Kapitel 6: weitere algorithmische Vorgehensweisen

- Wiederholung Graphdefinition und Dijkstra-Algorithmus
- zweitkürzeste Wege in einem Graphen: Algorithmen von Pollack und Hoffman & Pavley (algorithmusverändernd)
- zweitkürzeste Wege in einem Graphen.
 Algorithmus von Azevedo (graphverändernd)
- Verallgemeinerung auf dritt und k-kürzeste Wege
- Ausblick: Wegeverbote

Graphentheoretische Definitionen

Ein (gerichteter) (directed) $Graph \ G := (V, E)$ besteht aus einer Knotenmenge V und einer Kantenmenge $E \subseteq V \times V \times IN$. Zwei Kanten $(u_1, v_1, n_1) \ (u_2, v_2, n_2)$ heissen Multikanten, wenn $u_1 = u_2$ und $v_1 = v_2$. Ein Graph heißt multikanten wenn $E \subseteq V \times V$. Im Folgenden sei G multikanten frei .

Eine Kante heißt *bidirektional* (ungerichtet), wenn zu $(u,v) \in E$ immer auch $(v,u) \in E$ existiert; sonst heißt sie *unidirektional* (gerichtet).

Eine Kante der Form (u,u) heißt Schlinge. Ein n Tupel $(u_i,v_i) \in E$

i = 1..n heißt Weg wenn $u_{i+1} = v_i$ für i = 1..n-1 gilt (Kantenfolge).

Ein Graph heißt (kanten) gewichtet, wenn eine Abbildung

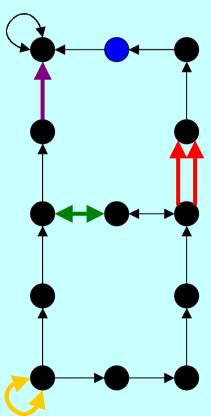
 $\beta: E \to IR$ (im Folgenden IR_0^+) definiert ist.

Die Abbildung β kann (intuitiv) auf Wege erweitert werden durch

$$\delta : \{ \text{Wege} \} \to \text{IR mit } \delta ((u_1, v_1), \dots, (u_n, v_n)) := \sum_{i=1}^n \beta (u_i, v_i).$$

$$d: V \times V \to IR \text{ mit } d(u,v) := \min \{ \delta((u,v_1),...,(u_n,v)) \}, d(u,u) := 0$$

Ein Weg heißt Zyklus wenn $u_1 = v_n$



Graphentheoretische Definitionen

Ein Graph ist im Folgenden immer multikantenfrei und gerichtet.

Seine Knotenmenge heißt V, die Kantenmenge E.

Seine Kanten sind mit Gewichtsfunktion β gewichtet.

 $\beta(u,v) \ge 0$ für alle $(u,v) \in E$

 δ (Weg) gibt die Länge des Weges an = Summe der Kantengewichte d(u,v) = Länge des kürzesten Weges von u nach v.

Der Dijkstra Algorithmus (Greedy - Algorithmus)

Wir konstruieren schrittweise den kürzeste - Wegebaum von einem Startknoten s aus.

 $0.Schritt: B_0 := \{s\}. \ d(s,s) := 0.$

Die Menge aller kürzesten Wege von einem Knoten aus hat Baumstruktur.

i : Schritt : Sei B_i der kürzeste - Wege - Baum nach dem i ten Schritt.

Im i + 1 ten Schritt wird der Knoten $v_{i+1} \notin B_i$ in den B_{i+1} aufgenommen, der zu s den i + 1 kürzesten Abstand hat.

Die Menge $N_i := \{v \in V \mid \exists (u,v) \in E \text{ mit } u \in B_i \text{ , } v \notin B_i \}$ heißt Nachbarschaftsliste.

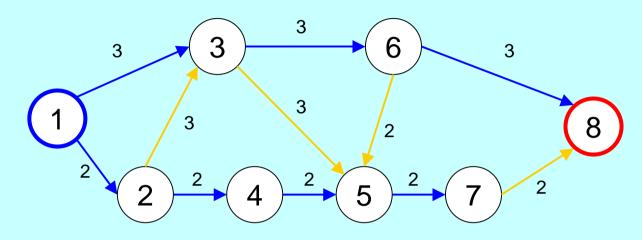
Wir suchen also den Knoten v_{i+1} der der folgenden Bedingung genügt :

$$d(s, v_{i+1}) := \min \{ d(s, u) + \beta(u, v) | (u, v) \in E, u \in B_i, v \in N_i \}$$

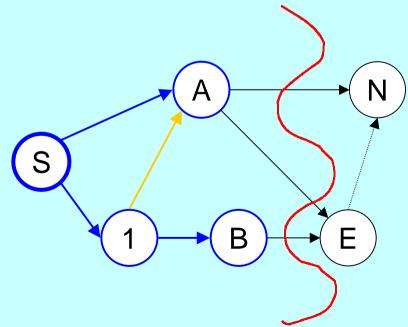
$$B_{i+1} := B_i \cup \{ v_{i+1} \}$$

Beweis geht indirekt mit vollständiger Induktion. Der Aufwand des Algorithmus liegt bei $O((|V| + |E|) \cdot \log |V|)$ wenn die Nachbarschaftsliste als Heap organisiert wird.

