Evolutionäre Algorithmen

Vorlesung 5

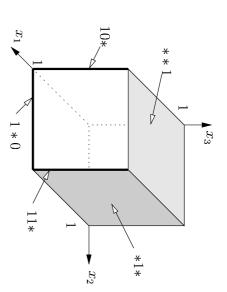
Schema-Theorem Formae

Price-Theorem

Suche in Hyperebenen_

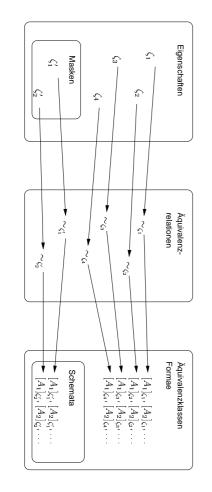
- ▶ Lösungskandidaten lassen sich durch unterschiedliche
 Eigenschaften charakterisieren und in unterschiedliche
 Klassen einteilen
- jede Population macht über die Gütewerte eine Aussage bezüglich des Nutzens der Eigenschaften
- Selektion favorisiert "gute" Eigenschaften, die dann rekombiniert werden

Beispiel



Evolutionäre Algorithmen, Vorlesung 5, Weicker

Begriffe und Zusammenhänge



Merkmale und Formae

- ${} \hspace{.1in} \triangleright \hspace{.1in} \operatorname{Merkmal} \; \zeta \in M \; \mathrm{kann} \; \mathrm{unterschiedliche} \\$

Ausprägungen annehmen

- \Rightarrow induziert eine Äquivalenzrelation \sim_{ζ}
- $\qquad \qquad \land \mbox{ Aquivalenzklassen} \ [A]_{\zeta} \ = \ \{B | A \sim_{\zeta} B\}$ (heißen Formae)

Evolutionäre Algorithmen, Vorlesung 5, Weicker

(5)

Eigenschaften

▷ Anzahl der Äquivalenzklassen bzgl. eines Merkmals:

Genauigkeit

ightharpoonup Formae u und u' sind *miteinander verträglich*

 $\nu \bowtie \nu' : \Leftrightarrow \nu \cap \nu' \neq \emptyset$

▷ Beispiel?

Positionsbasierte Merkmale

- Eigenschaften über Positionen im Genotyp definiert
- Maske $\zeta \in \mathcal{P}^{\{1,...,l\}}$ bestimmt relevante Positionen
- riangledown Äquivalenzrelation $A\sim_{ ilde{\zeta}}B:\Leftrightarrow orall_{i\in ilde{\zeta}}A_i=B_i$
- > Ordnung einer Maske $o(\zeta)$:

Anzahl der definierten Positionen

definierende Länge einer Maske $\delta(\zeta)$:

$$\delta(\tilde{\zeta}) \,:=\, \max\{|i-j|\,|\,i,j\in\tilde{\zeta}\}$$

Evolutionäre Algorithmen, Vorlesung 5, Weicker

Schemata

- Beispiel: Masken $\tilde{\zeta}=\{2,4,5,6\}$ und $\tilde{\zeta}=\{1,5\}$ auf $\mathcal{G}=\{0,1\}^6$: Formae zum Individuum 100010?
- Schema-Schreibweise:

$$H = (H_1,\dots,H_l) \in (\mathcal{G} \cup \{*\})^l$$
 mit $H_i = \left\{egin{array}{c} A_i, & ext{falls } i \in ilde{\zeta} \ , & ext{sonst} \end{array}
ight.$

>~~ Instanzen eines Schemas I(H)

Eine Generation eines EA

- $\quad \triangleright \quad \text{Population } P^{(t)} = \left\langle A^{(t,i)} \right\rangle_{1 \leq i \leq n}, \text{Forma } v$
- ightharpoonup Elternselektion $Sel^{\xi,dec,f}:\mathcal{G}^n o\mathcal{G}^n$,

$$E_{Sel}(v, P^{(t)}) := \sum_{\xi \in \Xi} |v \cap Sel^{\xi, dec, f}|$$

$$> R^{\xi}: \mathcal{G}^2 o \mathcal{G}^2,$$

$$P_{R,v} \ = \ \mathsf{Pr}_{\xi \in \Xi, B \in \mathcal{G}} \left[R^{\xi}(A,B) \not\in v \mid A \in v \right]$$

$$\quad \triangleright \quad M^{\xi}: \mathcal{G} \to \mathcal{G}, \ \ P_{M,v} \ = \ \mathsf{Pr}_{\xi \in \Xi} \left[M^{\xi}(A) \not \in v \ \middle| \ A \in v \right]$$

