Abt. Formale Konzepte W. Schmid, P. Jehlicka Abgabe bis Dienstag 11.06.2002 Empfohlene Bearbeitungszeit: 3 Stunden Hierbei mindestens zu erreichende Punktzahl: 18.

Universität Stuttgart SS 02, 31.05.2002 Zugehörige Übungen am 14.06.2002 8.30 Uhr

Übung 5

zu Theoretische Informatik III (für Softwaretechnik)

Aufgabe 1: Analyse einer Turingmaschine

(4 Punkte)

Gegeben sei eine Turingmaschine: $M = (\{q'_0, q_0, q_1, q_e\}, \{0, 1\}, \{b, 0, 1\}, \delta, q'_0, \{q_e\}, b, 2)$ mit der zugehörigen Tafel δ :

q_0'	$\mathfrak{b},\mathfrak{b}$	q_0	1,0	O, O	q_0	₺ , ₺	q_e	ъ, ъ	O, O	q_1	ъ, ъ	q_e	1,	O, O
					q_0	$\mathfrak{b},0$	q_0	0, b	O, L	q_1	$\mathfrak{b},0$	q_0	1, b	O, L
q_0'	0,	q_0'	0,0	R,R	q_0	0, b	q_0	0, ts	L,O	q_1	0,	q_0	1,	L, O
					q_0	৳ , 1	q_0	1, t̄	O, L	q_1	ъ, 1	q_1	0,	O, L
q_0'	1, b	q_0'	1, 1	R,R	q_0	1, b	q_0	1, t̄	L,O	q_1	1,	q_1	0,	L,O
					q_0	0,0	q_0	0, b	L, L	q_1	0,0	q_0	1,	L, L
					q_0	0, 1	q_0	1, b	L, L	q_1	0, 1	q_1	0, b	L,L
					q_0	1,0	q_0	1, b	L, L	q_1	1,0	q_1	0, b	L,L
					q_0	1,1			L,L	q_1	1, 1	q_1	1,	L, L

Was berechnet diese Turingmaschine? Was bedeuten dabei die Zustände q_0 und q_1 ? Bestimmen Sie die Zeit- und Platzkomplexität der Turingmaschine.

Aufgabe 2: Konstruktion einer Turingmaschine

(4 Punkte)

Konstruieren Sie eine k-Band Turingmaschine, die zu einer gegebenen Zahl x (in Binärdarstellung) entscheidet, ob diese durch 3 teilbar ist oder nicht. Bestimmen Sie die Zeit- und Platzkomplexität der Turingmaschine. Verwenden Sie möglichst wenig Bänder.

Aufgabe 3: ein einfach aussehendes Problem

(4 Punkte)

Sei k-COLOR (k > 2) die Menge der binären Codierungen von ungerichteten Graphen, die sich mit k Farben färben lassen. Zeigen Sie: k-COLOR lässt sich von einer nichtdeterministischen Turingmaschine in $O(n^2)$ lösen.

Konstruieren Sie keine Turingmaschine, sondern skizzieren Sie einen Lösungsalgorithmus und schätzen Sie dessen Laufzeit ab.

Läßt sich dieses Problem nicht deterministisch in $O(n^2)$ lösen?

Aufgabe 4: Konstruktion einer Registermaschine

(6 Punkte)

Konstruieren Sie eine Registermaschine, die bei Eingabe der Zahlen n in R_0 und m in R_1 die Werte n div m und n mod m berechnet. Bestimmen Sie die Zeit- und Platzkomplexität Ihrer Registermaschine.

Skizzieren Sie, wie man mit einer Mehrbandturingmaschine dieses Problem löst und vergleichen Sie die Aufwandsabschätzungen.

Diese Aufgabe ist als Alternative zu den Aufgaben 1-3 gedacht.

Eine (deterministische) Turingmaschine heißt universell, wenn für alle Turingmaschinen M und für alle (für M zulässigen) Wörter w gilt: $Res_U(< M, w>) = < Res_M(w) >$ (vgl. Hertrampf Theoretische Informatik I). U liest also die binäre Standardcodierung < M > einer 1-Band Turingmaschine sowie derern Eingabe w ein und erzeugt dann das gleiche Ergebnis, das M bei Eingabe von w erzeugt hätte.

Erläutern Sie die Arbeitsweise einer universellen Turingmaschine

Skizzieren Sie eine universelle Turingmaschine mit k Bändern, die möglichst wenige Zustände besitzt (wählen Sie $k \leq 5$ geeignet).