Minimierung des Abstandes zur Wurzel



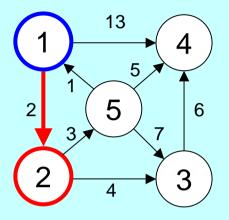
$$6+3=d(1,6)+\beta(6,8) < d(1,7)+\beta(7,8)=8+2$$



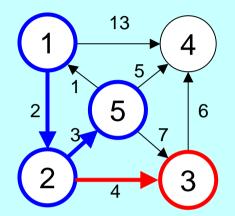
$$d(S,B) + \beta(B,E) + \delta(E,N) < d(S,N)$$
 (Annahme)
= $d(S,A) + \beta(A,N)$
 $\leq d(S,B) + \beta(B,E)$
(Algorithmus)

Widerspruch zu $\delta(A,B) \ge 0$

Beispiel für die Anwendung des Dijkstraalgorithmus



$$\beta(1,2) = 2$$
< $\beta(1,4) = 13$



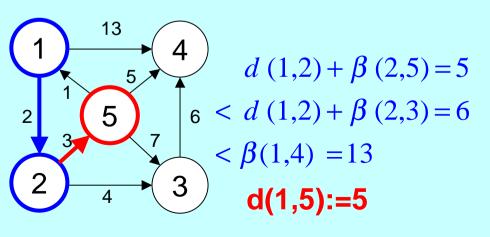
$$d(1,2) + \beta(2,3) = 6$$

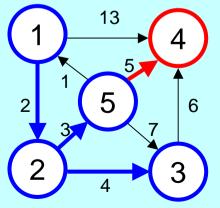
$$< d(1,5) + \beta(5,4) = 10$$

$$< d(1,5) + \beta(5,3) = 12$$

$$< \beta(1,4) = 13$$

$$d(1,3):=6$$





$$d(1,5) + \beta(5,4) = 10$$

< $d(1,3) + \beta(3,4) = 12$

$$< a(1,3) + \beta(3,4) = 1$$

$$< \beta(1,4) = 13$$

Definition für k - kürzeste Wege

Gegebensei ein Graph G := (V, E) sowie ein Startknoten s und ein Zielkmten z.

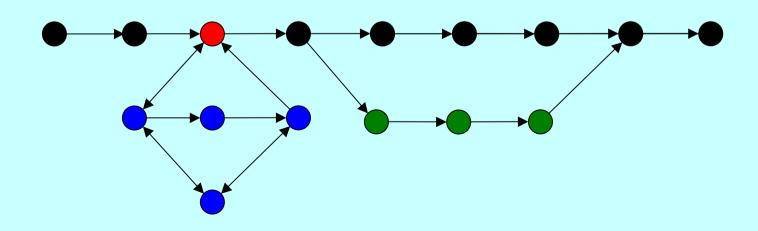
Ein Wegwheißt zyklenfrei:⇔ kein Knoten kommtin w mehrfach vor.

Sei W die Mengealler Wegevon s nach z (dies können bis zu |V-1|! zyklenfreie Wegesein).

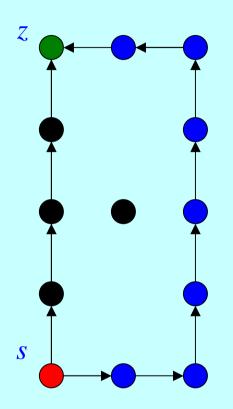
Ein Weg w_1 heißt kürzester Weg von s nach $z :\Leftrightarrow \delta(w) \ge \delta(w_1)$ für alle $w \in W$ (dieserist i.a. nicht eindeutig) Sei $w_1 \in W$ fest gewählt,

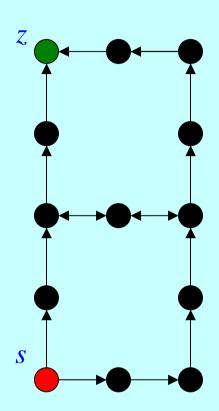
dann heißt w_2 zweitkürzester Weg von s nach $z :\Leftrightarrow \delta(w) \ge \delta(w_2)$ für alle $w \in W \setminus \{w_1\}$.

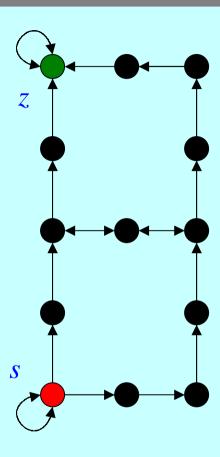
Ein Wegheißt k - $k\ddot{u}rzester$ Weg von s nach $z :\Leftrightarrow \delta(w) \ge \delta(w_k)$ für alle $w \in W \setminus \{w_1,...,w_{k-1}\}$.