 $\,
ightharpoonset$ Wirkung auf Häufigkeit der Vertreter von v:

$$E(v, t+1) \ge E_{Sel}(v, P^{(t)}) (1 - P_{M,v} - P_{R,v})$$

Evolutionäre Algorithmen, Vorlesung 5, Weicker

Schema-Theorem

mit fitnessproportionaler Selektion

Folgerungen

- building blocks: Schema mit
- überdurchschnittlicher Fitness
- kleiner definierender und Länge
- geringer Ordnung

vermehren sich rasch

durch parallele Vermehrung solcher Eigenschaften sollen sich komplexere überlegene Individuen bilden

Evolutionäre Algorithmen, Vorlesung 5, Weicker

Exponentielles Wachstum

- zunächst nur eine Aussage zu einem Schritt
- wäre sie in jeder Generation wahr
- ⇒ exponentielles Wachstum der building blocks
- Aber: Annahme gilt nicht allgemein
- durchschnittliche Güte der Population n\u00e4hert sich der durchschnittlichen Qualit\u00e4t des Schemas an

 $\qquad \qquad \text{Dann gilt f\"{u}r} \ E(H,t) = |I(H) \cap P^{(t)}| :$

1-Punkt-Crossover als Rekombination

bitflipping Mutation mit Inversionswahrscheinlichkeit p_{M} ,

$$E(H, t+1) \ge E(H, t) \frac{f(H, P^{(t)})}{f(P^{(t)})}$$

$$\left(1 - o(H)p_M - \frac{\delta(H)}{l-1}p_R P_{R,v}\right)$$

mit durchschnittlicher Qualität $f(P^{(t)})$ (Gesamtpopulation)

bzw. $f(H,P^{(t)})$ (Individuen in $I(H)\cap P^{(t)}$)

Evolutionäre Algorithmen, Vorlesung 5, Weicker

Weitere Kritik

- Populationen sind sehr kleir
- Wahrscheinlichkeitsaussagen sind kritisch
- ∇ Annahme: beobachtete Qualität eines Schemas entspricht der tatsächlichen durchschnittlichen Qualität
- gilt nicht bei großer Gütevarianz innerhalb eines Schemas
- \Downarrow gilt nicht bei partieller Konvergenz in der Population

13

Evolutionäre Algorithmen, Vorlesung 5, Weickei

Entwurfsprinzipien

- wann gelten allgemein die Aussagen des
- Schema-Theorems?
- ∇ können Regeln für den Entwurf neuer Algorithmen abgeleitet werden?
- ∇ Entwurfsprinzipien stellen Forderungen an das Zusammenspiel Formae-Operatoren
- ∇ stellen nur eine Möglichkeit für die Arbeitsweise der Operatoren dar

Minimale Redundanz

- möglichst: eindeutige Genotyp-Phänotyp-Abbildung
- falls Redundanz unvermeidbar ist

$$(\exists_{A,B\in\mathcal{G}(A\neq B)}\ dec(A) = dec(B))$$
:

redundante Punkte in selben Formae auffangen,

$$\mathrm{d.h.}\ [A]_{\zeta}=[B]_{\zeta}$$

 ∇ sonst: unterschiedlich Formae mit ähnlicher phänotypischer Wirkung hemmen die Suche

Evolutionäre Algorithmen, Vorlesung 5, Weicker

15

Ahnlichkeit in Formae

- Formae sollen Individuen mit ähnlicher Güte (oder phänotypischer Ausprägung) vereinigen
- ∇ insbesondere: für Merkmale mit geringer Genauigkeit
- ∇ relevante Merkmale sollen auch in mittelgroßen Populationen statistisch als "gut" bewertet werden

14

Abschluss gegen den Schnitt von Formae

- Rekombination soll sinnvolle Eigenschaften unterschiedlicher Individuen kombinieren
- durchsuchte Hyperebenen sollen sich während der

Suche verfeinern

 Schnitt miteinander verträglicher Formae soll wieder eine Forma bilden

Evolutionäre Algorithmen, Vorlesung 5, Weicker

17

Verträglichkeit der Formae

- ▷ Entwurfsprinzip für Rekombination
- gemeinsame Eigenschaften der Eltern sollen immer auf Kinder übergehen
- $\qquad \forall_v \forall_{A,B \in v} \forall_{\xi \in \Xi} \ R^{\xi}(A,B) \in v$
- bisher durch die Suche Erreichtes wird dadurch erhalten
- insbesondere auch bei der Rekombination eines

