that dnew matches at least q′ + γ terms at arbitrary
positions with d is smaller than

k · 2t ·
(

1

k

)q′+γ

· 21−t = 2 · k ·
(

1

k

)q′+γ

= 2 ·
(

1

k

)q′+γ−1

.

The factor k in the above equation is due to the fact that we need to
consider all possible levels for the last matched position t. Now the prob-
ability that no document matches at q′ + γ arbitrary positions with dnew

is at least

(

1 − 2 ·
(

1

k

)q′+γ−1
)2k

=

(

1 − 1

2k · kγ−1

2

)2k

≥ 1 − 2

kγ−1
,

which follows from inequality (2.2), since γ ≥ 2 and k ≥ 8. So the prob-
ability that there exists a document in Dk that matches at least q′ + γ
terms of dnew is smaller than 2/kγ−1.

Theorem 3.1 yields that also for the hierarchical scheme it suffices to search
a document that has a maximal common prefix with the query document. The
resulting algorithm is analogue to the one for the Zipf model and summarized
on Figure 4.

The running time is shown in the table below. Note that for the hierarchical
scheme we only perform a worst case analysis since every document has equal
length.

average case worst case

Step 1 – O(2k · k · log k)

Step 2 – O(2k · k2)

Query – O(k2)
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Preprocessing:

1. For every document: Sort the term list according to the hier-
archical scheme, i.e. according to the levels in which the terms
appear.

2. Sort the documents according to their corresponding cell paths,
i.e. documents that correspond to the leftmost path in the
scheme are at the beginning of the sorted list. Documents that
correspond to the same cell path are sorted lexicographically.

Query: Find a document having the maximal common prefix with the
query document by binary search.

Figure 4: MaxInt algorithm in the hierarchical scheme

4 Further Work

In this paper we have shown that assumptions on the random nature of the
input can lead to provable time and accuracy bounds for MaxInt. Also, we
have discovered a MaxInt threshold phenomenon in two randomized models.

The next step is to understand it better. Does it hold for other randomized
models from [18], especially for generalized random graphs with a power-law
degree distribution? Does it hold in the real life networks? Can we introduce
randomized models for sparse vector collections and find a similar effect there?
It was observed that tractable instances of nearest neighbors have small intrinsic
dimension [5, 8, 14, 12]. Does the same effect hold for the Zipf model and the
hierarchical scheme? Of course, the most challenging problem is to find an
exact algorithm for MaxInt (preserving our time constraints) or to prove its
hardness. What are other particular cases or assumptions that have efficient
MaxInt solutions? On the other hand, we have a very particular subcase for
which we still do not believe in a positive solution. Hence, we ask for a hardness
proof for the following on-line inclusion problem.

On-line Inclusion Problem

Database: A family F of 2k subsets of [1 . . . k2].

Query: Given a set fnew ⊆ [1 . . . k2], decide whether there exists an f ∈ F
such that fnew ⊆ f .

Constraints: Space for preprocessed data 2k · poly(k).
Query time poly(k).

Note that we have a constraint on space for preprocessing, not time. A related

15



problem but with a much stronger restriction on preprocessing space was proven
to be hard by Bruck and Naor [3].

Our algorithm in Section 3 uses polylogarithmic time (in the number of
documents) but it returns only an approximate solution with high probability
(not every time). Can we get an optimal solution or at least a guaranteed
approximation by relaxing the time constraint to expected polylogarithmic time?

The maximal intersection problem is a special case of a whole family of
problems called Strongest Connection Problems (SCP) which covers all problems
fitting the following framework. Consider some class of graphs G and some class
of paths P .

Strongest Connection Problems

Database: A graph G ∈ G.

Query: Given a (new) vertex v (together with edges connecting v with G),
return a vertex u ∈ G with a maximal number of P-paths from v to
u.

Constraints: Preprocessing time o(|G|2).
Query time o(|G|).

A number of well-motivated problems fall into the family of SCP. Some of
them are listed below but the application of the SCP framework is not limited
to these instances.

Recommendations. G: bipartite graphs; P : paths of length three.
Example: A graph G is partitioned into vertices representing people and
books, and the edge relation describes who has bought which books. Given
a person v. Which is a book (not purchased by v) that is most often bought
by people that had been interested in books of v?

Similarity in folksonomies. G: tripartite 3-graphs where the set of vertices
is partitioned into (V0, V1, V2) and E is an edge relation in V0 × V1 × V2;
P : paths consisting of two edges that overlap either in V0 or in V1 or both
in V0 and V1.
Example: A graph representing all events of kind “a user U used a tag T to
label a website W”. Then, the strongest connection query for the tag Tnew

returns another tag that was most often co-used by the same users and/or
applied to the same websites. Such tripartite 3-graph is accumulated in
del.icio.us.
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