Zweitkürzeste Wege in einem Graphen - (einführende Beispiele)



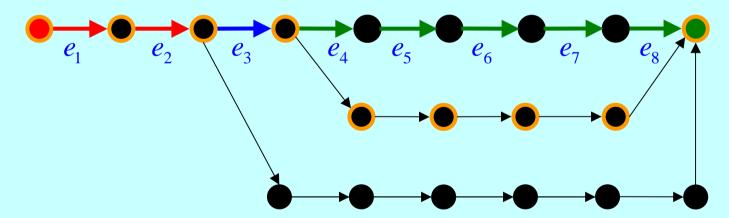




- Gesucht ist der zweitkürzeste Weg von s nach z
- Dijkstra ist dem Problem zweit kürzester Wege nicht gewachsen
- Algorithmus oder Graphveränderung ist notwendig

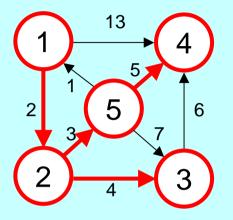
Algorithmus von Pollack

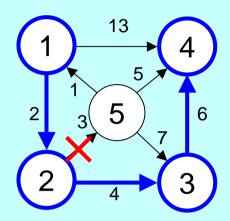
- Dynamisches algorithmusveränderndes Verfahren
- Berechne den kürzesten Weg zwischen Start und Zielknoten (m Kanten)
- Entferne jeweils eine Kante $(e_1,...,e_m)$ des kürzesten Weges und berechne in dem neu entstandenen Graph wieder den kürzesten Weg w_2^i zwischen Start und Zielknoten (m Berechnungen)
- Der kürzeste Weg dieser m Berechnungen ist der zweitkürzeste Weg zwischen Start und Zielknoten



- Kante 1 oder 2 wird weggelassen kein kürzester Weg wird berechnet
- Kante 3 wird weggelassen drittkürzester Weg wird berechnet
- Kante 4 8 wird weggelassen zweitkürzester Weg wird berechnet

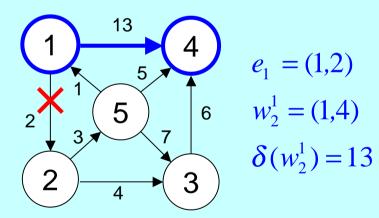
Der zweitkürzeste Weg von 1 nach 4

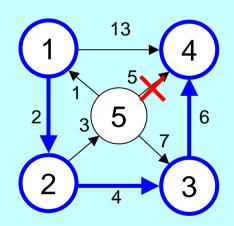




$$e_2 = (2,5)$$

 $w_2^2 = (1,2),(2,3),(3,4)$
 $\delta(w_2^2) = 12$



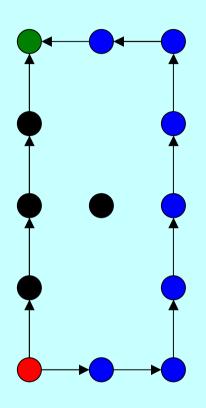


$$e_3 = (5,4)$$

 $w_2^3 = (1,2),(2,3),(3,4)$
 $\delta(w_2^3) = 12$

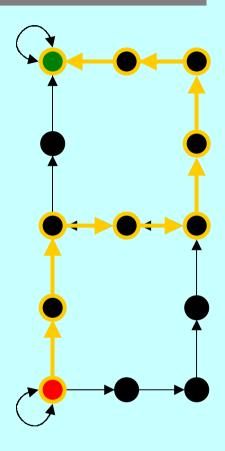
Damit ist der zweitkürzeste Weg $w_2 = w_2^2 = w_2^3$ mit $\delta(w_2) = 12 > 10 = \text{Länge des kürzesten Weges}$

Der Algorithmus von Pollack findet keine Schleifen



Der Algorithmus berechnet den orangenen Weg als zweitkürzesten Weg (als w_2^3 und w_2^4). Dies ist aber nur der zweitkürzeste schleifenfreie Weg.

Weder zweitkürzeste Weg mit Start oder Endschleife noch der Weg mit innerer Schleife werden gefunden.



$$w_2^1 = w_2^2 = w_2^3 = w_2^4$$

Sei m_1 (< |V|-1) die Anzahl der Kanten des kürzesten Weges, so liegt der Aufwand für den zweitkürzsten Weg bei m_1 · Dijkstra = $O(m_1$ · $((|V|+|E|) \log |V|)) \le O(|V| \cdot ((|V|+|E|) \cdot \log |V|))$.

Der Algorithmus von Hoffman & Pavley

Der zweitkürzeste Weg wird als Umweg des kürzesten Weges gesehen.

Berechne alle kürzesten Wege zum Zielknoten hin. Der kürzeste Weg $w:=((s,v_1),(v_1,v_2),...,(v_n,z))$ von $v_0:=s$ nach $v_{n+1}:=z$ wird damit ebenfallsberechnet.