Individuums mit sich selbst

Übertragung von Genen_

- ightharpoonup eine Rekombination übertragt Gene oder phänotypische Allele (Formae V mit minimaler Genauigkeit), wenn für jedes neue Individuum, die Eigenschaften auf ein
- $\quad \triangleright \quad \forall_{A,B} \forall_{\xi \in \Xi} \forall_{v \in V} \ R^{\xi}(A,B) \in v \ \Rightarrow \ (A \in v \ \lor \ B \in v)$

Elternteil zurückgeführt werden können

- spricht für einen kombinierenden Operator
- andernfalls: Rekombination nimmt implizite Mutationen vor

Evolutionäre Algorithmen, Vorlesung 5, Weicker

19

Verschmelzungseigenschaft_

- kompatible Formae in zwei Individuen sollen sich immer durch die Rekombination miteinander verbinden lassen
- $\forall v, v'(v \bowtie v') \forall_{A \in v} \forall_{B \in v'} \exists_{\xi \in \Xi} R^{\xi}(A, B) \in v \cap v'$
- effektive Suche erfordert die Möglichkeit, alle kombinierbaren Eigenschaften zu kombinieren

18

Gesamtkonzept

- ∇ Eigenschaften zu strikte Rolle des Zusammenführens von existierenden Entwurfsprinzipien weisen der Rekombination eine
- ∇ durch Mutation gewährleistet werden Erreichbarkeit von allen Punkten im Suchraum muss
- ∇ sonst: zu starke Abhängigkeit von der Anfangspopulation

Evolutionäre Algorithmen, Vorlesung 5, Weickei

21

Eine täuschende Funktion

Genotyp	Güte	Genotyp Güte	Güte
000	3.0	110	1.0
001	2.0	101	1.0
010	2.0	011	1.0
100	2.0	111	3.5

 ∇ durchschnittliche Güte der Schemata?

Weitere Kritik am Schema-Theorem

- EA besitzen die Fähigkeit sich auf vielversprechende Regionen im Suchraum zu konzentrieren
- im Schema-Theorem: Regionen ≡ Schemata vielversprechend

 mit überdurchschnittlicher Güte
- überdurchschnittliche Güte vererbt sich tatsächlich weiter

 ∇

setzt implizit voraus:

 ∇ fehlende Voraussetzung: Korrelation der Gütewerte zwischen Eltern und Kind

Evolutionäre Algorithmen, Vorlesung 5, Weicker

23

Price-Theorem: Rahmen

- wir betrachten EA (GA) als dynamisches System
- $p'_A = \sum_{B,C \in \mathcal{G}} T(A \leftarrow B,C) \frac{f(B)f(C)}{f^2} p_B p_C$
- $p_X=$ Häufigkeit eines Individuums X
- $T(A \leftarrow B, C) = \text{Wahrscheinlichkeit } A \text{ aus } B \text{ und } C \text{ zu}$ erzeugen
- Betrachten im weiteren eine qualitative Bewertung von von Populationen $Q = \sum_{A \in \mathcal{G}} Q(A) p_A$ einzelnen Individuen $Q:\mathcal{G}
 ightarrow\mathbb{R}$ sowie

Evolutionäre Algorithmen, Vorlesung 5, Weicke

Price-Theorem ________

▷ Es gilt für zwei Eltern B und C:

$$\bar{Q}=\bar{E}+Cov\left[E[T(B,C)],\frac{f(B)f(C)}{f^2}\right]$$
 mit

erwartete Bewertung der Nachkommer

$$E[T(B,C)] = \sum_{A \in \mathcal{G}} Q(A)T(A \leftarrow B,C)$$

durchschnittliche erwartete Bewertung in der Population:

$$\bar{E} = \sum_{B,C \in \mathcal{G}} E[T(B,C)]p_B p_C$$

Kovarianz zwischen Elterngüte und Kindbewertung:

$$Cov\left[E[T(B,C)], \frac{f(B)f(C)}{f^2}\right] = \sum_{B,C\in\mathcal{G}} E[T(B,C)] \frac{f(B)f(C)}{f^2} p_B p_C - \bar{E}$$