Nimm von jedem Knoten v_i von w jede Kante (v_i, u) mit

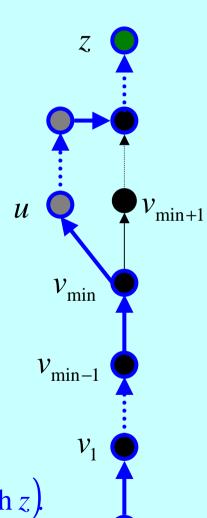
(*) $u \neq v_{i+1}$ und berechneden zweitkürzesten Weg als

$$w_{2} := \min_{i=0}^{n+1} \min_{u} \left\{ d(s, v_{i}) + \beta((v_{i}, u)) + d(u, z) \middle| u \neq v_{i+1} \right\}$$

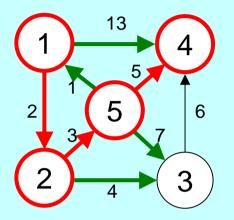
Der zweitkürzeste Wegist also

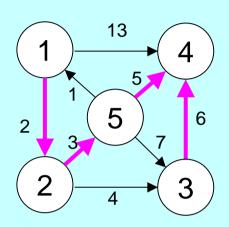
$$w_2 := ((s, v_1), ..., (v_{\min}, v_{\min}), ..., (v_{\min}, u), \text{ kürzester Weg von } u \text{ nach } z)$$

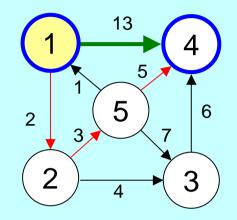
Dieser Algorithmus findet auch Wegemit Zyklen



Der zweitkürzeste Weg von 1 nach 4

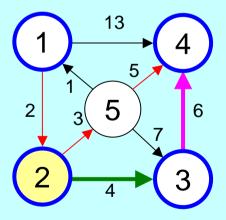






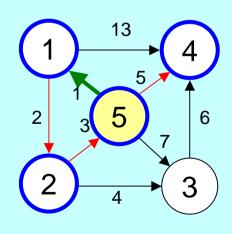
$$w_2^1 = 1,4$$

 $\delta(w_2^1) = 13$



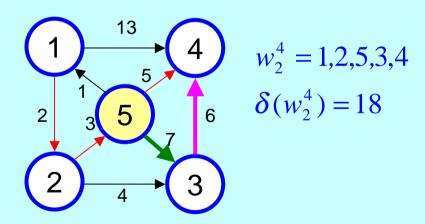
$$w_2^2 = 1,2,3,4$$

 $\delta(w_2^2) = 12$



$$w_2^2 = 1,2,5,1,2,5,4$$

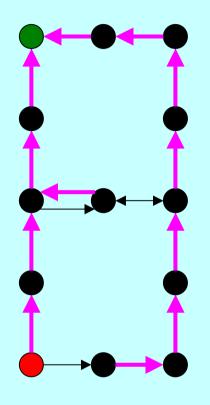
 $\delta(w_2^3) = 16$

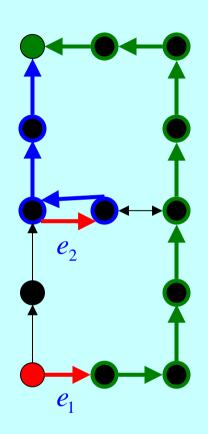


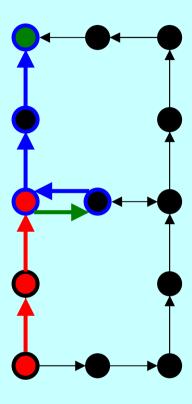
$$w_2 = w_2^2 < w_2^1 < w_2^3 < w_2^4$$

mit $\delta(w_2) = 12 > 10$

Schleifenbeispiel für den Algorithmus von Hoffman & Pavley

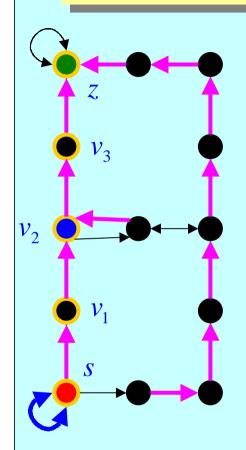






- 1. Die Kanten des kürzeste Wege Baumes zum Zielknoten hin sind violett
- 2. Die kürzesten Wege von den Endknoten der Kanten 1 und 2 werden betrachtet
- 3. Algorithmus erschafft zweitkürzesten Weg mit einem Zyklus

Schlingen am Anfang oder Ende und Aufwand



Gesucht ist wieder der zweitkürzeste Weg zwischen s und z.

Betrachte $s = v_0$. Die Kante (v_0, v_0) erfüllt die

Eigenschaft (*) $u \neq v_{i+1}$ nicht, denn $v_0 \neq v_1$. Damit wird der Weg

$$S, S, V_1, V_2, V_3, Z$$

bei der Minimumbildung berücksichtigt und wird automatisch

zweitkürzester Weg. $\delta(w_2) = 5$. Wenn man davon ausgeht,

daß v_{n+2} (undefiniert) $\neq v_{n+1}$ ist, so wird auch der Weg

$$S$$
, V_1 , V_2 , V_3 , Z , Z

gefunden, der ebenfalls zweitkürzester Weg ist.

Jeder Knoten kann im kürzesten Weg vorkommenkann und alle Knoten können untereinander verbunden sein. Damit liegt der Aufwanddes Verfahrensbei

$$O(|V| \cdot |V|) + O(\text{Dijkstra}) = O(|V|^2), \operatorname{da}|E| \le |V|^2$$
 $O(|V|^2) < O(|V| \cdot ((|V| + |E|) \cdot \log |V|)) \text{ (Pollack)}$

Verfahrensvergleich

Pollack

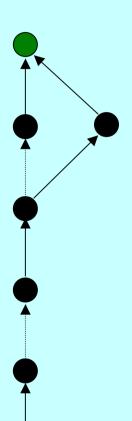
- Dynamisches Verfahren
- Berechne den kürzesten Weg w zwischen s und z
- Lasse eine Kante e von w weg.

- Berechne den kürzesten Weg im Graphen ohne die Kante e
- Minimiere über die so entstandenen kürzesten Wege
- Kürzester Weg ist gesperrt
- Nur schleifenfreie Wege werden gefunden

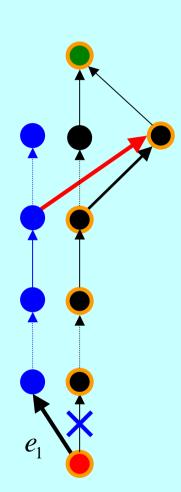
Hoffman & Pavley

- Dynamisches Verfahren
- Berechne den kürzesten Weg w zwischen s und z
- Nimm jede Kante e deren
 Anfangsknoten ein Knoten von w ist
 und selbst keine Kante von w ist
- Berechne den kürzesten Weg vom Endknoten von e nach z und addiere den Weg nach s.
- Minimiere über die so entstandenen kürzesten Wege
- Zweitkürzester Weg wird als Variante des kürzesten Weges gesehen
- Auch Wege mit Schleifen werden gefunden

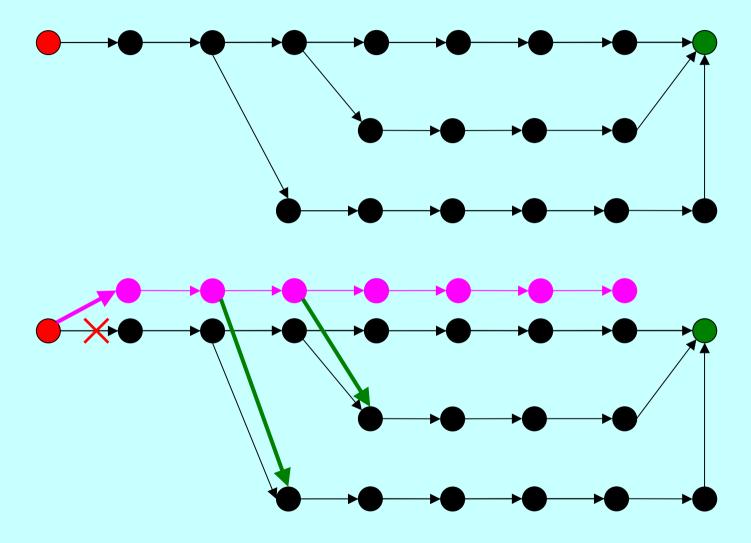
Algorithmus von Azevedo modifiziert von Schmid



- Statisches Verfahren (verändert nur den Graph nicht aber den kürzeste Wege- Algorithmus)
- Azevedo verwendet die Methode Pathdeletion (Wegeverbote).
- 1. Erschaffe einen neuen Startknoten und einen neuen Zielknoten (später).
- 2. Verdopple den kürzesten Weg ohne erste und letzte Kante bzw. Knoten. (Wegeverdopplung)
- 3. Weise der ersten Kante einen neuen Endknoten zu. (Umleitung)
- 4. Ziehe alle Kanten über die der kürzeste Weg verlassen werden kann. (Verbindung mit dem Ausgangsgraphen)

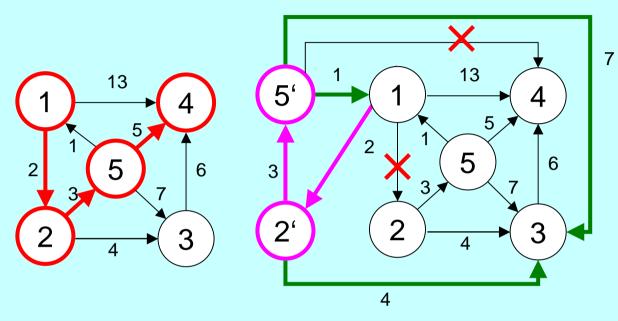


Beispiel für den modifizierten Algorithmus von Azevedo

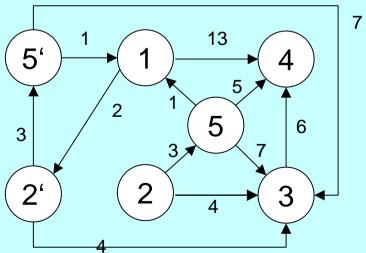


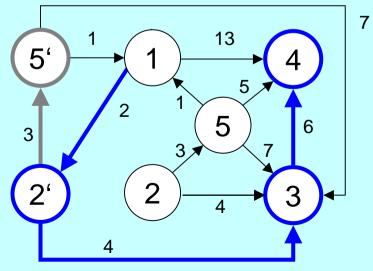
 Der kürzeste Weg ist nicht mehr begehbar. Der zweit und drittkürzeste Weg sind noch möglich.