Rolle der Rekombination

Angenommen es gilt die Übertragung der Gene: vom Vater

$$g \in G = P^{\{1,\dots,l\}}$$
, von der Mutter $\hat{g} = \{1,\dots,l\} \setminus g$:

$$R_g(B,C) = \left\{ egin{array}{ll} B_i, & i \in g \\ C_i, & ext{sonst} \end{array}
ight.$$

- sei p_g die Wahrscheinlichkeit, dass $R\,g$ erzeugt
- Dann gilt: $T(A \leftarrow B, C) = \sum_{g \in G} p_g R_g(B, C)$
- g bestimmt Menge von Schemata:

$$H(g) = \{H_1 \dots H_l \mid H_i \in \{0,1\} \text{ falls } i \in g,$$

$$H_i = * \operatorname{sonst} \}$$

27

25

Bewertungsfunktionen

Häufigkeit eines Schemas H:

$$Q_H(A) = \begin{cases} 1, & A \in I(H) \\ 0, & \text{sonst} \end{cases}$$

⇒ führt zu einer Variante des Schema-Theorems

Betrachtung eines Güteschwellwerts \boldsymbol{w} :

$$Q_w(A) = \left\{ \begin{array}{ll} 1, & A \in f(A) \succ w \\ 0, & \text{sonst} \end{array} \right.$$

führt zu folgendem Theorem

"Fehlendes" Schema-Theorem_

$$\begin{split} Q_w' - Q_w &= \\ \sum_{g \in G} \, p_g \, Cov \left[Q_w(R_g(B,C)), \frac{\bar{f}_{\hat{g}}(B)\bar{f}_g(C)}{\bar{f}^2} \right] \\ - \sum_{g \in G} \, p_g \, \sum_{B \in H(\hat{g}), C \in H(g)} \! \left(p_{R_g(B,C)} - p_B^{(\hat{g})} p_C^{(g)} \right) \\ \left(Q_w(R_g(B,C)) - \bar{Q}_w \right) \! \frac{\bar{f}_{\hat{g}}(B)\bar{f}_g(C)}{\bar{f}^2} \end{split}$$

- mit $p_B^{(\hat{g})} = \sum_{C \in H(g)} p_{R_g(B,C)}$ und $p_C^{(g)} = \sum_{B \in H(\hat{g})} p_{R_g(B,C)}$
- und Grenzgütewerten der Schemata

$$\bar{f}_{\hat{g}}(B) = \frac{1}{p_B^{(\hat{g})}} \sum_{C \in H(g)} f(R_g(B, C)) p_{R_g(B, C)}$$
$$\bar{f}_g(C) = \frac{1}{p_C^{(\hat{g})}} \sum_{B \in H(\hat{g})} f(R_g(B, C)) p_{R_g(B, C)}$$

Folgerungen

- eine positive Kovarianz zwischen den Gütewerten der Schemata und den besseren erzeugten Kindindividuen beeinflusst die Güteentwicklung positiv
- $\,\rhd\,\,$ nicht alle Schemata werden verarbeitet, sondern nur diejenigen mit $p_g>0$
- Schemata treten immer in komplementären Paaren auf

Evolutionäre Algorithmen, Vorlesung 5, Weicker

29

Evolutionäre Algorithmen, Vorlesung 5, Weicker

31

Folgerungen

 $\label{eq:continuous} $$ \hspace{-0.5cm} $ \hspace{$

Positiver Einfluss wenn $p_{R_g\left(B,C\right)}$ unterrepräsentiert ist

die Güteentwicklung

Dann hat die Rekombination einen negativen Einfluss auf

Evolutionäre Algorithmen, Vorlesung 5, Weicker

30

Folgerungen_

riangleright die Rekombination kann dadurch optimiert werden, dass $parbox{0.05cm}{p_g}$ so angepasst wird, dass diejenigen $parbox{0.05cm}{g}$ mit sehr positivem Wert

$$\begin{split} Cov\left[Q_{w}(R_{g}(B,C)),\frac{\bar{f}_{\hat{g}}(B)\bar{f}_{g}(C)}{f^{2}}\right] \\ -\sum_{B\in H(\hat{g}),C\in H(g)}(p_{R_{g}}(B,C)-p_{B}^{(\hat{g})}p_{C}^{(g)}) \\ (Q_{w}(R_{g}(B,C))-\bar{Q}_{w})\frac{\bar{f}_{\hat{g}}(B)\bar{f}_{g}(C)}{\bar{f}^{2}} \end{split}$$

eine höhere Wahrscheinlichkeit erhalten