Der zweitkürzeste Weg von 1 nach 4

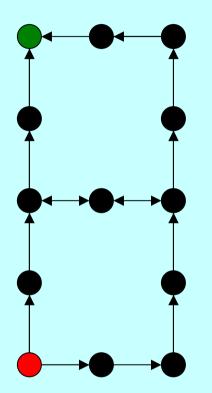


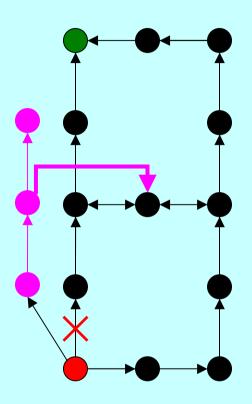
Der verdoppelte Weg ist blau
Die Verbindung mit dem
Ausgangsgraphen grün.
Die Kanten (2',5) und (5',4)
werden nicht gezogen. Die Kante
(1,2) wir zur Kante (1,2').

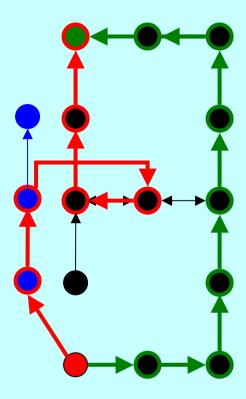




Beispiel für zweitkürzesten Weg mit Schlinge







- Der zweitkürzeste Weg ist nicht der vermutete (grüne) Weg, sondern der rote Weg, der sich vom kürzesten Weg nur durch eine Schlinge unterscheidet.
- Länge des roten Weges = 6 < 8 = Länge des grünen Weges

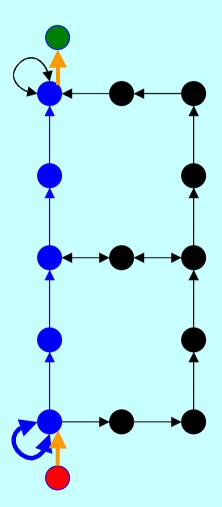
Der erste Schritt

Problem:

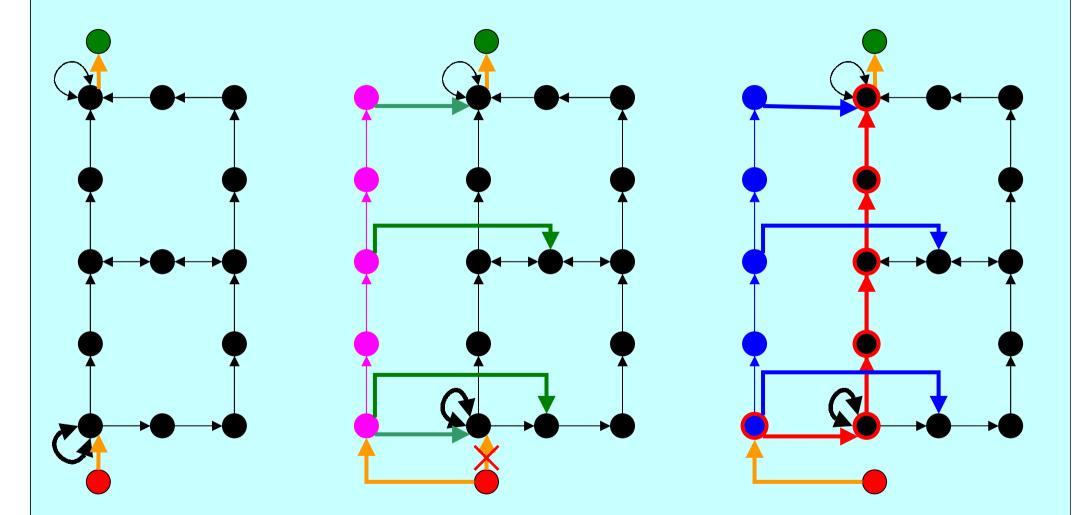
Der Algorithmus von Azevedo kann in dieser Form einen zweitkürzesten Weg der Form Schlinge - (alter) kürzester Weg oder (alter) kürzester Weg – Schlinge nicht erkennen.

Lösung:

- Erschaffe einen neuen Startknoten und einen neuen Zielknoten
- Verbinde den neuen Startknoten mit dem alten Startknoten durch eine Kante der Länge 0.
- Verbinde den alten Zielknoten mit dem neuen Zielknoten durch eine Kante der Länge 0.



Beispiel für einen erweiterten Graphen incl. 1 Schritt



Der zweitkürzeste Weg (rot) beinhaltet die Schlinge beim Startknoten

Aufwand des Verfahrens von Azevedo

Der kürzeste Weg zwischen 2 Knoten kann maximal |V| Knoten und |V|-1 Kanten beinhalten Die Anzahl, der vom kürzesten Weg wegweiserden Kanten ist maximal |E| – 2. Damit ist die Anzahlder neu erschafferen Elemente maximal |V| Knoten und |E| – 2 Kanten. Der Platzbedarf kann sich also fast verdoppeln.

Der Aufwandfür die Grapherweiterung ist O(|V| + |E|).

Der Aufwand, den zweit-kürzesten Weg zu berechnen, kann also bei Anwendung des Dijkstra-Algorithmus *zwei* mal so lange dauern wiedie Berechnung des kürzesten

Weges. Dies ist also
$$O((|V| + |E|) \cdot \log |V|)$$
 sofern $|E| \le \frac{|V^2|}{\log |V|}$.

Azevedo=
$$O((|V| + |E|) \cdot \log |V|) \le \text{Hoffman} = O(|V|^2)$$

$$< \text{Pollack} = O(|V| (|V| + |E|) \cdot \log |V|)$$

Drittkürzeste Wege nach Pollack

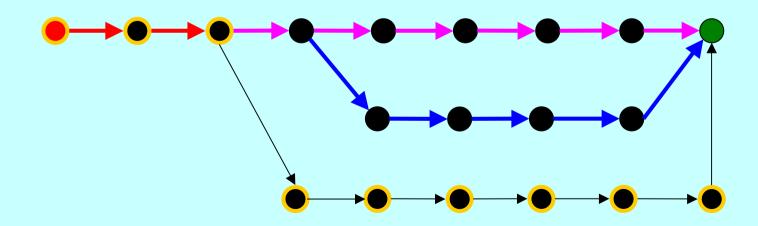
Berechnungdes drittkürzesten Weges: Berechnungdes drittkürzesten Weges:

Berechneden kürzesten Weg $w_1 = (e_1^1, \dots e_{m_1}^1)$ und den zweitkürzesten Weg

$$w_2 = (e_1^2, \dots e_{m_2}^2)$$
 zwischen s und z. Sperre je ein Paar (e_i^1, e_j^2) aus $(w_1 \times w_2)$

berechneden kürzesten Weg $w_3^{i,j}$ und bilde dann das Minimum

$$w_3 = \min_{i,j} \{ \delta(w_3^{i,j}) \}$$



k kürzeste Wege nach Pollack

Berechnungdes k + 1 kürzesten Weges:

Berechnedie *k* kürzesten Wege $w_1 = (e_1^1, \dots e_{m_1}^1), \dots, w_k = (e_1^k, \dots e_{m_k}^k)$

zwischen s und z. Sperre je ein k Tupel $(e_{i_1}^1, \dots e_{i_k}^k)$ aus $(w_1 \times ... \times w_k)$.

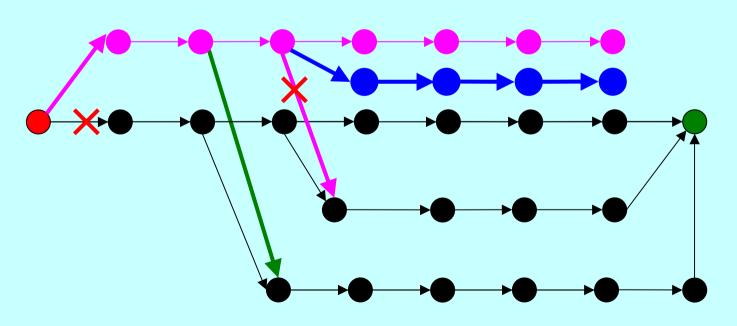
berechneden kürzesten Weg $w_k^{i_1,\dots,i_k}$ und bilde dann das Minimum

$$w_k = \min_{i_1,\dots,i_k} \left\{ \delta \left(w_k^{i_1,\dots,i_k} \right) \right\}$$

Der Aufwandliegt bei $O(\prod_{i=1}^{k} m_i) \cdot O(\text{Dijkstra}) \leq O(|V|^{k+1})$.

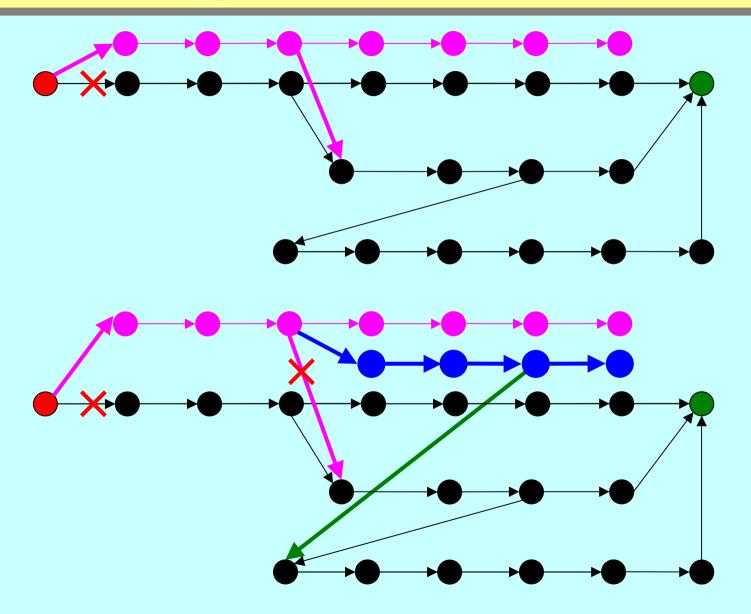
Drittkürzeste Wege nach Azevedo

Erschaffe einen neuen Startknoten und einen neuen Zielknoten. Berechneden kürzesten Weg w_1 und den zweitkürzesten Weg $w_2=(e_1^2,\dots,e_{m_2}^2)$. Der gemeinsame maximale Anfangsweg $(e_1^1=e_1^2,\,e_2^1=e_2^2,\,\dots,e_j^1=e_j^2)$ muß nicht verdoppelt werden. Es werden nur die Kanten $(e_{j+2}^2,\,\dots,e_{m_2-1}^2)$ und die dazugehörigen Knoten verdoppelt Die Kante e_{j+1}^2 über die der kürzeste Weg verlassen wird, bekommt



einen neuen Endknoten. Ziehe alle Kanten über die w_2 verlassen werden kann.

Drittkürzeste Wege nach Azevedo



k - kürzeste Wege nach Azevedo

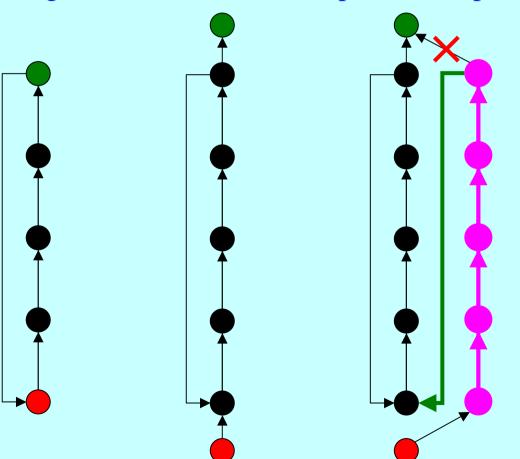
Berechnung des k + 1 kürzesten Weges:

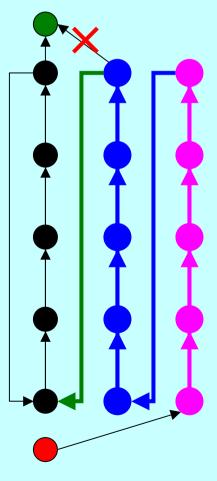
Erschaffe einen neuen Startknoten und einen neuen Zielknoten. Berechnedie k-kürzesten Weg w_1 ,..., w_k (mit w_i (e_1^i ,..., $e_{m_i}^i$)). Der gemeinsame maximale Anfangsweg($e_1^l = e_1^k$, $e_2^l = e_2^k$,..., $e_j^l = e_j^k$) mit l < k, j maximal, muß nicht verdoppelt werden. Es werden nur die Kanten (e_{j+2}^k ,..., $e_{m_k-1}^k$) und die dazugehörigen Knoten verdoppelt. Die Kante e_{j+1}^k über die w_l verlassen wird, bekommt einen neuen Endknoten. Ziehe alle Kanten über die w_k verlassen werden kann.

Der Aufwandliegt (vermutlich) bei $O((|E|+|V|) \cdot (k-1) \cdot \log |V|)$).

Der schlimmste Fall

Gegebensei ein Graph, der nur aus einem Zyklusbesteht. Der k - kürzeste Weg von s nach z ergibt sich aus dem kürzesten Weg und dem anschliessenden k-1 maligen Durchlaufen des kompletten Graphen.



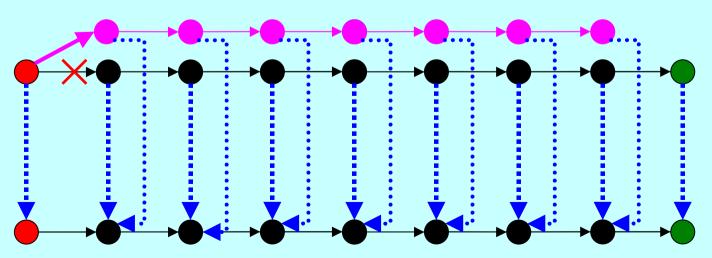


Beweis des Algorithmus von Azevedo

 Jeder Weg im erweiterten Graphen ist auch ein Weg im Ausgangsgraphen (die zeigt man über kanonische Projektionen = inverse Abbildung der Wegeverdopplung).

 Alle Wege (außer Wegen, die die k-kürzesten Wege enthalten) im Ausgangsgraphen, sind auch Wege im erweiteten Graphen (man konstruiert den Verlauf eines gegebenen Weges im erweiterten Graph).

Genau die k-kürzesten Wege sind verboten.



Literatur

- J.A.de Azevedo, J.J. Madeira, E. Q. Martins, F. M. Pires: A shortest path ranking algorithm. AIRO 90 – Models and Methods for Decision Support, Sorrent (Italien), Proceedings of the Annual Conference, Assoziazione Italiana di Ricera Operativa (S. 1001-1011) 10.1990
- E. W. Dijkstra: A note on two problems in connection with graphs. Numerical Mathematics 1, (S. 269-271), 1959
- W. Knödel: Graphentheoretische Methoden und ihre Anwendungen.
 Springer Verlag Berlin, Heidelberg 1969
- M. Mack: Untersuchung von effizienten Algorithmen zur Bestimmung der k-kürzesten Wege innerhalb von ÖPNV-Verkehrsnetzen. Diplomarbeit Nr. 1374, Fakultät Informatik, Universität Stuttgart, 1996
- W. Schmid: Kürzeste Wege in Straßennetzen mit Wegeverboten. Verlag der Bayerischen Akademie der Wissenschaften, München, 2001

